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Abstract— In this paper, we design planar nR serial chains
that provide one degree-of-freedom movement for an end-effector
through five arbitrarily specified task positions. These chains are
useful for deployment linkages or the fingers of a mechanical
hand.

The trajectory of the end-effector pivot is controlled by n-1
sets of cables that are joined through a planetary gear system to
two input variables. These two input variables are coupled by a
four-bar linkage, and the movement of the end-effector around
its end joint is driven by a second four-bar linkage. The result
is one degree-of-freedom system.

The design of the cabling system allows control of the shape of
the chain as it moves through the task positions. This combines
techniques of deployable linkage design with mechanism syn-
thesis to obtain specialized movement with a minimum number
of actuators. Two example designs for a 6R planar chain are
presented, one with a square initial configuration and a second
with a hexagonal initial configuration.

I. INTRODUCTION

In this paper, we present a methodology for the design
of planar nR serial chains such that the end-effector reaches
five arbitrary task positions with one degree-of-freedom. The
method is general in that we may introduce mechanical
constraints between m drive joints and n−m driven joints. For
the purposes of this paper, we consider m = 1, and show how
to use cables combined with planetary gear trains to constrain
the end-effector movement to three degrees-of-freedom. Then,
we design four-bar chains attached at the base and at the end-
effector to obtain a one degree-of-freedom system. See Figure
1. As an example, we obtain a one degree-of-freedom 6R
planar chain that reaches five specified task positions. This
work can be used to control the shape of deployable chains,
as well as for the design of mechanical fingers for specialized
grasping.

II. LITERATURE REVIEW

Cable systems are employed to reduce the inertia of a
manipulator system by permitting the actuators to be located
remotely, thus a higher power-to-weight ratio over a direct
drive system, see Lee (1991) [1]. Recent work on cable-
driven robotic systems includes Arsenault and Gosselin (2006)
[2], who introduce a 2-dof tensegrity mechanism to increase
the reachable workspace and task flexibility of a serial chain
robot. Also, Lelieveld and Maeno (2006) [3] present a 4 DOF
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Fig. 1. The Design Problem. The figure on the left shows a schematic of
planar nR serial robot, and the figure on the right shows a schematic of the
constrained nR robot.

portable haptic device for the index finger driven by a cable-
actuated rolling-link-mechanism (RLM). Palli and Melchiorri
(2006) [4] explore a variation on cables using a tendon sheath
system to drive a robotic hand.

Our work is inspired by Krovi et al. (2002) [5], who
present a synthesis theory for nR planar serial chains driven by
cable tendons. Their design methodology sizes the individual
links and pulley ratios to obtain the desired end-effector
movement used to obtain an innovative assistive device. Our
approach borrows from deployable structures research Kwan
and Pelligrino (1994) [6], and uses symmetry conditions to
control the overall movement of the chain, while specialized
RR cranks position the base and end-effector joints.

For our serial chain the designer can choose the location of
the base joint C1, the attachment to the end-effector Cn, and
the dimensions of the individual links which for convenience
we assume are the same size. See Figure 1. Our goal is to
design the mechanical constraints that ensures the end-effector
reaches each of five task positions, in response to an input drive
variable. This research extends the ideas presented in Leaver
and McCarthy (1987) [7] and Leaver et al. (1988) [8] using
the tendon routing analysis of Lee (1991) [1]. Also see Tsai
(1999) [9]. While our proposed system appears complicated,



it has only one actuator.

III. THE PLANAR NR SERIAL CHAIN ROBOT

Let the configuration of an nR serial chain be defined by
the coordinates Ci = (xi, yi), i = 1, . . . , n to be each of its
revolute joints. See Figure 1. The distances ai,i+1 = |Ci+1 −
Ci| defined the lengths of each link. Attach a frame Bi to
each of these links so its origin is located at Ci and its x
axis is directed toward Ci+1. The joints C1 and Cn are the
attachments to the base frame F = B1 and the moving frame
M = Bn, respectively, and we assume they are the origins of
these frames. The joint angles θi define the relative rotation
about the joints Ci.

