Active Policy Learning for Robot Planning and Exploration under Uncertainty

Ruben Martinez-Cantin*, Nando de Freitas†, Arnaud Doucet†, José A. Castellanos*
* Department of Computer Science and Systems Engineering, University of Zaragoza
Email: {rmcantin,jacaste}@unizar.es
† Department of Computer Science, University of British Columbia
Email: {nando,arnaud}@cs.ubc.ca

Abstract—This paper proposes a simulation-based active policy learning algorithm for finite-horizon, partially-observed sequential decision processes. The algorithm is tested in the domain of robot navigation and exploration under uncertainty, where the expected cost is a function of the belief state (filtering distribution). This filtering distribution is in turn nonlinear and subject to discontinuities, which arise because constraints in the robot motion and control models. As a result, the expected cost is non-differentiable and very expensive to simulate. The new algorithm overcomes the first difficulty and reduces the number of simulations as follows. First, it assumes that we have carried out previous evaluations of the expected cost for different corresponding policy parameters. Second, it fits a Gaussian process (GP) regression model to these values, so as to approximate the expected cost as a function of the policy parameters. Third, it uses the GP predicted mean and variance to construct a statistical measure that determines which policy parameters should be used in the next simulation. The process is iterated using the new parameters and the newly gathered expected cost observation. Since the objective is to find the policy parameters that minimize the expected cost, this active learning approach effectively trades-off between exploration (where the GP variance is large) and exploitation (where the GP mean is low). In our experiments, a robot uses the proposed method to plan an optimal path for accomplishing a set of tasks, while maximizing the information about its pose and map estimates. These estimates are obtained with a standard filter for SLAM. Upon gathering new observations, the robot updates the state estimates and is able to replan a new path in the spirit of open-loop feedback control.

I. INTRODUCTION

The direct policy search method for reinforcement learning has led to significant achievements in control and robotics [1, 2, 3, 4]. The success of the method does often, however, hinge on our ability to formulate expressions for the gradient of the expected cost [5, 4, 6]. In some important applications in robotics, such as exploration, constraints in the robot motion and control models make it hard, and often impossible, to compute derivatives of the cost function with respect to the robot actions. In this paper, we present a direct policy search method for continuous policy spaces that relies on active learning to side-step the need for gradients.

The proposed active policy learning approach also seems to be more appropriate in situations where the cost function has many local minima that cause the gradient methods to get stuck. Moreover, in situations where the cost function is very expensive to evaluate by simulation, an active learning approach that is designed to minimize the number of evaluations might be more suitable than gradient methods, which often require small step sizes for stable convergence (and hence many cost evaluations).

We demonstrate the new approach on a hard robotics problem: planning and exploration under uncertainty. This problem plays a key role in simultaneous localization and mapping (SLAM), see for example [7, 8]. Mobile robots must maximize the size of the explored terrain, but, at the same time, they must ensure that localization errors are minimized. While exploration is needed to find new features, the robot must return to places were known landmarks are visible to maintain reasonable map and pose (robot location and heading) estimates.

In our setting, the robot is assumed to have a rough a priori estimate of the map features and its own pose. The robot must accomplish a series of tasks while simultaneously maximizing its information about the map and pose. This is illustrated in Figure 1, where a robot has to move from “Begin” to “End” by planning a path that satisfies logistic and physical constraints. The planned path must also result in improved map and pose estimates. As soon as the robot accomplishes a task, it has a new a posteriori map that enables it to carry out future tasks in the same environment more efficiently. This sequential decision making problem is exceptionally difficult because the actions
and states are continuous and high-dimensional. Moreover, the cost function is not differentiable and depends on the posterior belief (filtering distribution). Even a toy problem requires enormous computational effort. As a result, it is not surprising that most existing approaches relax the constraints. For instance, full observability is assumed in [9, 7], known robot location is assumed in [10], myopic planning is adopted in [8], and discretization of the state and/or actions spaces appears in [11, 12, 7]. The method proposed in this paper does not rely on any of these assumptions.

Our direct policy solution uses an any-time probabilistic active learning algorithm to predict what policies are likely to result in higher expected returns. The method effectively balances the goals of exploration and exploitation in policy search. It is motivated by work on experimental design [13, 14, 15]. Simpler variations of our ideas appeared earlier in the reinforcement literature. In [16], the problem is treated in the framework of exploration/exploitation with bandits. An extension to continuous spaces (infinite number of bandits) using locally weighted regression was proposed in [17]. Our paper presents richer criteria for active learning as well suitable optimization objectives.

