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Abstract – Future space missions are expected to use robotic 
systems to assemble, inspect, and maintain large space structures 
in orbit.  For effective planning and control, robots must know 
the deformations and motions of the structures with which they 
interact.  This paper presents a method for estimating the shape, 
motion, and dynamic model parameters of a vibrating space 
structure using asynchronous raster-scanning range imagers.  
The method assumes that the mode shapes are approximately 
known a priori.  A Kalman filter exploits a mechanics-based 
dynamic model to extract the modal frequencies and damping as 
well as the modal coefficients and their time rate of change.  
Theoretical development and experimental results using 
emulated space hardware are presented. 

 
Index Terms – space structure, laser rangefinder, shape 

estimation, motion estimation, cooperative sensing. 
 

I.  INTRODUCTION 

Future space missions are expected to use autonomous 
robotic systems to assemble, inspect, and maintain large space 
structures in orbit [1][2][3].  Examples include the 
International Space Station, large synthetic aperture 
telescopes, and space solar power systems [4][5].  To safely 
plan and execute tasks, robotic systems require knowledge of 
structural deformations and motions.  Remote sensing and 
estimation of target dynamics and model parameters will be a 
fundamental challenge for these missions. 

Many researchers have used embedded sensors such as 
strain gauges and accelerometers to directly measure the 
motions and deformations of flexible structures [6][7][8].  
However, the hardware costs and the complexity of this 
approach may be prohibitive for very large space structures 
that span hundreds or thousands of meters [9].  An alternative 
approach is to use range imaging sensors that may be 
available from free-flying robotic workers (see Fig. 1).  Such 
sensors might include stereo cameras [10] or laser 
rangefinders [11].  However, there are a number of challenges 
to this approach.  Range images can be highly noisy and data 
may be missing from many areas of the structure due to the 
harsh lighting conditions found in space.  Strong sunlight, 

high-contrast scenes, and reflective materials (e.g. solar panels 
and metallic foils found on spacecraft) pose significant 
challenges to many image processing algorithms [12].  
Tracking specific points on the structure can be very difficult 
as the lighting or sensor positions change.  Complicating the 
problem is the fact that computational resources tend to be 
very limited in space-qualified hardware. 

 

 
Fig. 1.  Using onboard vision sensors to estimate structural information. 

This paper presents a method for estimating the shape and 
motion of a region of interest on a flexible space structure, 
using data gathered from one or more raster-scanning range 
sensors.  This method takes advantage of a key feature of the 
application, which is that the dynamics of systems in space are 
highly deterministic and can be modeled accurately.  This 
allows a method that does not require the tracking of structural 
features over time.  Further, it yields an estimator that is 
computationally efficient while being robust to substantial 
sensor noise and a priori uncertainty. 

This paper builds upon the authors’ previous works 
[13][14] in two ways.  First, it presents substantial new 
experimental support for the method, which was studied 
largely in simulation previously.  Second, this paper broadens 
the theoretical foundation so that raster scanning types of 
sensors can be used.  Previous works dealt strictly with 
sensors that capture range points synchronously, such as 
stereo vision systems.  However, many important range 
imaging technologies, such as laser striping systems, employ 
raster scanning and hence capture points asynchronously.  The 
coupling of the spatial and time domains by the sensor adds 
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substantial complexity to the estimation problem and is 
considered for the first time here. 

 

II.  GENERAL APPROACH 

A.  Assumptions 
Sensors are assumed to provide discrete 3-D range image 

clouds of the structure at known intervals.   The time at which 
each point in the cloud is acquired is assumed to be known.  
Sensor noise may be substantial and is assumed to be additive, 
white, and unbiased, but not necessarily Gaussian.  If multiple 
cooperative sensors are used to gather range images, their 
relative poses are assumed to be accurately known so that 
their data can be expressed in a common reference frame. 