Introduce a world frame G and task frame H so the
kinematics equations of the nR chain are given by

[D] = [G][Z(θ1)][X(a12)] . . . [X(an−1,n)[Z(θn)][H], (1)

where [Z(θi)] and [X(ai,i+1)] are the 3 × 3 homogeneous
transforms that represent a rotation about the z-axis by θi,
and a translation along the x-axis by ai,i+1, repspectively. The
transformation [G] defines the position of the base of the chain
relative to the world frame, and [H] locates the task frame
relative to the end-effector frame. The matrix [D] defines the
coordinate transformation from the world frame G to the task
frame H .

IV. KINEMATICS OF TENDON DRIVEN ROBOTS

The relationship between the rotation of the base pulley and
the joint angles in an open-loop chain with (k+1) links can be
described by:

θ∗k = θ1 ± (
rk,2

rk
)θ2 ± . . . (

rk,i

rk
)θi ± . . . (

rk,k

rk
)θk, (2)

where θ∗k denotes the base pulley angle of the kth tendon,
θi denotes the joint angle of the ith joint, rk,i denotes the
radius of the pulley of the ith joint of the kth tendon, and rk
denotes the radius of the base pulley of the kth tendon. The
sign of each term, ( rk,i

rk
)θi, in (2) is to be determined by the

number of cross-type routing preceding the ith joint axis. If
the number of cross-type routing is even, the sign is positive,
else it is negative. See the connection between C1 and C2 of
Tendon 3 in Figure 2 for an example of cross-type routing.
For derivation of this equation, refer to Lee (1991) [1].
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Fig. 2. Planar schematic for a three-DOF planar robot with structure matrix
(5).

Writing (2) once for each of the tendon routing k, k =
1, . . . , n for an nR serial robot, yields the following linear
transformation in matrix form:

Θ∗ = [B][R]Θ. (3)

where Θ∗ = (θ∗1 , θ
∗
2 , . . . , θ

∗
n)T denotes the base pulley angles

and Θ = (θ1, θ2, . . . , θn)T denotes the joint angles. If we let
rk,j = rk, k = 1, . . . , n such that all the pulleys have the same
diameter, then [B][R] would be reduced to a lower triangular
n× n matrix with entries +1 or −1,

[B][R] = [B] =


1 0 0 . . . 0
1 ±1 0 . . . 0
...

...
... . . .

...
1 ±1 ±1 . . . ±1

 . (4)

The matrix [B] is known as the structure matrix, Lee (1991)
[1]. It describes how the tendons are routed. The matrix [R] is
a diagonal scaling matrix with elements representing the ratio
of the radii of the i-th joint pulley to the i-th base pulley. In
this paper, we size the pulleys to be of equal lengths such that
this matrix is the identity.

We illustrate with an example on constructing the tendons
of a 3R serial robot from the structure matrix. Suppose the
structure matrix, [B] is defined to be

[B] =

1 0 0
1 1 0
1 −1 −1

 . (5)

Each columns of the matrix [B] corresponds to the routing
prior to the joint pivots, and each row represent an independent
tendon drive. The element in the first row is always +1 since
we are driving the fixed pivot C1 directly with θ∗1 . For the
second row, it represent a parallel-type routing between the
moving pivot C2 and fix pivot C1 since the sign of the
second element remains unchanged. For the last row, the
second element changes sign, we get a cross-type between the
moving pivot C2 and fix pivot C1. Also, the sign remains
unchanged after the second element, parallel-type follows
between the moving pivot C3 and C2. See Figure 2 for the
planar schematic for the structure matrix (5).

V. SCHEMATIC OF A CONSTRAIN NR PLANAR ROBOT

The schematic of a constrain nR Planar Robot consists of a
nR serial chain, N−1 tendons, a planetary gear train, and two
RR chains. See Figure 3. Our goal is to use the N−1 tendons,
a planetary gear train, and two RR chains to mechanically
constrain a specified nR serial chain that reaches five task
position to one degree-of-freedom. The N − 1 base pulleys
were connected to the N − 1 tendons to group the actuation
point to the base for easy attachment to a planetary gear train.