This paper also presents posterior Cramér-Rao bounds to approximate the cost function in robot exploration. The appeal of these bounds is that they are much cheaper to simulate than the actual cost function.

Although the discussion is focused on robot exploration and planning, our policy search framework extends naturally to other domains. Related problems appear in fields of terrain planning, our policy search framework extends naturally to the actual cost function.

Although the algorithm proposed in this paper applies to many sequential decision making settings, we will restrict attention to the robot exploration and planning domain. In this domain, the robot has to plan a path that will improve its knowledge of its pose (location and heading) and the location of navigation landmarks. In doing so, the robot might be subject to other constraints such as low energy consumption, limited time, safety measures and obstacle avoidance. However, for the time being, let us first focus on the problem of minimizing posterior errors in localization and mapping as this problem already captures a high degree of complexity.

There are many variations of this problem, but let us consider the one of Figure 1 for illustration purposes. Here, the robot has to navigate from “Begin” to “End” while improving its estimates of the map and pose. For the time being, let us assume that the robot has no problem in reaching the target. Instead, let us focus on how the robot should plan its path so as to improve its map and pose posterior estimates. Initially, as illustrated by the ellipses on the left plot, the robot has vague priors about its pose and the location of landmarks. We want the robot to plan a path (parameterized policy \(\pi(\theta) \)) so that by the time it reaches the target, it has learned the most about its pose and the map. This way, if the robot has to repeat the task, it will have a better estimate of the map and hence it will be able to accomplish the task more efficiently.

In this paper, the policy is simply a path parameterized as a set of ordered way-points \(\theta_i \), although different representations can be used depending on the robot capabilities. A trajectory with 3 way-points, whose location was obtained using our algorithm, is shown on the right plot of Figure 1. We use a standard proportional-integral-derivative (PID) controller to generate the motion commands \(a = \{a_{1:T}\} \) to follow the path for \(T \) steps. The controller moves the robot toward each way-point in turn while taking into account the kinematic and dynamic constraints of the problem.

It should be noticed that the robot has a limited field of view. It can only see the landmarks that “appear” within an observation gate.

Having restricted the problem to one of improving posterior pose and map estimates, a natural cost function is the average mean square error (AMSE) of the state:

\[
C_{\text{AMSE}} = \mathbb{E}_{p(x_0:T, y_{1:T} | \pi)} \left[\sum_{t=1}^{T} \lambda^{T-t} (\hat{x}_t - x_t)(\hat{x}_t - x_t)' \right],
\]

where \(\hat{x}_t = \mathbb{E}_{p(x_t|y_{1:t}, \pi)}[x_t] \). The expectation is with respect to \(p(x_0:T, y_{1:T} | \pi) = p(x_0) \prod_{t=1}^{T} p(x_t | a_t, x_{t-1})p(y_t | x_t, a_t) \), \(\lambda \in [0, 1] \) is a discount factor, \(\pi(\theta) \) denotes the policy parameterized by the way-points \(\theta_i \in \mathbb{R}^{n_x} \), \(x_t \in \mathbb{R}^{n_x} \) is the hidden state (robot pose and location of map features) at time \(t \), \(y_{1:T} = \{y_1, y_2, \ldots, y_T\} \in \mathbb{R}^{n_y T} \) is the history of observations along the planned trajectory for \(T \) steps, \(a_{1:T} \in \mathbb{R}^{n_x T} \) is the history of actions determined by the policy \(\pi(\theta) \) and \(\hat{x}_t \) is the posterior estimate of the state at time \(t \).

In our application to robotics, we focus on the uncertainty of the posterior estimates at the end of the planning horizon. That is, we set \(\lambda = 1 \) so that the cost function reduces to:

\[
C_{\text{AMSE}}^{\pi} = \mathbb{E}_{p(x_T, y_{1:T} | \pi)} \left[(\hat{x}_T - x_T)(\hat{x}_T - x_T)' \right],
\]

Note that the true state \(x_T \) and observations are unknown in advance and so one has to marginalize over them.

The cost function hides an enormous degree of complexity. It is a matrix function of an intractable filtering distribution \(p(x_T | y_{1:T}, \pi) \) (also known as the belief or information state). This belief can be described in terms of the observation and odometry (robot dynamics) models using marginalization and Bayes rule. The computation of this belief is known as the simultaneous localization and mapping problem (SLAM) and it is known to be notoriously hard because of nonlinearity and non-Gaussianity. Moreover, in our domain, the robot only sees the landmarks within and observation gate.