The structural dynamics are assumed to be linear or weakly 
nonlinear. The modal coefficients ( )tA  and their time rate of 
change ( )tV  are assumed to approximately take the form of 
decaying sinusoids: 
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The structure’s mode shapes are assumed to be reasonably 
well-known to the estimator a priori.  These could be provided 
from theoretical or empirical analysis performed offline 
beforehand.  Modal information is assumed to be updated 
whenever the fundamental mode shapes change (e.g. due to a 
structural configuration change, added mass, etc.).  The modal 
frequencies are assumed to be known to within ± 20 percent a 
priori. 

B.  Approach 
Let the natural mode shapes of the structure be denoted as 
( )xiΦ  for each mode i.  For a linear elastic system, the 

dynamic response of the structural deformations ( )txz ,  can be 
written as 

 ( ) ( ) ( ) ( ) ( )xtAxtAtxz T
m

i
ii Φ=Φ= ∑

=1
,  (2) 

where ( )txz ,  is the deflection from the structure’s equilib-
rium state, m is the number of modes excited in the response, 
and ( )tAi  is the ith modal coefficient, which oscillates 
sinusoidally according to (1). 

The goal is to estimate the time domain functions ( )tAi  for 
all modes of interest.  This will reduce shape estimation to 
simply a modal reconstruction using the estimates of ( )tAi  
and the mode shapes ( )xiΦ . 

Estimation of ( )tAi  will occur here in two steps.  First, a 
modal decomposition in the spatial domain is performed on 
the range image to arrive at a coarse estimate ( )tAi

(
.  This 

estimate is then filtered in the time domain using a Kalman 

filter to arrive at a refined estimate ( )tAi
ˆ .  Note the hat 

notation used to denote coarse and refined estimates. 
 

III.  MODAL DECOMPOSITION 

The estimation process first uses a modal decomposition of 
the visual data to find coarse estimates of the modal 
coefficients ( )tA . 

Define an inner product (dot product) over some space X as 

 ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )∫∫
















=≡

XX

T
X dxxbxaxbxa

xbxaxbxa
dxxbxaba

OM

L

2212

2111

,
. 

Let the space X be the “backbone” surface of the target 
structure.  For example, if the structure is a planar sheet of 
uniform thickness, then the space X is the 2-D reference 
surface embedded in the sheet at its equilibrium configuration, 
and ( )txz ,  represents the deformation normal to the surface at 
some location x in X.  One useful property of mode shapes is 
that they are orthogonal in the space X (i.e. 0, =ΦΦ

Xji  for 

all ji ≠ ). 
Consider a subspace XY ⊂ , which represents a discrete, 

not necessarily uniform sampling of the space X (see Fig. 2).  
The subspace Y is the sample space defined by the range 
measurements, and may be changing in time as the sensor 
and/or structure move. 
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Fig. 2.  Sample space Y in complete space X. 

In this discrete space the inner product reduces to: 
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where yk is the kth discrete point in the sample space Y and n is 
the number of discrete points in the sample space. 

Define a symmetric modal correlation matrix MY to describe 
the inner products of the mode shapes in the sample space Y, 
for the m excited modes: 
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If Y is dense and uniformly distributed over X, then 
XY MM λ≈  for some scale factor λ.  However, this paper 

considers the general case in which the sample space Y is not a 
uniform and complete sampling of the complete structure 
space X (e.g. the sensors observe only a portion of the 



structure).  If the sample space is changing (e.g. the sensors 
are moving), the modal correlation matrix MY and the inner 
product operator Yba,  are not constant and must be 

recomputed at each time step. 
By the Cauchy-Schwarz inequality, it can be shown that MY 

is positive semidefinite [13].  The semidefinite condition 
arises only from a pathological choice of the sample space Y 
such that certain modes are unobservable or undiscernable 
(i.e. the modes are aliased spatially).  The condition number of 
MY can be checked to determine the proximity to this 
condition.  All further discussion assumes that MY is positive 
definite, well-conditioned, and invertible. 

