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Abstract— We consider the problem of planning manipulation
tasks in which rigid body dynamics are significant and the rigid
bodies undergo frictional contacts. We develop a dynamic model
with frictional compliant contacts, and a time-stepping algorithm
that lends itself to finding trajectories with constraints on the
starting and goal conditions. Because we explicitly model the local
compliance at the contact points, we can incorporate impacts
without resetting the states and reinitializing the dynamic models.
The problem of solving for the frictional forces with the Coulomb
friction cone law reduces to a convex quadratic program. We
show how this formulation can be used to solve boundary value
problems that are relevant to process design, design optimiza-
tion and trajectory planning with practical examples. To our
knowledge, this paper is the first time boundary value problems
involving changes in contact conditions have been solved in a
systematic way.

I. INTRODUCTION

There are many robotics and manufacturing processes in
which nominally rigid bodies undergo frictional contacts,
possibly involving impacts. Examples of such processes in-
clude robotic manipulation, part-feeding, assembly, fixturing,
material handling, and disassembly. It is difficult to ana-
lyze these processes without a good understanding of the
underlying dynamic model of the interaction between the
multiple, nominally-rigid bodies that constitute the mechanical
system [1]. Further, because these bodies undergo intermittent
contacts, occasionally at significant relative velocities, it is also
necessary to model the friction and, as we will shortly argue,
the compliance at each contact.

Two case studies that motivate this work are (a) part-
feeding; and (b) robot manipulation with multiple fingers
or robots. Most current design techniques for manufacturing
processes such as part-feeding are based on intuition, expe-
rience, and rules of thumb, while the analysis of designs
is done empirically [2]. In contrast, there are many formal
approaches to multi-robot or multi-fingered manipulation. In
many cases, geometric and quasi-static models are used to
successfully plan manipulation [3], [4], fixturing [5], [6], or
grasping tasks [7]. However, such models are often inadequate
for analysis and sometimes result in conservative motion plans
(or designs) where the manipulated object must be caged [8],
form-closed [9], or force-closed with guarantees on quasi-
static stability [4] at all times. The use of dynamic models
and design based on dynamic analysis is particularly difficult
because of two main reasons. First, the use of non-smooth
frictional contact models with the principles of classical rigid

body dynamics introduces mathematical inconsistencies that
can be hard to resolve [10]. Second, there are no accepted
models for rigid body impacts. Even if we were to accept
a rigid body model, it would require switching between a
dynamic model with finite forces and a computation that would
involve resetting the state to accommodate impacts.

Recently, there has been some attention in the robotics
community on overcoming these shortcomings by using rigid
body models to predict the gross motion while using com-
pliant contact models to predict the contact forces and the
local deformations [10]. Continuum models for modeling the
deformations at each contact are described in [11], [12]. These
models provide a better phenomenological model and also
serve to regularize the problem. Existence and uniqueness can
be shown for the special case of a single linearly visco-elastic
frictional contact with the Coulomb friction model in two and
three dimensions by Song et al [10]. This result has been
extended to multiple frictional contacts under some restrictions
on the coefficient of friction [13]. Finally, it has been shown
that such compliant models yield results that converge to rigid
body model results as the stiffness at the contacts is increased
whenever the rigid body model predicts a unique solution [13].

Another approach to overcome the mathematical incon-
sistencies that are inherent in rigid body models [14] is to
consider the impulse and velocity solutions instead of explic-
itly solving for the forces and accelerations [15], [16]. Time-
stepping methods, which have their origins in early 80’s [17],
were developed to overcome some of these difficulties. The
contact state (rolling, sliding or no contact) at each contact
is allowed to change at any time, and the transitions between
contact states are described by complementarity constraints
on the relative positions (or their derivatives) and contact
forces (or their integrals). Thus the process of solving for the
forces and accelerations is replaced by the problem of solving
for impulses and velocities at each step, which is then cast
as a complementarity problem. In the special case of planar
systems discretized with an explicit or a semi-implicit scheme
with the Coulomb frictional contact model, the process of
solving for the state at time t�+1 given the state at time t�

reduces to a linear complementarity problem (LCP), which can
be solved by efficient algorithms. But more generally, a time-
stepping formulation results in a nonlinear complementarity
problem (NCP).