The specified nR serial chain have n degrees of freedom.
The attachment of the N − 1 tendons to the nR serial chain
does not change the system degrees of freedom, but it allows
the control of the first n − 1 joint angles from the base
independently. If we add a planetary gear train to couple the
various n− 1 base pulleys as shown in Figure 5, we are able
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Fig. 3. Schematic for a constrain nR Planar Robot driven by cables,
mechanically constraint by planetary gear train and RR cranks.

to reduce the tendon driven robot to a three degree-of-freedom
system. Two RR constraints were then added to obtain a one
degree-of-freedom system. The first RR chain serves to couple
the planetary gear train inputs τ1 and τ2 together, and the
purpose of the second RR chain is to couple the nth joint, θn,
to τ2 and hence τ1.

As shown in Figure 3, if we denote τ1 as the input that drive
the first joint angle, we can see that τ2 is related to the input
τ1 through the four bar linkage formed from the attachment of
an RR constraint to the second link. The planetary gear train
was designed in such a way that it impose symmetry condition
on the joint angles so that θ2 = θ3 = · · · = θn−1 = τ2. Hence
τ2 get reflected through the tendons to serve as the input to
the floating four bar linkage from the RR attachment between
the end-effector and the (n− 2)th link. The output from this
floating four-bar linkage is the joint angle θn. In other words, if
we drive the system with input τ1, τ2 and θn will be driven by
the input τ1 through the mechanical coupling of the planetary
gear train, and the two RR constraints.

VI. THE COUPLING BETWEEN JOINT ANGLES AND INPUTS

The desired coupling between joint angles, Θ, and the
inputs, Γ, of a nR serial chain can be described by matrix
[A] as follows,

Θ = [A]Γ. (6)

Our goal here is to constrain the nR serial chain to a three
degree-of-freedom system first using tendons and a planetary
gear train before we add RR chainss to constrain it to one
degree-of-freedom. Hence Γ = (τ1, τ2)T in particular if we
ignore θn for now. The desired coupling between the inputs
and the joint angles for a nR serial planar robot can be obtained
by specifying the tendon routing, the size of the base pulleys,
and the transmission coupling the input to the base pulleys.
This is equivalent to selecting the matrices [B], [S], and [C]

so we obtain the desired coupling matrix [A] in the relation

[A] = [B]−1[S][C]. (7)

[B] is a matrix that describes the relationship between the
relative joint angles and the rotation of the base pulleys, see
(3). [S] is a diagonal matrix that scales the sum of the row
elements of matrix [C] to unity. This matrix was included to
account for the effects of changing the size of the base pulleys
and is the ratio of the ith base pulley to the ith joint pulley. [C]
is a matrix that describes the relationship between the rotation
of the base pulleys to the inputs of the transmission system.

VII. THE TRANSMISSION SYSTEM

The transmission that couples the nR serial robot is com-
posed of two stages. The bottom stage connects the controlled
inputs to the base pulleys using simple and planetary gear
trains and the top stage connects the base pulleys to the joint
pulleys using tendons.

The relationship between the inputs, Γ and the base pulley
rotations Θ∗, which defines the bottom stage of the transmis-
sion is given by:

Θ∗ = [C]Γ. (8)

The matrix [C] is called the mechanical coupling matrix.
Its elements determine the gear train design which couples
the inputs to the tendon drive pulleys. In this paper, our goal
is to first design a transmission system that couples the nR
serial chain to three degree-of-freedom, and then design two
RR cranks to constraint the system to one degree-of-freedom.
The equation relating the base pulley rotation, θ∗i to the inputs
at the transmission τ1 and τ2 is:

θ∗i = ciτ1 + diτ2. (9)

Three cases exist for (9). They correspond to a simple gear
train if either ci or di = 0, a planetary gear train if both ci and
di are non-zero, and un-driveable if both ci and di are zero.
An example of a planetary gear train with sum of ci = 1 and
di = 3 is as shown in Figure 4.
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Fig. 4. Planetary Gear Train

VIII. NR CHAIN DESIGN METHODOLOGY

Our design of constraining nR robots using tendon, plan-
etary gear train and RR chainss to reach five specified task
positions proceed in three steps. The following describes the
design process.