In this problem, a vector of range image points is provided 
to the estimator at some reference time t.  The kth element of 
the vector (the kth point) measures the displacement of the 
structure at some location yk and time kt ∆+ , where k∆  is a 
known time delay due to the asynchronous nature of raster 
scanning.  The kth measurement can be written as 
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where the overbar is used to denote a measurement, 
( )ktA ∆+  is the vector of modal coefficients at time kt ∆+ , 
( )kyΦ  is the vector of mode shapes evaluated at location yk, 

and ek is additive sensor noise.  The delay k∆  is a significant 
complication to the original method presented in [13][14] and 
methods to handle it are now presented. 

Applying trigonometric substitutions to (1) yields 

 ( ) ( ) ( ) ( ) ( )kiikiiki gtVftAtA ∆+∆=∆+  (5) 

where if  and ig  are delay modulation functions given by 
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Reasonable a priori guesses should be used for the 
frequency and damping terms in (6).  In this application, 
damping iα  and time delay k∆  are usually small enough that 

iα  can be set to zero in (6) without noticeably affecting 
estimator performance. 

Substituting (5) into (4) yields 
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Define the delay-modulated mode shapes 
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These can be viewed as fundamental mode shapes in the 
space-time domain (as opposed to the original modes ( )`ki yΦ , 
which reside strictly in the spatial domain).  Equation (7) can 
then be written in the compact form 
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Define a delay-modulated modal correlation matrix YM ′  
using the delay-modulated mode shapes: 
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Taking inner products of the measurements with the delay-
modulated mode shapes yields 
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Rearranging yields 
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and therefore an unbiased estimate of ( )tA  and ( )tV  is given 
by 
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where the error w is given by 
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The error covariance on the estimate given by (12) is 
therefore 

 [ ]T
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If the variance on the noise e is approximately the same for 
all image points, this reduces to  

 12 −′=Λ Yeww Mσ  (13b) 

where [ ]22
ke eE≡σ .  If the noise variance is substantially 

different for each range image point, the equation is not as 
concise but wwΛ   is still easily solved [13]. 

Equation (12) represents an easily computed coarse 
estimate of ( )tA  and ( )tV  that is unbiased and has a Gaussian 
error distribution with statistics computed from (13).  It is a 
minimum-least-square-error estimate of ( )tA  and ( )tV using 
data from a single sample time. 

 

IV.  KALMAN FILTERING: SINUSOID ESTIMATION 

A Kalman filter is used to observe the time series ( )tA
(

 and 

( )tV
(

 and extract a better estimate of ( )tA  and ( )tV  using 
knowledge that they are weakly decaying sinusoids.  
Observation over time also allows the estimation of modal 
parameters. 

The estimated state consists of ( )tÂ , its time rate of change 

( )tV̂ , the natural frequencies ω̂ , and the modal damping rate 
α̂ .  If the true modal coefficients follow the trajectory given 
by (1), differentiation and substitution leads to the discrete-
time process model 
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Note the lack of dependence on phase iϕ .  If known 
external forces are applied to the structure (e.g. from robotic 
systems), they should be incorporated into the process model 
here. 

Process noise is indicated in (14) by 
{ }T

VA vvvvv αω≡ , and is characterized by the 
covariance matrix 

 [ ]T
vv vvE≡Λ . (15) 

The values in this matrix should be chosen to describe the 
uncertainty in the dynamic model due to unmodeled 
disturbances and parameter uncertainty. 

The Kalman filter measurement model is given by (12).  
Measurement noise w is white, unbiased, and Gaussian with 
statistics computed from (13). 

The initial a posteriori state estimate is given by 

 ( ) ( ) ( ) ( ){ } ( ) ( ){ }T
expexp

T
VAVA αωαω ˆˆ000ˆ0ˆ0ˆ0ˆ ((

=  (16) 

where expω  and expα  are the expected frequencies and 

damping predicted offline beforehand. 
The initial a posteriori state error covariance should be 

chosen to describe the uncertainty in (16).  The covariance on 
( )0Â  and ( )0V̂  will be the measurement covariance given by 

(13) while the other portions of the state covariance must be 
based engineering judgment of the actual system. 

The implementation of the Kalman filter is straightforward 
using (12-16).  Since the process model is nonlinear, an 
extended Kalman filter, unscented Kalman filter, particle 
filter, or a more general form of Bayesian estimator must be 
used.  The unscented Kalman filter [15] was used here with 
good observed performance. 