Since the models are not linear-Gaussian, one cannot use standard linear-quadratic-Gaussian (LQG) controllers [20] to solve our problem. Moreover, since the action and state spaces are large-dimensional and continuous, one cannot discretize the problem and use closed-loop control as suggested in [21]. That is, the discretized partially observed Markov decision process is too large for stochastic dynamic programming [22].

As a result of these considerations, we adopt the direct policy search method [23, 24]. In particular, the initial policy is set either randomly or using prior knowledge. Given this policy, we conduct simulations to estimate the AMSE. These simulations involve sampling states and observations using the prior, dynamic and observation models. They also involve estimating the posterior mean of the state with suboptimal filtering. After evaluating the AMSE using the simulated
1) Choose an initial policy π_0.
2) For $j = 1 : \text{MaxNumberOfPolicySearchIterations}$:
 a) For $i = 1 : N$:
 i) Sample the prior states $x_{0i} \sim p(x_0)$.
 ii) For $t = 1 : T$:
 A) Use a PID controller regulated about the path π_j to
determine the current action $a_{ti}^{(i)}$.
 B) Sample the state $x_{ti} \sim p(x_t | a_{ti}^{(i)}, x_{ti-1}^{(i)})$.
 C) Generate observations $y_{ti}^{(i)} \sim p(y_t | a_{ti}^{(i)}, x_{ti}^{(i)})$ as
described in Section II-A. There can be missing
observations.
 D) Compute the filtering distribution $p(x_t | y_{1:t}, a_{1:t}^{(i)})$
using a SLAM filter.
 b) Evaluate the approximate AMSE cost function of equa-
tion (2) using the simulated trajectories.
 c) Use the active learning algorithm with Gaussian processes,
described in Section III, to generate the new policy π_{j+1}.
The choice of the new policy is governed by our desire
to exploit and our need to explore the space of policies
(navigation paths). In particular, we give preference to
policies for which we expect the cost to be minimized and
to policies where we have high uncertainty about what the
cost might be.

Fig. 2. The overall solution approach in the open-loop control (OLC) setting.
Here, N denotes the number of Monte Carlo samples and T is the planning
horizon. In replanning with open-loop feedback control (OLFC), one simply
uses the present position and the estimated posterior distribution (instead of the
prior) as the starting point for the simulations. One can apply this strategy with
either approaching or receding control horizons. It is implicit in the pseudo-
code that we freeze the random seed generator so as to reduce variance.

Fig. 3. An observation is generated using the current map and robot
pose estimates. Gating information is used to validate the observation.
In this picture, the simulation validates the observation despite the fact
that the true robot and feature locations are too distant for the
given field of view. New information is essential to reduce the uncertainty
and improve the simulations.

After the trajectories $\{x_{1:T}^{(i)}, y_{1:T}^{(i)}\}_{i=1}^N$ are obtained, one uses
a SLAM filter (EKF, UKF or particle filter) to compute the
posterior mean state $\hat{x}_{1:T}^{(i)}$. (In this paper, we adopt the EKF-
SLAM algorithm to estimate the mean and covariance of this
distribution. We refer the reader to [26] for implementation
details.) The evaluation of the cost function is therefore ex-
tremely expensive. Moreover, since the model is nonlinear, it is
hard to quantify the uncertainty introduced by the suboptimal
filter. Later, in Section IV, we will discuss an alternative cost
function, which consists of a lower bound on the AMSE.
Yet, in both cases, it is imperative to minimize the number
of evaluations of the cost functions. This calls for an active
learning approach.

III. ACTIVE POLICY LEARNING

This section presents an active learning algorithm to update
the policy parameters after each simulation. In particular, we
adopt the expected cost simulation strategy presented in [24].
In this approach, a scenario consists of an initial choice of
the state and a sequence of random numbers. Given a policy
parameter vector and a set of fixed scenarios, the simulation is
deterministic and yields an empirical estimate of the expected
cost [24].