The main goal of this paper is to formulate the multi-body
dynamics with compliant, frictional contacts for manipulation



tasks and develop a time-stepping model that lends itself to
finding trajectories with constraints on the starting and goal
conditions. Specifically, we make three important contributions
in this paper. First, we build on our previous work [13] to
develop a fully-implicit time stepping model incorporating
compliant contacts with the Coulomb friction cone model.
This requires extending the state space to model normal and
tangential deformations of active contacts. Additionally, we
formulate the problem of solving for the frictional forces as a
convex quadratic program. Second, we formulate the trajectory
design and planning problem as a boundary value problem
and develop a solution technique to solve such problems.
Finally, we illustrate this methodology by solving several
practical examples. To our knowledge this is the first time
such problems have been solved.

II. DYNAMIC MODEL

The dynamic equation of motion for a multibody system
with frictional contacts can be written in the form

M(q)ν̇ = f(t, q, ν) + Γn(q)T λ n + Γt(q)T λ t + Γo(q)T λ o,
(1)

where q is the nq-dimensional vector of generalized coordi-
nates, ν is the nν-dimensional vector of the system velocities,
ν̇ = dν/dt, M(q) is the nν × nν symmetric positive definite
mass-inertia matrix, f(t, q, ν) is the nν-dimensional external
force vector (excluding contact forces), and λn,t,o are the
contact force vectors in the normal direction (labelled n) and
the two tangential directions (labelled t and o). Γ n,t,o are the
Jacobian matrices defined as

Γ n,t,o(q) ≡ JΨ n,t,o(q)G(q),

where G(q) is a nq×nν parametrization matrix, Ψ n,t,o(q) are
the constraint functions for all possible contacts in the n, t, and
o directions respectively, and JΨ n,t,o(q) are the corresponding
Jacobian matrices of these functions. For rigid-body systems,
λ n,t,o are nc-dimensional vectors, and JΨn,t,o(q) are nc×nq

matrices, where nc is the total number of contacts. The
kinematics equations relate the system velocity ν to the time-
derivative of the system configuration q̇ ≡ dq/dt via the
parametrization matrix G(q):

q̇ = G(q)ν. (2)

Together, (1) and (2) constitute the equations of motion
modeling the dynamics of the mechanical system.

a) Compliant Contact Models: We employ the dis-
tributed compliant model described in [13] to model the
contact forces. The key idea of the compliant model is to allow
local compliance at the contact patch between nominally rigid
bodies. Unlike some penalty methods, the compliant model
relies on both normal and tangential compliances to model
contact forces. In this paper, we adopt the simplest which
postulates that the contact forces are linearly dependent on
the body deformations and on the deformation rates:

λ = K(q)δ + C(q)δ̇ (3)

where

λ ≡

⎛⎜⎝ λn

λt

λo

⎞⎟⎠ = λn,t,o , δ ≡

⎛⎜⎝ δn

δt

δo

⎞⎟⎠ = δn,t,o

are the vector of the contact forces and the body deformations
in the normal (n) and the two tangential directions (t and
o), respectively; δ̇ denotes the vector of velocities of the
deformations (i.e., δ̇ = dδ/dt); the stiffness matrix K(q) and
the damping matrix C(q), which are partitioned as:

K(q) ≡

⎡⎢⎣ Knn(q) Knt(q) Kno(q)

Ktn(q) Ktt(q) Kto(q)

Kon(q) Kot(q) Koo(q)

⎤⎥⎦

and C(q) ≡

⎡⎢⎣ Cnn(q) Cnt(q) Cno(q)

Ctn(q) Ctt(q) Cto(q)

Con(q) Cot(q) Coo(q)

⎤⎥⎦
are each of order 3n2

snc, with n2
s being the number of elements

with lumped stiffness and damping properties that comprise a
contact patch; each of the 18 block matrices (such as Knt(q)
etc.) in K(q) and C(q) is an n2

snc block diagonal matrix with
nc diagonal blocks, one for each contact patch, and each such
diagonal block is in turn a square matrix of order n2

s. With
nδ ≡ n2

snc, it follows that each of the vectors in λn, t, o and
δn, t, o has dimension nδ .

b) A New Friction Model: By incorporating the com-
pliance contact model described above with the traditional
Coulomb’s cone law, we can derive a new friction model that
completely eliminates the discontinuities in velocities during
the transitions between rolling and sliding contact states.