 

V.  SHAPE ESTIMATION: MODAL RECONSTRUCTION 

Shape estimation is simply a modal reconstruction using (2) 
and the estimated modal coefficients: 

 ( ) ( ) ( ) ( ) ( )xtAxtAtxz T
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The hat notation is used on the mode shapes ( )xΦ  as a 
reminder that the estimator might not know these perfectly, as 
they are based on theoretical analyses performed offline. 

If mode shape knowledge is perfect, the uncertainty in the 
shape estimate is given by 
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where ( )tAA ˆˆΛ  is the error covariance on the estimate ( )tÂ .  

Analysis suggests that mode shape and modal parameter 
uncertainty degrades estimator performance gracefully rather 



than catastrophically [13], however a full discussion of this 
topic is beyond the scope of this paper. 
 

VI.  EXPERIMENTAL RESULTS 

Experiments were conducted using representative structures 
and sensors to evaluate the performance of the estimation 
algorithm.  A flexible panel measuring 2.5 m long and 0.5 m 
wide was mounted on air bearings and placed on a highly 
polished air table as shown in Figs. 3 and 4.  One end of the 
structure is rigidly constrained to ground.  Structural 
vibrations occur in the horizontal plane orthogonal to the 
gravitation vector.  The periods of vibration for the first five 
modes are approximately 44, 6.8, 2.6, 1.4, and 0.55 s, 
respectively.  This system emulates a space structure 
reasonably well since it possesses low damping and will 
sustain vibrations in several modes for many cycles before 
damping out.  

The dynamics of this system can be represented using the 
Bernoulli-Euler cantilever beam model.  Here, the analytical 
solutions for the mode shapes were used in the estimator, 
although any method of mode shape determination could have 
been used (finite element analysis, empirical measurement of 
a scale model, etc.).  Initial guesses for the modal frequencies 
were taken from very rough (one digit precision) 
measurements using a stopwatch.  Certainly, more accurate a 
priori estimates of the mode shapes and parameters could have 
been used; however, these coarse methods were used to 
demonstrate the estimator’s robustness to a priori uncertainty.  

For these experiments, a Pulstec Industrial Co., TDS-series 
3D laser scanner was used to observe the structure.  The 
scanner was mounted on a robotic manipulator to allow 
accurate repositioning between experiments (see Fig. 4).  The 
scanner has a field of view of approximately 8 degrees by 7 
degrees and typically observes only 5 to 30 percent of the 
structure’s surface area during an experiment.  Range 
measurement noise on the sensor is on the order of 20 mm at a 
range of 2 m (the approximate distance used in these 
experiments). 

The system takes two scans per second, with even scans 
sweeping upward through space and odd scans sweeping 
downward.  During each scan, the system gathers 
approximately 2000 points, distributed over a 400-ms interval.  
That is, the last point in each scan is captured approximately 
400 ms after the first point.  Prior to conducting experiments, 
the time stamps for all points (i.e. the k∆  values in (4) for all 
k) were recorded and provided to the estimation algorithm. 
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Fig. 3.  Schematic of experimental system. 

 
Fig. 4.  Photo of experimental system.  Laser rangefinder mounted on 

manipulator arm can be seen in the foreground at left. 

Fig. 5 shows typical experimental results for the coarse 
estimates ( )tA

(
and the Kalman-filtered estimates ( )tÂ  for 

several modes of vibration.  Note that the Kalman filter 
performs effectively like a notch filter and removes spurious 
signals and bias from the coarse estimates. 

Figs. 6 and 7 show typical experimental results for the 
estimation of modal frequencies and damping.  Frequency 
estimates converged on the order of two periods of the mode 
being estimated.  Here, damping has a comparatively small 
influence on system dynamics and therefore can only be 
observed over long time intervals, which explains the 
relatively slow convergence of these parameter estimates.  It 
should be noted that the observability of parameters declines 
over time in a damped system such as this.  Many of the 
higher modes damped out too quickly to be estimated with 
reasonable confidence.  Table 1 summarizes the mean and 
standard deviation of the final parameter estimates for the first 
three modes, recorded over fifteen independent trials.  The 
frequency values are consistent with direct empirical 
measurements of the structure.  It was difficult to obtain a 
consistent baseline measurement of damping, however, since 
it varied somewhat throughout trials due to uncontrollable 
environmental factors. 



