
Square Root SAM
Frank Dellaert

College of Computing
Georgia Institute of Technology

Abstract— Solving the SLAM problem is one way to enable
a robot to explore, map, and navigate in a previously unknown
environment. We investigate smoothing approaches as a viable
alternative to extended Kalman filter-based solutions to the
problem. In particular, we look at approaches that factorize either
the associated information matrix or the measurement matrix
into square root form. Such techniques have several significant
advantages over the EKF: they are faster yet exact, they can be
used in either batch or incremental mode, are better equipped
to deal with non-linear process and measurement models, and
yield the entire robot trajectory, at lower cost. In addition,
in an indirect but dramatic way, column ordering heuristics
automatically exploit the locality inherent in the geographic
nature of the SLAM problem.

In this paper we present the theory underlying these methods,
an interpretation of factorization in terms of the graphical model
associated with the SLAM problem, and simulation results that
underscore the potential of these methods for use in practice.

I. I NTRODUCTION

The problem of simultaneous localization and mapping
(SLAM) [1]–[3] has received considerable attention in mobile
robotics as it is one way to enable a robot to explore, map, and
navigate in previously unknown environments. The traditional
approach in the literature is to phrase the problem as an
extended Kalman filter (EKF), with the robot pose and static
landmarks as the evolving filter state [2], [4], [5]. It is well
known that the computational requirements of the EKF be-
come impractical fairly quickly, once the number of landmarks
in the environment grows beyond a few hundred. As a result,
many authors have looked at ways to reduce the computation
associated with the EKF, using both approximating [6]–[8] and
non-approximating [9] algorithms.

In this paper we propose thatsquare root information
smoothing(SRIS) is a fundamentally better approach to the
problem of SLAM than the EKF, based on the realization that,

• in contrast to the extended Kalman filter covariance or
information matrix, whichboth become fully dense over
time [7], [8], the information matrixI associated with
smoothingis and stays sparse;

• in typical mapping scenarios this matrixI or, alter-
natively, the measurement matrixA, are much more
compact representations of the map covariance structure

• I or A, both sparse, can be factorized efficiently using
sparse Cholesky or QR factorization, respectively, yield-
ing a square root information matrixR that immediately
yields the optimal robot trajectory and map;

Factoring the information matrix is known in the sequential es-
timation literature as square root information filtering (SRIF).

The SRIF was developed in 1969 for use in JPL’s Mariner
10 missions to Venus (as recounted by [10]), following the
development ofcovariance square root filters earlier that
decade. The use of square roots of either the covariance or
information matrix results in more accurate and stable algo-
rithms, and, quoting Maybeck [11] “a number of practitioners
have argued, with considerable logic, that square root filters
shouldalwaysbe adopted in preference to the standard Kalman
filter recursion”. Maybeck briefly discusses the SRIF in a
chapter on square root filtering, and it and other square root
type algorithms are the subject of a book by Bierman [10].
However, as far as this can be judged by the small number
of references in the literature, the SRIF and the square root
informationsmoother(SRIS) are not often used.

In this paper we investigate the use of factorizing either
the information matrixI or the measurement matrixA into
square root form, as applied to the problem of simultaneous
smoothing and mapping(SAM). Because they are based on
matrix square roots, we will refer to this family of approaches
as square root SAM, or

√
SAM for short. They have several

significant advantages over the EKF:

• They are much faster than EKF-based SLAM
• They are exact, rather than approximate
• They can be used in either batch or incremental mode
• If desired, they yield theentiresmoothed robot trajectory
• They are much better equipped to deal with non-linear

process and measurement models than the EKF
• When using QR, they are more accurate and stable
• They automaticallyexploit locality in the the way that

sub-map [6] or compressed filter [9] SLAM variants do

However, there is also a price to pay:

• Because we smooth the entire trajectory, computational
complexity grows without bound over time, for both
Cholesky and QR factorization strategies. In many typical
mapping scenarios, however, the EKF information matrix
will grow much faster.

• As with all information matrix approaches, it is expensive
to recover the covariance matrix governing the unknowns.