From Coulomb’s model, the maximum power dissipation
principle is formulated as

(λit, λio) ∈ argmin
(λ̃it,λ̃io)∈FCi(µi,λin)

(
sitλ̃it + sioλ̃io

)
(4)

where µi ≥ 0 is the friction coefficient at the ith contact and
FC : �+ → �2 is the friction map at that contact, given by

FC(µi λin) ≡
{

(λit, λio) :
√

λ2
it + λ2

io ≤ µi λin

}
, (5)

and sit,o is the tangential slip velocity given by

sit,o ≡ δ̇it,o + Γit,oν. (6)

Notice that the slip velocities depend on both the deformations
of the compliant elements and the rigid body motions. The
constitutive law (3) can be used to eliminate the slip velocities
(sit, sio) in the friction law (4), resulting in an expression of
the contact forces only in terms of the state variables (q, ν, δ).
This reformulation of the friction law is significant because
the slip velocities may behave discontinuously and lead to
technical difficulties in the convergence of a numerical method
(see [18] for a detailed discussion).

Proposition 1: Given q, ν, λn, and δ, under (3), the tangen-
tial forces (λt, λo) satisfy the minimum principle (4) if and



only if (λt, λo) are the optimal solution (necessarily unique)
of the convex quadratic program:

minimize

(
λ̃t

λ̃o

)T
⎧⎨⎩1

2

⎡⎣ Ĉtt(q) Ĉto(q)

Ĉot(q) Ĉoo(q)

⎤⎦( λ̃t

λ̃o

)
+

(
dt

do

)⎫⎬⎭
where

(
dt

do

)
=

⎡⎣ Ĉtn(q)

Ĉon(q)

⎤⎦λn +

[
Γt(q)

Γo(q)

]
ν

−
⎡⎣ Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤⎦K(q)δ

subject to ( λ̃t, λ̃o ) ∈
nδ∏
i=1

FC(µi λin) . (7)

Proof. From (3), we obtain

δ̇ = C(q)−1(λ − K(q)δ ).

Since

C(q)−1 ≡

⎡⎢⎢⎣
Ĉnn(q) Ĉnt(q) Ĉno(q)

Ĉtn(q) Ĉtt(q) Ĉto(q)

Ĉon(q) Ĉot(q) Ĉoo(q)

⎤⎥⎥⎦ ,

we get

(
δ̇it

δ̇io

)
=

[
Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

]⎧⎪⎨⎪⎩
⎛⎜⎝ λn

λt

λo

⎞⎟⎠− K(q)δ

⎫⎪⎬⎪⎭ ,

where Ĉitn(q) denotes the i-th row of the (sub)matrix Ĉtn(q),
and similarly for the other rows. Clearly, the friction condition
(4) at contact i is equivalent to: for all (λ̃it, λ̃io) ∈ FC(µiλin),

0 ≤
(

λ̃it − λit

λ̃it − λit

)T (
sit

sio

)

=

(
λ̃it − λit

λ̃it − λit

)T [
Ĉitn(q) Ĉitt(q) Ĉito(q)

Ĉion(q) Ĉiot(q) Ĉioo(q)

]
·⎧⎪⎨⎪⎩

⎛⎜⎝ λn

λt

λo

⎞⎟⎠− K(q)δ

⎫⎪⎬⎪⎭+

(
λ̃it − λit

λ̃it − λit

)T (
Γit(q)

Γio(q)

)
ν .

This variational equation is exactly the first-order optimality
conditions of the quadratic program in the proposition. �

Proposition 1 is a new result for a frictional compliant
model. This quadratic program description of the tangential
friction law, which we term the friction QP, reveals another
important advantage of the compliant-body model over a rigid-
body model. Namely, it follows from mathematical program-
ming theory that the tangential forces (λt, λo) are continuous
functions of the state variables (q, ν, δ) and the normal force
vector λn. Notice that when there are impacts, the normal
force λn may still be a badly behaved function of the state

variables and of time, and all contact forces remain, in general,
discontinuous functions of time. It is possible, however, to
overcome this by using a Hunt-Crossley type of model for
impact [18].

c) Contact conditions: The contact conditions can be
stated as complementarity conditions. In the normal direction,

0 ≤ λn ⊥ Ψn(q) + δn ≥ 0, (8)

where the ⊥ notation means perpendicularity and Ψn is the
normal separation between the undeformed, contacting rigid
bodies.