 
Fig. 5.  Coarse estimates of modal coefficients (solid) with Kalman-filtered 

estimates superimposed (dashed) (experimental results). 
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Fig. 6.  Modal frequency estimates (experimental results). 
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Fig. 7.  Modal damping estimates (experimental results). 

TABLE 1.  PARAMETER ESTIMATES AFTER 100 SECONDS OF OBSERVATION, FOR 
FIFTEEN INDEPENDENT TRIALS. 

mode 
number ω estimate (rad/s) α estimate (1/s) 

1 0.14 ± 0.016 0.033 ± 0.012 
2 0.87 ± 0.025 0.070 ± 0.036 
3 2.44 ± 0.33 0.146 ± 0.091 

 
The goal of estimation is more than simply observing 

structural deformations and parameters, however.  Knowledge 
of the dynamic model and the ability to estimate parameters 
allows the estimator to predict future motions and shape of the 
structure.  This predictive capacity is useful and sometimes 
necessary for certain planning and control tasks such as 
robotic rendezvous and docking.  Fig. 8 illustrates the 
estimated motions of the structure under two different 
situations.  The solid line represents the best estimate the filter 
can achieve, incorporating all measurements from time 

1000K=t .  By contrast, the dashed line shows the estimate 
if the filter receives measurements only during time 

250K=t  and then predicts the motion for 10025K=t  by 
extrapolating its last estimate.  The predictions can be seen to 
track the actual motions reasonably well for some time after 
measurements are stopped.  Frequency, phase, amplitude, and 
damping appear to be estimated reasonably accurately by the 
time the last measurement is processed.  Over time, phase 
error accumulates due to small errors in the frequency 
estimate, and eventually the prediction loses synchronization 
with the actual motions. 

 
Fig. 8.  Coefficient predictions when measurements are halted at time t = 25 
(dashed).  Solid lines effectively represent the actual coefficients, found by 

using all measurements through time t = 100. 



 
Fig. 9.  Coefficient predictions when measurements are halted at time t = 50 
(dashed).  Solid lines effectively represent the actual coefficients, found by 

using all measurements through time t = 100. 

As one might expect, if the estimator is given more 
measurements before it begins predicting motion, its 
parameter estimates will be more accurate and thus motion 
predictions will track the actual system for a greater length of 
time.  This is illustrated in Fig. 9, where the estimator receives 
twice as many measurements – from time 500K=t  – before 
beginning prediction.  The predictions remain synchronized 
with the actual system for a long period of time because errors 
in the frequency estimates are very small at the time 
measurements are halted. 

 

VII.  SUMMARY 

This paper has described a methodology for estimating 
structural vibrations using range images generated from raster 
scanning sensors.  The method uses three distinct parts and 
exploits a key feature of space applications, which is that the 
dynamics of objects in space are well-modeled.  This feature 
enables an estimator design that is both accurate and robust to 
the challenging sensing conditions found in space 

A modal decomposition method was developed to handle 
partial and non-uniform visual sampling of a vibrating 
structure.  This paper has augmented previous works by 
considering non-trivial effects introduced when using 
asynchronous raster-scanning sensors.  Kalman filtering was 
shown to improve the coarse estimates provided by modal 
decomposition, and shape estimation then involved simply a 
modal reconstruction using the estimated modal coefficients. 

Experiments were conducted using emulated space 
structures and sensors to study feasibility and practical 
implementation challenges.  This work demonstrates that 
modal amplitude, phase, frequency, and damping can all be 
estimated accurately and efficiently using a single sensor 
viewing only a small portion of the structure.  The results of 
these experiments have validated numerous simulation results 

reported in previous works and lend support for the use of this 
method in future space robotic systems. 
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