We also present an interpretation of the resulting algorithms
in terms of graphical models, following [8], [12]–[14]. Doing
so yields considerable insight into the workings of otherwise
opaque “black box” algorithms such as Cholesky or QR
factorization. It exposes their kinship with recently devel-
oped inference methods for graphical models [15], such as
the junction tree algorithm. In particular, in Section II we
introduce the SLAM problem in terms of a directed graph



Fig. 1. A synthetic environment with 20 landmarks in which we simulated
a robot taking 156 bearing and range measurements along a trajectory of 21
poses. Also shown are the mean and covariance matrices as estimated by an
EKF. Note the effects of process and measurement noise.

x0 x1

z3z1

x2 xM

lNl1

zKz2 z4

...

l2

...

...

Fig. 2. Bayesian belief network representation of the SLAM problem.
The statex of the robot is governed by a Markov chain, on top, and the
environment of the robot is represented at the bottom by a set of landmarks
l. The measurementsz, in the middle layer, are governed both by the state
of the robot and the parameters of the landmark measured.

or belief net. However, to understand factorization, the view
of smoothing in terms of anundirectedMarkov random field
(MRF), introduced in Section V, is more appropriate.By
exploiting the SLAM-specific graph structure, we are able
to immediately speed up factorization by a factor of 2.We
believe that even more efficient algorithms can be developed
by viewing the problem as one of computation on a graph.

II. SLAM B ACKGROUND

SLAM refers to the problem of localizing a robot while
simultaneously mapping its environment, illustrated in Figure
1. Below we assume familiarity with EKF-based approaches
to SLAM [2], [4], [5]. In this section we introduce the SLAM
problem and the notation we use, but we do not re-derive the
extended Kalman filter. Rather, in Section III we immediately
take a smoothing approach, in which both the map and the
robot trajectory are recovered.

Following the trend set by FastSLAM and others [12], we
formulate the problem by referring to a belief net representa-
tion. The model we adopt is shown in Figure 2. Here we denote

the state of the robot at theith time step byxi, with i ∈ 0..M ,
a landmark bylj , with j ∈ 1..N , and a measurement byzk,
with k ∈ 1..K. The joint probability model corresponding to
this network is

P (X, M, Z) =

P (x0)
M∏
i=1

P (xi|xi−1, ui)×
K∏

k=1

P (zk|xik
, ljk

) (1)

where P (x0) is a prior on the initial state of the robot,
P (xi|xi−1, ui) is themotion model, parameterized by a control
input ui, andP (z|x, l) is the landmark measurement model.
The above assumes a uniform prior over the landmarksl.
Furthermore, it assumes that the data-association problem has
been solved, i.e., that the indicesik and jk corresponding to
each measurementzk are known.

As is standard in the SLAM literature [2], [4], [5], we as-
sume Gaussian process and measurement models [11], defined
by

xi = fi(xi−1, ui) + wi (2)

wherefi(.) is a process model, andwi is normally distributed
zero-mean process noise with covariance matrixΛi, and

zk = hk(xik
, ljk

) + vk (3)

wherehk(.) is a measurement equation, andvk is normally
distributed zero-mean measurement noise with covarianceΣk.
The equations above model the robot’s behavior in response
to control input, and its sensors, respectively.

For the priorP (x0), we will assume thatx0 is givenand
hence it is treated as a constant below. This considerably
simplifies the equations in the rest of this document. In
addition, this is what is often done in practice: the origin of
the coordinate system is arbitrary, and we can then just as well
fix x0 at the origin. The exposition below is easily adapted to
the case where this assumption is invalid.