In the tangential direction, the contact conditions are tradi-
tionally the KKT conditions of maximum power dissipation
principle (4). One of the concerns with this is that the square-
root function in (5) is not differentiable at the origin, and
such differentiability is essential for many numerical methods
in practical computations. For our purpose, we consider a
“smoothed” friction cone whereby we add a small positive
scalar γ under the square root, obtaining:

FCγ(µiλin) ≡
{

(λit, λio) :
√

λ2
it + λ2

io + γ2 ≤ µiλin + γ

}
.

When γ = 0, the smooth cone converges to the Coulomb’s
quadratic cone (5). Note that the smooth cone preserves all
the properties of the Coulomb’s quadratic cone.

However, even for the smooth cone, there is no suitable
constraint qualification for the KKT conditions when the
contact is inactive (λin = 0) or when the contact is frictionless
(µi = 0). In practice, we use the following Fritz John condi-
tions [19] to obtain the complementarity problem formulation
for friction constraints:

0 ≤ βi ⊥ µiλin + γ −
√

λ2
it + λ2

io + γ2 ≥ 0

βi0sit +
βiλit√

λ2
it + λ2

io + γ2
= 0

βi0sio +
βiλio√

λ2
it + λ2

io + γ2
= 0 (9)

βi0 ≥ 0 , (βi0 βi) �= 0

If βi0 �= 0, the KKT conditions hold (with the Lagrange
multipliers being defined as β̂i ≡ βi/βi0). In a contact
problem, we can use µiλin as a natural choice for βi0 instead
of solving for the extra multiplier. When µiλin = 0, the Fritz
John conditions can be trivially satisfied with a nonzero βi.
These conditions will be used in the next section to extend
the traditional complementarity conditions to include impacts
where inactive contacts can become active and vice versa.

As a practical remedy to some of the computational ani-
mosities associated with the quadratic cone, we could use a
polyhedral approximation of the latter cone [20] which not
only makes the complementarity conditions linear, but also
automatically satisfies the constraint qualification condition.

III. TIME-STEPPING METHODS

We partition the interval [0, T ] into N subintervals [t�, t�+1],
where t� ≡ �h, for � = 0, 1, . . . , N − 1. Write

q� ≡ q(t�), ν� ≡ ν(t�), δ� ≡ δ(t�), and λ�
n,t,o ≡ λ n,t,o(t�),



replace the time derivatives (q̇, δ̇, ν̇) with the backward Euler
approximations for all � = 0, . . . , N − 1,

q̇(t�+1) ≈ q�+1 − q�

h
, δ̇(t�+1) ≈ δ�+1 − δ�

h
,

and ν̇(t�+1) ≈ ν�+1 − ν�

h
,

together with the fully implicit discretization of the contact
constraints (3, 8) and the friction QP (7) for all i = 1 . . . nc,
we have the following discrete-time, mixed NCP formulation
for dynamics of systems with multiple frictional contacts:

ν�+1 = ν� + hM(q�+1)−1u�+1 + hM(q�+1)−1 ·[
Γn(q�+1)λ�+1

n + Γt(q�+1)λ�+1
t + Γo(q�+1)λ�+1

o

]
q�+1 = q� + hG(q�+1)ν�+1

0 ≤ λ�+1
in ⊥ Ψin(q�+1) + δ�+1

in ≥ 0 (10)(
λ�+1

it , λ�+1
io

) ∈ argmin
(λ̃it,λ̃io)∈FCi(µi,λin)

(
λ̃�+1

it λ̃�+1
io

)
·

⎧⎨⎩1
2

⎡⎣ Ĉtt(q�+1) Ĉto(q�+1)

Ĉot(q�+1) Ĉoo(q�+1)

⎤⎦⎛⎝ λ̃�+1
it

λ̃�+1
io

⎞⎠+

(
d�+1

it

d�+1
io

)⎫⎬⎭
λ�+1

i n,t,o =
(

Ki n,t,o +
1
h

Ci n,t,o

)
δ�+1
i n,t,o −

1
h

Ci n,t,oδ
�
i n,t,o

where
d�+1

it,o ≡ d it,o(q�+1, ν�+1, δ�+1).