A. Step 1 - Solving the Inverse Kinematics of the nR Serial
Chain

Given five task positions [Tj ], j = 1, . . . , 5 of the end-
effector of the nR chain, we seek to solve the equations

[D] = [Tj ], j = 1, . . . , 5, (10)

to determine the joint parameter vectors Θj =
(θ1,j , θ2,j , . . . , θn,j)T , where θi,j represents the ith joint
angle at the jth position. Because there are three independent
constraints in this equation, we have free parameters when
n > 3. In what follows, we show how to use these free
parameters to facilitate the design of mechanical constraints
on the joint movement so the end-effector moves smoothly
through the five task positions.

In the design of serial chain robots, it is convenient to have
near equal length links to reduce the size of workspace holes.
For this reason, we assume that the link dimensions of our nR
planar robot satisfy the relationship

a12 = a23 = · · · = an−1,n = l. (11)

This reduces the specification of the nR robot to the location of
the base joint C1 in G, and the end-effector joint Cn relative
to the task frame H . In this paper, we take the task frame H
to be the identity matrix to simplify the problem even more.
The designer is free to chose the location of the base joint C1

and the link dimensions l.
We define the input crank joint angle to be,

θ1,j = σj , j = 1, . . . , 5, (12)

and if the planar nR robot has n > 3 joints, then we impose
a symmetry condition

θ2,j = θ3,j = · · · = θn−1,j = λj , j = 1, . . . , 5, (13)

in order to obtain a unique solution to the inverse kinematics
equations.

B. Step 2 - Designing of a planetary gear train

The second step of our design methodology consists of
designing a two-degree-of-freedom planetary gear train to
drive the base pulleys to achieve the symmetry conditions
listed in (13). Note that we ignore the degree of freedom of
the nth joint at this stage. The gear train controls the shape
of the chain through the two inputs. Proper selection of the
routing of the tendons from their joints to their base pulley
can simplify gear train design. We now generalize the routing
of the n−1 tendon such that we only require a planetary gear
train with inputs τ1 and τ2 to drive the first n−1 joint angles.
Consider the following (n− 1)× 2 desired coupling matrix

[A] =


1 0
0 1
...

...
0 1

 . (14)

If we chose the (n − 1) × (n − 1) structure matrix [B] with
elements such that starting from the second column, we have

+1 on the even columns and -1 on the odd columns to get the
following lower triangular matrix,

[B] =



1 0 0 0 0 . . . 0
1 1 0 0 0 . . . 0
1 1 −1 0 0 . . . 0
1 1 −1 1 0 . . . 0
1 1 −1 1 −1 . . . 0
...

...
...

...
... . . .

...
1 1 −1 1 −1 . . . ±1


. (15)

Refer to Figure 7 and 8 for a graph and schematic represen-
tation of such a routing system. Using (7), we get

[B][A] = [S][C] =



1 0
1 1
1 0
1 1
1 0
...

...
cn−1,1 cn−1,2


. (16)

If we introduce a (n− 1)× (n− 1) diagonal scaling matrix,

[S] =



1 0 0 0 . . . 0
0 2 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 2 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . sn−1


, (17)

with element sn−1 = 1 if n is even, and sn−1 = 2 if n is odd.
It would result in a mechanical coupling matrix [C], with row
elements adding to unity, of the form

[C] =



1 0
1
2

1
2

1 0
1
2

1
2

1 0
...