Below we also need the first-order linearized version of the
process model (2), given by

x0
i + δxi = fi(x0

i−1, ui) + F i−1
i δxi−1 + wi (4)

whereF i−1
i is the Jacobian offi(.) at the linearization point

x0
i−1, defined by

F i−1
i

∆=
∂fi(xi−1, ui)

∂xi−1

∣∣∣∣
x0

i−1

Note thatui is given and appears as a constant above. The
linearized measurement equations are obtained similarly,

zk = hk(x0
ik

, l0jk
) + Hik

k δxik
+ Jjk

k δljk
+ vk (5)

where Hik

k and Jjk

k are respectively the Jacobians ofhk(.)
with respect to a change inxik

and ljk
, and are evaluated at

the linearization point(x0
ik

, l0jk
):

Hik

k
∆=

∂hk(xik
, ljk

)
∂xik

∣∣∣∣
(x0

ik
,l0jk

)

Jjk

k
∆=

∂hk(xik
, ljk

)
∂ljk

∣∣∣∣
(x0

ik
,l0jk

)



III. SMOOTHING SLAM AND LEAST SQUARES

We investigate smoothing rather than filtering, i.e., we are
interested in recovering the maximum a posteriori (MAP)
estimate for theentire trajectory X

∆= {xi} and the map

L
∆= {lj}, given the measurementsZ

∆= {zk} and control

inputsU
∆= {ui}. Let us collect all unknowns inX andL in

the vectorθ
∆= (X, L). Under the assumptions made above,

we obtain the MAP estimate

θ∗
∆= argmax

θ
P (X, L|Z) = argmax

θ
P (X, L, Z)

= argmin
θ

− log P (X, L, Z)

by solving the following non-linear least-squares problem:

M∑
i=1

‖xi − fi(xi−1, ui)‖2Λi
+

K∑
k=1

‖zk − hk(xik
, ljk

)‖2Σk
(6)

Here‖e‖2Σ
∆= eT Σ−1e is the squared Mahalanobis distance.

In practice one always considers a linearized version of
this problem. If the process modelsfi and measurement
equationshk are non-linear and a good linearization point
is not available, non-linear optimization methods such as
Gauss-Newton iterations or Levenberg-Marquardt will solve a
succession of linear approximations to (6) in order to approach
the minimum [16]. This is similar to the extended Kalman
filter approach to SLAM as pioneered by [4], [17], [18], but
allows for iterating multiple times to convergence.

In what follows, we will assume that either a good lin-
earization point is available or that we are working on one
of these iterations. In either case, we have alinear least-
squares problem that needs to be solved efficiently. Using the
linearized process and measurement models (4) and (5):

θ∗ = argmin
θ

M∑
i=1

‖F i−1
i xi−1 + Gi

ixi − ai‖2Λi

+
K∑

k=1

‖Hik

k xik
+ Jjk

k ljk
− ck‖2Σk

(7)

where we defineai
∆= x0

i − fi(x0
i−1, ui) and ck

∆= zk −
hk(x0

ik
, l0jk

). To avoid treatingxi in a special way we also
introduce the matrixGi

i = −Id×d , with d the dimension of
the robot state, and we drop theδ notation as implied.

Below we assume, without loss of generality, that the
covariance matricesΛi andΣk are all unity. Because of

‖e‖2Σ
∆= eT Σ−1e = (Σ−T/2e)T (Σ−T/2e) =

∥∥∥Σ−T/2e
∥∥∥2

2

with Σ−1/2 the matrix square root ofΣ, we can always
eliminateΛi from (7) by pre-multiplyingF i−1

i , Gi
i, andai in

each term withΛ−T/2
i . A similar story holds for the matrices

Σk, wherefor scalar measurements this simply means dividing
each term by the measurement standard deviation. Below we
assume that this has been done and drop the Mahalanobis norm
in favor of the regular 2-norm.

Fig. 3. Measurement matrixA associated with the problem in Figure 1,

along with the information matrixI ∆
= AT A, and its Cholesky triangleR.

Here the state is 3D and both landmarks and measurements are 2D, hence the
size ofA is (20× 3 + 156× 2)× (20× 3 + 20× 2) = 372× 100.