The description of the model is complete with the stipula-
tion of initial conditions or boundary conditions, which we
prescribe as a functional equation involving the initial state
(q0, ν0, δ0) and the final state (qN , νN , δN ):

Υ(q0, ν0, δ0, qN , νN , δN ) = 0.

Solving for the above model involves the solution of nonlinear
equations, because the inertia matrix and the Jacobians are
functions of the unknown states q�+1. Note that this fully
implicit scheme enforces the complementarity conditions pre-
cisely at the end of each time step.

The existence of a discrete-time solution trajectory to
the fully implicit time-stepping compliant model (10) can
be shown for not only the initial value problem but also
the boundary-value multibody contact problem under the as-
sumption that the friction coefficients are sufficiently small.
Moreover, we have shown that such a discrete-time solution
trajectory converges to the weak solution of the corresponding
continuous-time problem [18].

There is extensive work on solving the initial value prob-
lems using the time-stepping model with complementarity
constraints [21], [20], where the solution trajectory can be
obtained by stepping through the time iteratively. In each
time step, a relatively small sized LCP or NCP is solved to
update the states variables from the known states variables

obtained at the previous time step. When impact occurs,
using this method, one can stop the simulation at the time
of the impact and use an impact model to reset the velocity
variables, and then resume the simulation with the post-impact
states. This becomes problematic when dealing with boundary
value problem since model switching is no long available.
For boundary value problems, we need to solve the complete
trajectory as a whole by solving a large scale NCP problem
consisting of model (10) at every time step � = 0, . . . , N −1.
We use the PATH solver to solve the NCP (10). The equations
are first programmed into AMPL and then get passed into the
PATH solver through a AMPL/PATH interface.

IV. EXAMPLES

A. Transitions between rolling and sliding

Consider the problem of dynamically feasible trajectory for
a planar rolling disk in contact with a horizontal plane as
depicted in Figure 1, such that the disk starts with velocities
that correspond to sliding contact with a desired final state at a
specified time corresponding to a specified position and rolling
condition. This is the simplest example of a boundary value
problem involving transitions in contact conditions, one that is
seen in a freshman mechanics class. The traditional approach
to solving it is in two stages (the sliding phase and then the
rolling phase), using different equations for both stages, often
requiring iteration to determine the time of transition between
the phases. We wish to solve this problem automatically by
simply specifying the end conditions.

The dynamics equation are given by (1) with

q =
(

x

θ

)
, ν ≡

(
v
ω

)
, Γt(q) =

(
1
r

)
,

M(q) =
[

m 0
0 I

]
, G(q) =

[
1 0
0 1

]
,

q̇ = G(q)ν, f(t, q, ν) = 0.

The analytical solutions of the boundary value problem
can be obtained by solving an algebraic equation after the
integration. For example, given other boundary conditions, the
transition time τ and the initial velocity v0 can be determined
by

τ =
ω0r + v0

µg(1 + mr2

I )
,

v0 =
{

v : av2 + bv + c = 0
}

,

where a = 1

2µg(1+ mr2
I )2

,

b = 2aω0r + T − T

1 + mr2

I

,

c = x0 − xT + a(ω0)2r2 − ω0r

1 + mr2

I

.