...
cn−1,1 cn−1,2


. (18)

Note that the rows of matrix [C] consists of elements (1, 0) at
odd rows and ( 1

2 ,
1
2 ) at even rows. The values at the last row

would depend on if n-1 is odd or even. Because of this special
alternating structure, we only require a two degree-of-freedom
planetary gear train to drive the n-1 tendon base pulleys.

The mechanical coupling matrix [C] indicates that the
planetary gear train used should have the property such that
τ1 drives odd base joints, and τ1 and τ2 drives even base
joints. A planetary gear train that fits this characteristic would
be a bevel gear differential since an ordinary planetary gear
train would result in a locked state. Also, the scaling matrix
indicates that the ratio of the even kth base pulley to the even
kth joint pulley is 1 to 2. See Figure 5 and Figure 6 for an
example of such a bevel gear differential and tendon routing
on a 6R planar robot.
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C. Step 3 - Synthesis of an RR Drive Crank

The last step of our design methodology consists of sizing
two RR chainss that constrains the nR robot to one degree-of-
freedom. Figure 7 and 8 shows how we can systematically
attach two RR chainss to constraint the three degree-of-
freedom nR cable driven robot to one degree-of-freedom. In
this section, we expand the RR synthesis equations, Sandor
and Erdman (1984) [10] and McCarthy (2000) [11], to apply
to this situation.

Let [Bk−2,j ] be five position of the (k − 2)th moving
link, and [Bk,j ] be the five positions of the kth moving link
measured in a world frame F , j = 1, . . . , 5. Let g be the
coordinates of the R-joint attached to the (k − 2)th link
measured in the link frame Bk−2, see Figure 9. Similarly,
let w be the coordinates of the other R-joint measured in the
link frame Bk. The five positions of these points as the two
moving bodies move between the task configurations are given
by

Gj = [Bk−2,j ]g and Wj = [Bk,j ]w (19)

Now, introduce the relative displacements [R1j ] =
[Bk−2,j ][Bk−2,1]−1 and [S1j ] = [Bk,j ][Bk,1]−1, so these
equations become

Gj = [R1j ]G1 and Wj = [S1j ]W1 (20)

where [R11] = [S11] = [I] are the identity transformations.
The point Gj and Wj define the ends of a rigid link of

length R, therefore we have the constraint equations

([S1j ]W1 − [R1j ]G1) · ([S1j ]W1 − [R1j ]G1) = R2 (21)
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Fig. 7. This shows the graph representation of mechanically constrained
serial chain. Each link is represented as a node and each R joint as an edge.
Parallel type routing is denoted by a double-line edge and cross type routing
is denoted by a heavy edge.

These five equations can be solved to determine the five
design parameters of the RR constraint, G1 = (u, v, 1),
W1 = (x, y, 1) and R. We will refer to these equations as
the synthesis equations for the RR link.

To solve the synthesis equations, it is con-
venient to introduce the displacements [D1j ]=
[R1j ]−1[S1j ]=[Bk−2,1][Bk−2,j ]−1[Bk,j ][Bk,1]−1, so these
equations become

([D1j ]W1 −G1) · ([D1j ]W1 −G1) = R2 (22)

which is the usual form of the synthesis equations for the RR
crank in a planar four-bar linkage, see McCarthy (2000)[11].
Subtract the first of these equations from the remaining to
cancel R2 and the square terms in the variables u, v and
x, y. The resulting four bilinear equations can be solved
algebraically, or numerically using something equivalent to
Mathematica’s Nsolve function to obtain the desired pivots.

The RR chain imposes a constraint on the value of τ2 as a
function of τ1 given by

τ2 = arctan(
b sinψ − a sin τ1

g + b cosψ − a cos τ1
) + β, (23)

where β is the joint angle between pivots C2W1 and C2C3,



Fig. 8. This shows the kinematic structure of mechanically constrained serial
chain. The matrix on the right is the structure matrix [B], which describes
how the tendons are routed. This show that the structure extends to any length
of nR robot

and

ψ = arctan(
B

A
)± arccos(

C√
A2 +B2

)

A = 2ab cos τ1 − 2gb
B = 2ab sin τ1
C = g2 + b2 + a2 − h2 − 2ag cos τ1. (24)

a, b, g and h are the lengths of link C1C2, G1W1, C1G1 and
C2W1 respectively, and ψ is the angle of the driven crank b.
See Figure 9 for the various notation.