Finally, after collecting the Jacobian matrices into a matrix
A, and the vectorsai andck into a right-hand side (RHS) vec-
tor b, we obtain the following standard least-squares problem,

θ∗ = argmin
θ

‖Aθ − b‖22 (8)

which is our starting point below.A can grow to be very large,
but is quite sparse, as shown in Figure 3. Ifdx, dl, and dz

are the dimensions of the state, landmarks, and measurements,
A’s size is(Ndx +Kdz)×(Ndx +Mdl). In addition,A has a
typical block structure, e.g., withM = 3, N = 2, andK = 4:

A =



G1
1

F 1
2 G2

2

F 2
3 G3

3

H1
1

H1
2

H2
3

H3
4

J1
1

J2
2

J1
3

J2
4


Above the top half describes the robot motion, and the
bottom half the measurements. A mixture of landmarks and/or
measurements of different types (and dimensions) is easily
accommodated. Note that the non-zero blocks pattern of
the measurement part is also the adjacency matrix for the
measurement part of a belief net like the one in Figure 2.



IV. CHOLESKY AND QR FACTORIZATION

In this section we briefly review Cholesky and QR fac-
torization and their application to the full rank linear least-
squares (LS) problem in (8). The exposition closely follows
[19], which can be consulted for a more in-depth treatment.

For a full-rankm×n matrix A, with m ≥ n, the unique LS
solution to (8) can be found by solving thenormal equations:

AT Aθ∗ = AT b (9)

This is normally done by Cholesky factorization of theinfor-
mation matrixI, defined and factorized as follows:

I ∆= AT A = RT R (10)

The Cholesky triangleR is an upper-triangularn×n matrix1

and is computed usingCholesky factorization, a variant of LU
factorization for symmetric positive definite matrices. It runs
in n3/3 flops. After this,θ∗ can be found by solving

first RT y = AT b and thenRθ∗ = y

by back-substitution. The entire algorithm, including comput-
ing half of the symmetricAT A, requires(m + n/3)n2 flops.

For the example of Figure 1, bothI and its Cholesky
triangleR are shown alongsideA in Figure 3. Note the very
typical block structure ofI when the columns ofA are ordered
in the canonical way, i.e., trajectoryX first and then mapL:

I =
[

AT
XAX IXL

IT
XL AT

LAL

]
Here IXL

∆= AT
XAL encodes the correlation between robot

statesX and mapL, and the diagonal blocks are band-limited.
An alternative to Cholesky factorization that is both more

accurate and numerically stable is to proceed via QR-
factorization without computing the information matrixI.
Instead, we compute the QR-factorization ofA itself along
with its corresponding RHS:

QT A =
[

R
0

]
QT b =

[
d
e

]
Here Q is an m × m orthogonal matrix, andR is the
upper-triangular Cholesky triangle. The preferred method for
factorizing a dense matrixA is to computeR column by
column, proceeding from left to right, using Householder re-
flections to zero out all non-zero elements below the diagonal.
The orthogonal matrixQ is not usually formed: instead, the
transformed RHSQT b is computed by appendingb as an extra
column toA. Because theQ factor is orthogonal, we have:

‖Aθ − b‖22 =
∥∥QT Aθ −QT b

∥∥2

2
= ‖Rθ − d‖22 + ‖e‖22

Clearly, ‖e‖22 will be the least-squares residual, and the LS
solutionθ∗ can be obtained by solving the square system

Rθ = d (11)

1Some treatments, including [19], define the Cholesky triangle as the lower-
triangular matrixG = RT , but the other convention is more convenient here.

via back-substitution. The cost of QR LS is dominated by the
cost of the Householder reflections, which is2(m− n/3)n2.

Comparing QR with Cholesky factorization, we see that
both algorithms requireO(mn2) operations whenm� n, but
that QR-factorization is a factor of 2 slower. However, this is
only for densematrices: ifA is sparse, as is the case in the
SLAM problem, QR factorization becomes quite competitive.

V. A GRAPHICAL MODEL PERSPECTIVE

Cholesky or QR factorization are most often used as “black
box” algorithms, but in fact they are surprisingly similar
to much more recently developed methods for inference in
graphical models [15]. Taking a graphical model view on
SLAM exposes its sparse structure in full, and shows how
sparse factorization methods in this context operate on a graph.