Using the paramters, µ = 4, r = 0.1m, m = 0.1kg, I =
5e − 4kg m2, and the boundary conditions T = 0.022sec,
x0 = 0, ω0 = 1rad/sec, and xN+1 = 0.02m, we get v0 =
1.2402m/sec and τ = 0.0114sec.
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Fig. 1. A sliding/rolling disk on the horizontal plane

We now solve this problem using the time-stepping method.
This example is a very special case where M , f , G, and JΨ
are constant matrices, which leads to the following mixed LCP
for the time-stepping formulation: for � = 0, . . . , N ,

0 = −ν�+1 + ν� +
h

2
M−1ΓT

t (λ�+1
t+ − λ�+1

t− ) ,

0 = −q�+1 + q� + hν�+1 ,

0 = s�+1
t+ − s�+1

t− − Γtν
�+1 ,

0 = λ�+1
t+ + λ�+1

t− − 2µmg ,

0 ≤
(

λ�+1
t+ ,

s�+1
t−

)
⊥ A�

(
λ�+1

t+ ,

s�+1
t−

)
+

[
Γt

0

]
ν� + b� ≥ 0 ,

0 = Υ(q0, ν0, qN , νN )

=

⎡⎢⎢⎢⎢⎣
−1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 r

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

q0

ν0

qN+1

νN+1

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
0.02

ω0

xT

0

⎞⎟⎟⎟⎟⎠ ,

A� =

[
h ΓtM

−1ΓT
t 1

−1 0

]
,

b� =

(
h [ ΓtM

−1f − µmgΓtM
−1ΓT

t ]

2µmg

)
.

The results reported in Figure 2 show the numerically obtained
solution is consistent with the analytical solution. Although
this is a very simple problem, it is important to note that our
solver automatically determines the transition from sliding to
rolling at 0.0114 seconds. If the starting conditions were to
correspond to rolling contact (with the same end conditions),
or if the end conditions had corresponded to sliding contact
(with the same starting conditions), the solver would have
reported a solution without any transitions. We now turn
our attention to a three-dimensional problem of rolling and
sliding of a spherical ball on a horizontal plane. It is useful
to think of the game of pool or billiards where it is often
necessary to deliver the appropriate starting condition to a
ball with a desired end condition, a great example of a two-
point boundary value problem. The generalized coordinates
are q = [x, y, z, e0, ex, ey, ez]

T and the system velocities
are ν = [νx, νy, νz, ωx, ωy, ωz]

T , where (x, y, z) are the
Cartesian coordinates of the center of mass, (e0, ex, ey, ez)
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Fig. 2. Comparisons between the analytical solutions (solid line) and the
numerical solutions from solving the BVP (N = 21, time points denoted by
circles) with the point of transition being automatically established.

are the Euler parameters, (νx, νy, νz) are the linear velocities
along the Cartesian axes, and (ωx, ωy, ωz) are the angular
velocities. Equation (1) is written for a ball of mass m and
radius r with

G(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 − 1
2q5 − 1

2q6 − 1
2q7

0 0 0 1
2q4

1
2q7 − 1

2q6

0 0 0 − 1
2q7

1
2q4

1
2q5

0 0 0 1
2q6 − 1

2q5
1
2q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f(t, q, ν) =
[

0 0 −mg 0 0 0
]T

,

Γn(q) =
[

0 0 1 0 0 0
]T

,

Γt(q) =
[

1 0 0 0 −r 0
]T

,

Γo(q) =
[

0 1 0 r 0 0
]T

,

and
Ψn(q�+1) = q�+1(3) − r.

We will use the following parameters for numerical results:

nc = 1, nq = 7, nν = 6, µ = 0.2, r = 0.05m,

m = 0.2Kg, g = 9.8m/sec2, γ = 10−4,

T = 1sec, N = 100, K = 104 · I3×3N/m.

Before solving the boundary value problem we will first
solve the initial value problem to illustrate the benefits of
the time-stepping model developed here, comparing it to the
solutions obtained by the traditional approach involving a rigid
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(c) Contact forces (NCP solu-
tion).
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(d) Contact forces (LCP approxi-
mation).
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Fig. 3. Solution to the initial and boundary value problem using fully implicit,
rigid-body model with N = 100 and h = 0.01sec.

body model with a linear friction-pyramid model for frictional
forces [14]. In Figure 3, the ball is launched from the origin
with a forward initial velocity with back-spin. The initial
conditions are:

q0 = [0 0 0 1 0 0 0]T , ν0 = [1 0.5 0 40 − 20 − 10]T .