IX. CONFIGURATION ANALYSIS

In order to evaluate and animate the movement of these
linkage systems, we must analyze the system to determine its
configuration for each value of the input angle θ1. Figure 9
shows that these systems consist of two interconnected four
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Fig. 9. This shows our conventions for the analysis of a mechanically
constrained nR planar robot

TABLE I
FIVE TASK POSITIONS FOR THE END-EFFECTOR OF THE PLANAR 6R

ROBOT WITH A SQUARE INITIAL CONFIGURATION

Task Position(φ, x, y)
1 (0◦, 0,−1)
2 (−39◦, 0.25, 2)
3 (−61◦, 0.8, 2.35)
4 (−94◦, 1.75, 2.3)
5 (−117◦, 2.25, 2.1)

bar linkages. Our approach uses the analysis procedure of four
bar linkages from McCarthy (2000) [11]. Starting from frame
K, we solve for W1 for a given θ1. Then, we calculate the
coupler angle and hence the joint angle θ2 using (23). This
joint angle value gets transmitted to the rest of the n-2 joints to
drive the link Cn−1Gn. Next, we analyze the second four bar
linkage in frame Bn−1 to complete the analysis. The result is
a complete analysis of the mechanically constrained nR planar
robot.

X. DESIGN OF A 6R PLANAR CHAIN

We illustrate how the design methodology can be used to
control the shape of the deployable chain with two examples
on a 6R planar robot, one with a square initial configuration
and a second with a hexagonal initial configuration.

A. Example with a square initial configuration

Let the task positions of the planar robot in Table I be
represented by [Tj ], j = 1 . . . , 5. These positions represent
the movement of the manipulator of the 6R planar robot
from a square folded state to its extended state. The forward
kinematics of the 6R serial chain is given by

[D] = [G][Z(θ1)][X(a12)] . . . [X(a56)[Z(θ6)][H]. (25)

To solve for the inverse kinematics of the 6R chain, we
select C1 = (0, 0) such that [G] becomes the identity [I], and
the link dimensions of the 6R chain a12 = a23 = a34 = a45 =
a56 = 1m. In addition, we assume [H] to be the identity [I],



TABLE II
INVERSE KINEMATICS OF THE 6R CHAIN AT EACH TASK POSITIONS WITH

A SQUARE INITIAL CONFIGURATION

Task σj λj θ6,j

1 270◦ −90◦ 90◦

2 181.26◦ −49.19◦ −23.49◦

3 159.75◦ −44.28◦ −43.65◦

4 132.50◦ −39.88◦ −66.97◦

5 118.62◦ −37.80◦ −84.43◦

TABLE III
SOLUTION OF G1W1 WITH A SQUARE INITIAL CONFIGURATION

Pivots G1 W1

1 (0, 0) (0,−1)
2 (0.557,0.134) (0.888,−0.223)
3 (0.61− 0.68i, 0.51 + 0.62i) (1.17− 0.64i, 0.37 + 0.17i)
4 (0.61 + 0.68i, 0.51− 0.62i) (1.17 + 0.64i, 0.37− 0.17i)

and apply symmetry conditions such that the joint angles at
each of the task position, θ2,j = θ3,j = · · · = θ5,j = λj , j =
1, . . . , 5. Also, if we let θ1,j = σj , j = 1, . . . , 5, we are able
to solve for σj , λj , and θ6,j at each of the task positions by
equating the forward kinematics equation (25) with the task
[Tj ], j = 1 . . . , 5. See Table II.