When examining the correlation structure of the problem
it is better to eliminateZ and consider theundirectedgraph
that encodes the correlations between the unknownsθ only. In
[7], [8] this view is taken to expose the correlation structure
inherent in thefiltering versionof SLAM. It is shown there that
inevitably, when marginalizing out the past trajectoryX1:m−1,
the information matrix becomes completely dense. Hence, the
emphasis in these approaches is to selectively remove links to
reduce the computational cost of the filter, with great success.

In contrast, in this paper we consider the graph associated
with thesmoothinginformation matrixI ∆= AT A, which does
not become dense, as past states are never marginalized out. In
particular, the objective function in Equation 6 corresponds to
a pairwise Markov random field (MRF) [20], [21] through the
Hammersley-Clifford theorem [20]. The nodes in the MRF
correspond to the robot states and the landmarks, and links
represent either odometry or landmark measurements. The
resulting bipartite graph corresponding to the example of
Figure 1 is shown in Figure 4.

Both QR and Cholesky factorizationeliminateone variable
at a time, starting withθ1, corresponding in the leftmost
column of eitherA or I. The result of the elimination is
that θ1 is now expressed as a linear combination of all
other unknownsθj>1, with the coefficients residing in the
corresponding rowR1 of R. In the process, however, new
dependencies are introduced between all variables connected
to θ1, which causes edges to be added to the graph. The next
variable is then treated in a similar way, until all variables have
been eliminated. This is exactly the process of moralization
and triangulation familiar from graphical model inference. The
result of eliminating all variables is a chordal graph, shown
for our example in Figure 4b.

The single most important factor to good performance is
the order in which variables are eliminated. Different variable
orderings can yield dramatically more or lessfill-in , defined
as the amount of edges added into the graph. As each edge
added corresponds to a non-zero in the Cholesky triangleR,
both the cost of computingR and back-substitution is heavily
dependent on how much fill-in occurs. Unfortunately, finding
an optimal ordering is NP-complete. Discovering algorithms
that approximate the optimal ordering is an active research



(a) (b) (c)

Fig. 4. a) The graph of the Markov random field of the associated SLAM problem from Figure 1. b) The triangulated graph: each edge corresponds to a non-
zero in the Cholesky triangleR. c) The corresponding elimination tree showing how the state and landmarks estimates will be computed via back-substitution:
the root is computed first - in this case a landmark near the top left - after which the computation progresses further down the tree.

area in linear algebra. A popular method for medium-sized
problems iscolamd[22]. However, as we will show in Section
VII, using domain knowledge can do even better.

A data structure that underlies many of these approximate
column ordering algorithms is theelimination tree. It is defined
as a depth-first spanning tree of the chordal graph after
elimination, and is useful in illustrating the flow of compu-
tation during the back-substitution phase. The elimination tree
corresponding to our example, for a good column ordering,
is shown in Figure 4c. The root of the tree corresponds to
the last variableθn to be eliminated, which is the first to
be computed in back-substitution (Equation 11). Computation
then proceeds down the tree, and while this is typically done
in reverse column order, variables in disjoint subtrees may
be computed in any order. In fact, if one is only interested
in certain variables, there is no need to compute any of the
subtrees that do not contain them. The elimination tree is also
the basis for multifrontal QR methods [23], which we have
also evaluated in our simulations below.

VI. SQUARE ROOT SAM

A batch-version ofsquare root information smoothing and
mappingis straightforward and a completely standard way of
solving a large, sparse least-squares problem:

1) Build the measurement matrixA and the RHSb as
explained in Section III.

2) Find a good column orderingp, and reorderAp
p← A

3) Solve θ∗p = argmin θ ‖Apθp − b‖22 using either the
Cholesky or QR factorization method from Section IV

4) Recover the optimal solution byθ
r← θp, with r = p−1

In tests we have obtained the best performance with sparse
LDL factorization [24], a variant on Cholesky factorization
that computesI = LDLT , with D a diagonal matrix andL
a lower-triangular matrix with ones on the diagonal.