We use the PATH solver with AMPL interface to solve the
fully implicit, time-stepping compliant model (10) iteratively
from � = 0, . . . , N − 1. The results are shown in Figure 3.
The solutions to the NCP compliant model (10) and the more
traditional rigid body dynamic model (LCP model in which
the Coulomb’s friction cone is approximated by a friction
pyramid) are compared. We notice that there are some obvious
discrepancies between the solutions obtained from the linear
model and the complete, nonlinear model. This shows that
the pyramid friction law used in the LCP model is a very
coarse approximation of the quadratic friction cone. Panels (b-

d) illustrates the differences in the trajectory and the contact
forces. Panel (f) shows that there are two distinct transitions
from sliding to rolling for the LCP approximation – one for
the t direction (0.30 seconds) and the other for the o direction
(0.37 seconds). This is because the pyramidal approximation
decomposes the relative sliding velocity variable into two in-
dependent variables, allowing two different sliding velocities.

We now consider the boundary value problem in which we
would like to derive initial velocities at a given initial position
so that the object reaches a specified position at a specified
time = T . To plan a feasible motion trajectory for the ball,
we need to solve a boundary value problem. As a first check,
we can set all the boundary conditions to be consistent with
the trajectory generated by the initial value problem. These
boundary conditions are shown below:

q0 qN+1 ν0 νN+1

x0 (var.) x0 + 0.5632 v0
x (var.) r ωN+1

y

y0 (var.) y0 − 0.0534 v0
y (var.) −r ωN+1

x

0 zN+1 (var.) 0 vN+1
z (var.)

1 eN+1
0 (var.) 40 ωN+1

x (var.)
0 eN+1

x (var.) -20 ωN+1
y (var.)

0 eN+1
y (var.) -10 ωN+1

z (var.)
0 eN+1

z (var.)

with var denoting the variables that are unspecified. Notice
there are a total of 12 unspecified (and 12 specified) boundary
conditions, exactly the same number as in the initial value
problem and the specified boundary conditions are consistent
with the trajectory in Figure 3. The main goal is to determine
the initial linear velocities in the x and y directions by solving
the boundary value problem. With N = 100 time steps, the
total number of variables for the boundary value problem is
2300. It takes PATH less than 2 seconds to solve for the
complete trajectory. The result is not shown here because it
is identical to the result obtained by solving the initial value
problem in Figure 3!

In our second example, the traversal of the ball is specified
to be 1m in the x direction and −0.1m in the y direction,
but otherwise it is unchanged from the the previous example.
Thus the x and y components of qN+1 are set to x0 + 1
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Fig. 4. Solution to the boundary value problem using the NCP, compliant
model (10) to place the object at (x, y) = (1, −0.1) at T = 1sec.



and y0 − 0.1. From Figure 4 (a) it is clear the trajectory
satisfies the boundary conditions, and from (b) it is evident
that this trajectory requires a higher initial speed because of
the increase in distance traverse as compared to the previous
example.

B. Transitions from no contact to contact

In addition to transitions between rolling and sliding, transi-
tions from no contact to contact are frequent in manipulation
and assembly tasks. These transitions are generally charac-
terized by impacts. In this example, we use the nonlinear,
compliant model (10) to solve a boundary value problem
involving multiple impacts. The task is to launch the ball from
an initial position of (x, y) = (0, 0.6) to a final position of
(x, y) = (0.4, 0.4) at time T = 0.45sec. The boundary
conditions for this task are given in the table below.

q0 qN+1 ν0 νN+1

0 0.4 v0
x (var.) vN+1

x (var.)
0 yN+1 (var.) 0 vN+1

y (var.)
0.6 0.4 v0

z (var.) vN+1
z (var.)

0 eN+1
0 (var.) 0 ωN+1

x (var.)
0 eN+1

x (var.) 0 ωN+1
y (var.)

0 eN+1
y (var.) 0 ωN+1

z (var.)
0 eN+1

z (var.)

Note that these problems are not guaranteed to have unique
solutions — for the given initial conditions, there are two
classes of solutions to the model (10), one without impacts
and one with impacts. The results reported in Figure 5 were
obtained by setting v0

z ≤ 0.

(a) A dynamic trajectory that sat-
isfies the boundary conditions.
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Fig. 5. Solution to the boundary value problem for systems involving
frictional impacts using the nonlinear, compliant model (10).