Once we solve the inverse kinematics, the positions of its
links B1,j , B2,j , . . . , B6,j , j = 1, . . . , 5 in each of the task
positions can be determined. This means that we can identify
five positions [TB2

j ], j = 1, . . . , 5, when the end-effector is
in each of the specified task positions. These five positions
become our task positions in computing the RR chain G1W1

using (22) to constrain B2 to ground. Note that since B0 is
the ground, [D1j ] reduces to [B2,j ][B2,1]−1, j = 1, . . . , 5.

Similarly, we compute the RR chain G2W2 using (22) with
[D1j ] = [B4,1][B4,j ]−1[B6,j ][B6,1]−1.

We used this synthesis methodology and the five task
positions listed in Table I to compute the pivots of the RR

TABLE IV
SOLUTION OF G2W2 WITH A SQUARE INITIAL CONFIGURATION

Pivots G2 W2

1 (0, 0) (0,−1)
2 (0.239,−0.639) (0.097,−1.063)
3 (1.772,−0.298) (0.506,−1.272)
4 (3.962, 17.757) (0.243,−0.812)

TABLE V
FIVE TASK POSITIONS FOR THE END-EFFECTOR OF THE PLANAR 6R

ROBOT WITH A HEXAGON INITIAL CONFIGURATION

Task Position(φ, x, y)
1 (0◦,−1, 0)
2 (−39◦,−0.15, 2)
3 (−61◦, 0.8, 2.35)
4 (−94◦, 1.75, 2.3)
5 (−117◦, 2.25, 2.1)

Fig. 10. This mechanically constrained 6R chain guides the end effector
through five specified task positions with a square initial configuration

chains. We obtained two real solutions for G1W1, and four
real solutions for G2W2, which result in one of the existing
link for each case. Table III, and IV show the solution of the
various possible pivots. The required transmission design and
tendon routing is shown in Figure 5 and 6 respectively.

We follow the analysis procedure described in IX to animate
the movement of the constrained 6R robot. See Figure 10.

B. Example with a hexagon initial configuration

We follow the procedure described in the earlier section to
constrain the 6R chain with a hexagon initial configuration to
one degree-of-freedom. Table V represents the movement of
the manipulator of the 6R planar robot from a hexagon folded



TABLE VI
SOLUTION OF G1W1 WITH A HEXAGON INITIAL CONFIGURATION

Pivots G1 W1

1 (0, 0) (0.5,−0.866)
2 (−0.019, 0.030) (3.966,−24.384)
3 (0.015,−0.006) (0.396,−0.442)
4 (0.179,−0.070) (−0.170,0.141)

TABLE VII
SOLUTION OF G2W2 WITH A HEXAGON INITIAL CONFIGURATION

Pivots G2 W2

1 (−1.5,−0.866) (−1, 0)
2 (−1.379,0.250) (−1.218,0.131)
3 (−1.22− 0.20i, 0.05− 0.39i) (−1.04− 0.04i,−0.01 + 0.05i)
4 (−1.22 + 0.20i, 0.05 + 0.39i) (−1.04 + 0.04i,−0.01− 0.05i)

state to its extended state. We solve the inverse kinematics
of the 6R chain at each of the task positions by equating the
forward kinematics equation (25). Once we solve the inverse
kinematics, the positions of its links was used to design RR
chain G1W1, and G2W2. We obtained four real solution
for G1W1, and two real solutions for G2W2. Table VI, and
VII show the various possible pivots. Again, we use the same
transmission design and tendon routing as shown in Figure 5
and 6 respectively.

We follow the analysis procedure described in IX to animate
the movement of the constrained 6R robot. See Figure 11

XI. CONCLUSIONS

In this paper, we show that the design of a cable drive
train integrated with four-bar linkage synthesis yields new
opportunities for the constrained movement of planar serial
chains. In particular, we obtain a 6R planar chain through five
arbitrary task positions with one degree-of-freedom. The same
theory applies to nR chains with more degrees of freedom.
Two examples show that the end-effector moves through the
specified positions, while the system deploys from square and
hexagonal initial configurations.
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