We have also experimented with finding better, SLAM
specific column re-orderings. A simple idea is to use a
standard method such ascolamd, but have it work on the
sparsity pattern of the blocks instead of passing it the original
measurement matrixA. This amounts to working directly with
the bipartite MRF graph from Section V, making accidental
zeros due to the linearization invisible. Surprisingly, as we will
show, the symbolic factorization on this restricted graph yields
better column orderings.

Incremental
√

SAM

In a robotic mapping context, an incremental version of the
above algorithm is of interest. It is well known that factoriza-
tions can be updated incrementally. One possibility is to use
a rank 1 Cholesky update, a standard algorithm that computes
the factorR′ corresponding to aI ′ = I + aaT , whereaT

is a new row of the measurement matrixA. However, these
algorithms are typically implemented for dense matrices only,
and it is imperative that we use a sparse storage scheme for op-
timal performance. While sparse Cholesky updates exist, they
are relatively complicated to implement. A second possibility,
easy to implement and suited for sparse matrices, is to use a
series of Givens rotations (see [19]) to eliminate the non-zeros
in the new measurement rows one by one.

A third possibility, which we have adopted for the simu-
lations below, is to update the matrixI and simply use a
full Cholesky (or LDL) factorization. QR factorization is more
accurate and has better numerical properties, but a Cholesky
or LDL factorization can be corrected with one linear update
step to achieve the same accuracy, if required.

Because the entire measurement history is implicit inI,
one does not need to factorize at every time-step. At any time
during an experiment, however, the map and/or trajectory can
be computed by a simple factorization and back-substitution,
e.g., for visualization and/or path planning purposes.



Fig. 5. A synthetic environment with 500 landmarks along with a 1000-step
random walk trajectory, corresponding to 14000 measurements taken.

M N none ldl chol mfqr qr
200 180 0.031 0.062 0.092 0.868 1.685

500 0.034 0.062 0.094 1.19 1.256
1280 0.036 0.068 0.102 1.502 1.21
2000 0.037 0.07 0.104 1.543 1.329

500 180 0.055 0.176 0.247 2.785 11.92
500 0.062 0.177 0.271 3.559 8.43

1280 0.068 0.175 0.272 5.143 6.348
2000 0.07 0.181 0.279 5.548 6.908

1000 180 0.104 0.401 0.523 10.297 42.986
500 0.109 0.738 0.945 12.112 77.849

1280 0.124 0.522 0.746 14.151 35.719
2000 0.126 0.437 0.657 15.914 25.611

Fig. 6. Averaged simulation results over 10 tries, in seconds, for environments
with various number of landmarksN and simulations with trajectory lengths
M . The methods are discussed in more detail in the text. Thenonemethod
corresponds to doing no factorization and measures the overhead.

VII. I NITIAL FINDINGS AND SIMULATION RESULTS

A. Batch
√

SAM

We have experimented at length with different implemen-
tations of Cholesky, LDL, and QR factorization to establish
which performed best. All simulations were done in MATLAB
on a 2GHz. Pentium 4 workstation running Linux. Experi-
ments were run in synthetic environments like the one shown
in Figure 5, with 180 to 2000 landmarks, for trajectories of
length 200, 500, and 1000. Each experiment was run 10 times
for 5 different methods:

• none: no factorization performed
• ldl: Davis’ sparse LDL factorization [24]
• chol: MATLAB built-in Cholesky factorization
• mfqr: multifrontal QR factorization [23]
• qr: MATLAB built in QR factorization

The results are summarized in Figure 6. We have found that,
under those circumstances,

1) The freely available sparse LDL implementation by T.
Davis [24] beats MATLAB’s built-in Cholesky factor-
ization by about 30%.

2) In MATLAB, the built-in Cholesky beats QR factoriza-
tion by a large factor.

3) Multifrontal QR factorization is better than MATLAB’s
QR, but still slower than either Cholesky or LDL.

4) While this is not apparent from the table, using a good
column ordering ismuchmore important than the choice
of factorization algorithm.