C. Reorienting an object for manipulation or part feeding

We now consider a manipulation problem in which we want
to reorient a rectangular object of given dimensions, mass, and
moment of inertia. For example, it may be necessary to change
the orientation of a grasped object by 180 degrees without re-
grasping. In manufacturing systems one sees part feeders that
are able to reorient parts so they always emerge in the same
orientation regardless of the incoming pose. One design goal
may be to determine the design parameters of the part feeder
such that a part entering with different orientations always
exits in the orientation with the center of gravity vertically
above the geometric center.

Figure 6 shows a simplified part reorienting mechanism
with 2 design parameters, (xp, yp), the coordinates of the
upper-left corner the protrusion which may be the thumb of
a hand or a tab in a part-feeder positioned for reorienting the
part. The design parameters influence the resulting trajectory
which in turn is required to satisfy boundary conditions in
the starting and initial position. This problem can be posed
as a constrained optimization problem [1] by minimizing
a cost function over the design space specified by simple
bounds placed on the design variables. Instead of exactly
specifying the desired boundary conditions, it is beneficial to
impose bounds on the terminal conditions and penalize, via the
cost function, the discrepancy between the desired boundary
conditions and the boundary conditions obtained from solving
the boundary value problem.

In our example, a feasible design was obtained after ap-
proximately 1000 objective function evaluations and each one
of the evaluations requires solving an initial value problem.
We show two sets of results in Figure 6. In (a), we show the
results of an initial value problem with (xp, yp) = (5, 5) with
the object released from a frictionless chute (which could be
replaced by a palm), from a state of rest in the top left corner.
The palm is center at (3.2, 0). In (b), the results of the two-
point boundary-value design problem are shown. The initial
conditions of the part is set to the states of the part right after
it leaves the input chute. Since there are two design variables,
in addition to the initial conditions of the part, we can fix two
more boundary conditions. The palm is moved to the left at
(1.7, 0). In order to accommodate the change of the terminal
location, we set the final coordinate of the center of mass at
(xN , yN ) = (2.5, 2.1) with the final orientation bounded as
0 ≤ θN ≤ π/2. The constraints on the design variables are

4.75 ≤ xp ≤ 5.25 and 4.75 ≤ yp ≤ 5.25 .

The NCP compliant model (10) was solved by using the PATH
solver running on a Linux PC with a 3GHz P4 processor. The
solution for the design parameters was found to be (xp, yp) =
(4.9322, 5.1123). A fixed time step of h = 0.001sec was
used. The total number of time steps is N = 1500. It takes
about 2 to 3 seconds to solve for the design parameters and
the complete motion and force history.
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Fig. 6. A part reorienting design problem with two design variables.

V. CONCLUSION

We formulated the problem of planning manipulation tasks,
which must necessarily involve contact state transitions, as
a constrained optimization problem involving boundary con-
ditions at both ends. The discrete-time, nonlinear comple-
mentarity problem model described in this paper provides
a unified formulation that incorporates intermittent contacts,
inelastic and elastic impacts, and transitions between rolling
and sliding. To our knowledge, this is the only existing
model that allows us to pose the trajectory generation problem
for systems with contact state transitions and impacts as a
boundary value problem.

The difficulties encountered in this paper arise primarily
in the presence of impacts. When impacts occur, the high
stiffness associated with the contact compliance leads to
stiffness in the equations so that the equations are not well
conditioned. The solution at mesh points with finite forces
is well conditioned but at mesh points during impact the
equations are (locally) stiff. Thus, unlike the examples shown
in Figures 2-5 for which the solutions were obtained relatively
easily, the example in Figure 6 suffered from problems with
convergence because the many potential contact configurations
increase the stiffness of this problem. It is possible to to solve a
problem with more design variables such as the one considered
in our earlier work in [1]. One possibility is to use a shooting
method, similar to the approach described in [22], to solve
the boundary value problems with estimated parameters and
initial conditions. We may still need to rely on the unified
model to deal with the discontinuities caused by the contact
state transitions. Our ultimate goal is to use the time-stepping
models at different levels of resolution and fidelity to solve
for trajectories for robotic manipulation iteratively.
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