The latter opens up a considerable opportunity for original
research in the domain of SLAM, as we found that injecting
even a small amount of domain knowledge into that pro-
cess yields immediate benefits. To illustrate this, we show
simulation results for a length 1000 random walk in a 500-
landmark environment, corresponding to Figure 5. BothI and
R are shown in Figure 7 for the canonical (and detrimental)
ordering with states and landmarks ordered consecutively. The
dramatic reduction in fill-in that occurs when using a good re-
ordering is illustrated by Figure 8, where we usedcolamd[22].
Finally, when we use the block-oriented ordering heuristic
from Section VI, the fill-in drops by another factor of 2.

B. Incremental
√

SAM

We also compared the performance of an incremental ver-
sion of

√
SAM, described in Section VI, with a standard EKF

implementation by simulating 500 time steps in a synthetic
environment with 2000 landmarks. The results are shown in
Figure 10. The factorization ofI was done using sparse LDL
[24], while for the column ordering we usedsymamd[22], a
version ofcolamd for symmetric positive definite matrices.

Smoothingevery time stepbecomes cheaper than the EKF
when the number of landmarksN reaches 600. At the end,
with N = 1, 100, each factorization took about 0.6 s., and the
slope is nearly linear over time. In contrast, the computational
requirements of the EKF increase quadratically withN , and
by the end each update of the EKF took over a second.

As implementation independent measures, we have also
plotted N2, as well as the number of non-zerosnnz in the
Cholesky triangleR. The behavior of the latter is exactly
opposite to that of the EKF: when new, unexplored terrain
is encountered, there is almost no correlation between new
features and the past trajectory and/or map, andnnz stays
almost constant. In contrast, the EKF’s computation is not
affected when re-entering previously visited areas -closing the
loop- whereas that is exactly whenR fill-in occurs.

We have reason to belief that these results can be further im-
proved: profiling of our implementation showed that roughly
2/3 of the time is spent updatingI, which is an artifact of
our sparse matrix representation. A compressed row scheme
would probably increase the speed by another factor of 2. In
addition, incremental QR updating methods should be much
faster than doing full factorizations every time.

VIII. C ONCLUSION

In conclusion, we believe square root information smooth-
ing to be of great practical interest to the SLAM community. It
recovers the entire trajectory and is exact, and even the decid-
edly sub-optimal incremental scheme we evaluated behaves



Fig. 7. Original information matrixI and its Cholesky triangle. Note the dense fill-in on the right, linking the entire trajectory to all landmarks.

Fig. 8. Information matrixI after reordering and its Cholesky triangle. Reordering of columns (unknowns) does not affect the sparseness ofI, but the
number of non-zeroes inR has dropped from approximately 2.8 million to about 250 thousand.

Fig. 9. By doing the reordering while taking into account the special block-structure of the SLAM problem, the non-zero count can be eliminated even
further, to about 130K, a reduction by a factor 20 with respect to the originalR, and substantially less than the 500K entries in the filtering covariance matrix.



0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

(a) number of landmarksN seen

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12
x 105

(b) N2 andnnz in R

50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) average time per call, in seconds

Fig. 10. Timing results for incremental SAM in a simulated environment with 2000 landmarks, similar to the one in Figure 5, but 10 blocks on the side. As
the number of landmarks seen increases, the EKF becomes quadratically slower. Note that the number of non-zerosnnz increases faster when large loops
are encountered aroundi = 200 and i = 350.

much better than the EKF as the size of the environments
grows. In addition, we conjecture that the possibility of re-
linearizing the entire trajectory will make

√
SAM cope better

with noisy measurements governed by non-linear measurement
equations. In contrast, non-optimal linearization cannot be
recovered from in an EKF, which inevitablyhasto summarize
it in a quadratic (Gaussian) approximation.

In this paper we only reported on our initial experiences
with this approach. In follow-up work we hope to say some-
thing about tight or amortized complexity bounds that predict
the algorithm’s performance on problems of a given size, and
we also would like to to establish that the algorithm performs
as well in practice as it does in simulation. In addition, we
have only compared

√
SAM against the EKF-based stochastic

map algorithm. Comparison of our approach to more recent
and faster SLAM variants, both approximate [6]–[8] and exact
[9], is the object of future work. Finally, we concentrated on
the large-scale optimization problem associated with SLAM.
Many other issues are crucial in the practice of robot mapping,
e.g. the data-association problem. In addition, the techniques
exposed here are meant to complement, not replace methods
that make judicious approximations in order to reduce the
asymptotic complexity of SLAM.

REFERENCES

[1] R. Smith and P. Cheeseman, “On the representation and estimation of
spatial uncertainty,”Intl. J. of Robotics Research, 1987.

[2] J. Leonard, I. Cox, and H. Durrant-Whyte, “Dynamic map building for
an autonomous mobile robot,”Intl. J. of Robotics Research, vol. 11,
no. 4, pp. 286–289, 1992.

[3] S. Thrun, “Robotic mapping: a survey,” inExploring artificial intelli-
gence in the new millennium. Morgan Kaufmann, Inc., 2003, pp. 1–35.

[4] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in Robotics,” inAutonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer-Verlag, 1990, pp. 167–193.

[5] J. Castellanos, J. Montiel, J. Neira, and J. Tardos, “The SPmap: A
probabilistic framework for simultaneous localization and map building,”
IEEE Trans. Robot. Automat., vol. 15, no. 5, pp. 948–953, 1999.

[6] J. J. Leonard and H. J. S. Feder, “Decoupled stochastic mapping,”IEEE
Journal of Oceanic Engineering, pp. 561–571, October 2001.

[7] M. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” in Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2003.

[8] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Intl. J. of Robotics Research, vol. 23, no. 7-8, pp.
693–716, 2004.

[9] J. Guivant and E. Nebot, “Optimization of the simultaneous localization
and map building algorithm for real time implementation,”IEEE Trans.
Robot. Automat., vol. 17, no. 3, pp. 242–257, June 2001.

[10] G. Bierman,Factorization methods for discrete sequential estimation,
ser. Mathematics in Science and Engineering. New York: Academic
Press, 1977, vol. 128.

[11] P. Maybeck,Stochastic Models, Estimation and Control. New York:
Academic Press, 1979, vol. 1.

[12] K. Murphy, “Bayesian map learning in dynamic environments,” in
Advances in Neural Information Processing Systems (NIPS), 1999.

[13] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localisation and mapping,”IEEE Trans. Robototics,
vol. 21, no. 2, pp. 196–207, April 2005.

[14] J. Folkesson, P.Jensfelt, and H. I. Christensen, “Graphical slam using
vision and the measurement subspace,” inIEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2005.

[15] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter,
Probabilistic Networks and Expert Systems, ser. Statistics for Engineer-
ing and Information Science. Springer-Verlag, 1999.

[16] J. Dennis and R. Schnabel,Numerical methods for unconstrained
optimization and nonlinear equations. Prentice-Hall, 1983.

[17] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” inInt. Symp on Robotics Research, 1987.

[18] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot,” inIEEE Int. Workshop
on Intelligent Robots and Systems, 1991, pp. 1442–1447.

[19] G. Golub and C. V. Loan,Matrix Computations, 3rd ed. Baltimore:
Johns Hopkins University Press, 1996.

[20] G. Winkler, Image analysis, random fields and dynamic Monte Carlo
methods. Springer Verlag, 1995.

[21] J. Yedidia, W. Freeman, and Y.Weiss, “Generalized belief propagation,”
in Advances in Neural Information Processing Systems (NIPS), 2000,
pp. 689–695.

[22] P. R. Amestoy, T. Davis, and I. S. Duff, “An approximate minimum
degree ordering algorithm,”SIAM Journal on Matrix Analysis and
Applications, vol. 17, no. 4, pp. 886–905, 1996.

[23] P. Matstoms, “Sparse QR factorization in MATLAB,”ACM Trans. Math.
Softw., vol. 20, no. 1, pp. 136–159, 1994.

[24] T. A. Davis, “Algorithm 8xx: a concise sparse Cholesky factorization
package,” Univ. of Florida, Tech. Rep. TR-04-001, January 2004,
submitted to ACM Trans. Math. Software.