The simulations are typically very expensive and conse-
quently cannot be undertaken for many values of the policy
parameters. Discretization of the potentially high-dimensional
and continuous policy space is out of the question. The
standard solution to this problem is to optimize the policy
using gradients. However, the local nature of gradient-based
optimization often leads to the common criticism that direct
policy search methods “get stuck” in local minima. Even more
pertinent to our setting, is the fact that the cost function
is discontinuous and hence policy gradient methods do not
apply. We present an alternative approach to gradient-based
optimization for continuous policy spaces. This approach,
which we refer to as active policy learning, is based on
experimental design ideas [27, 13, 28, 29]. Active policy
learning is an any-time, “black-box” statistical optimization

\[
C_{\text{AMSE}}^\pi \approx \frac{1}{N} \sum_{i=1}^{N} (\hat{x}_T - x_T^i)'(\hat{x}_T - x_T^i)/y. \tag{2}
\]
approach. Figure 4 illustrates it for a simple one-dimensional example. The approach is iterative and involves three steps.

In the first step, a Bayesian regression model is learned to map the policy parameters to the estimates of the expected cost function obtained from previous simulations. In this work, the regression function is obtained using Gaussian processes (GPs). Though in Figure 4 the GPs provide a good approximation to the true expected cost function, it should be emphasized that the infill function tends to have many local optima. Another motivating factor is that DIRECT’s implementation is easily available [32]. However, we conjecture that for large dimensional spaces, sequential quadratic programming or concave-convex programming [33] might be better algorithm choices for infill optimization.

A. Gaussian processes

A Gaussian process, $z(\cdot) \sim GP(m(\cdot), K(\cdot, \cdot))$, is an infinite random process indexed by the vector θ, such that any realization $z(\theta)$ is Gaussian [34]. We can parameterize the GP hierarchically

$$C^\pi(\theta) = 1\mu + z(\theta)$$

and subsequently estimate the posterior distributions of the mean μ and scale σ^2 using standard Bayesian conjugate analysis, see for example [14]. The symbol 1 denotes a column vector of ones. Assuming that n simulations have been conducted, the simulated costs $\{C_1, \ldots, C_n\}$ and the predicted cost C^π_{n+1} for a new test point θ_{n+1} are jointly Gaussian:

$$\begin{bmatrix} C^\pi_{n+1} \\ C^\pi_{1:n} \end{bmatrix} \sim N\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \mu, \sigma^2 \begin{bmatrix} k^T & k^T \\ k & K \end{bmatrix} \right),$$

where $k^T = [k(\theta_{n+1}, \theta_1) \cdots k(\theta_{n+1}, \theta_n)]$, $k = k(\theta_{n+1}, \theta_{n+1})$ and K is the training data kernel matrix with entries $k(\theta_i, \theta_j)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, n$. Since we are interested in regression, the Matern kernel is a suitable choice for $k(\cdot, \cdot)$ [14].

We assign a normal-inverse-Gamma conjugate prior to the parameters: $\mu \sim N(0, \sigma^2 \delta^2)$ and $\sigma^2 \sim IG(\alpha/2, b/2)$. The priors play an essential role at the beginning of the design process, when there are only a few data. Classical Bayesian analysis allow us to obtain analytical expressions for the posterior means of these quantities:

$$\hat{\mu} = \frac{(1^T K^{-1} 1 + \delta^{-2})^{-1} 1^T K^{-1} C^\pi}{n + a + 2}$$

$$\hat{\sigma}^2 = \frac{b + C^\pi^T K^{-1} C^\pi - (1^T K^{-1} 1 + \delta^{-2})\hat{\mu}^2}{n + a + 2}$$

intuitions can be incorporated in the design of a statistical measure indicating where to sample. This measure is known as the infill function, borrowing the term from the geostatistics literature. Figure 4 depicts a simple infill function that captures our intuitions. More details on how to choose the infill are presented in Section III-B.

Having defined an infill function, still leaves us with the problem of optimizing it. This is the third and final step in the approach. Our thesis is that the infill optimization problem is more amenable than the original problem because in this case the cost function is known and easy to evaluate. Furthermore, for the purposes of our application, it is not necessary to guarantee that we find the global minimum, merely that we can quickly locate a point that is likely to be as good as possible.

To deal with this nonlinear constrained optimization problem, we adopted the DIvided RECTangles (DIRECT) algorithm [30, 31]. DIRECT is a deterministic, derivative-free sampling algorithm. It uses the existing samples of the objective function to decide how to proceed to divide the feasible space into finer rectangles. For low-dimensional parameter spaces, say up to 10D, DIRECT provides a better solution than gradient approaches because the infill function tends to have many local optima. Another motivating factor is that DIRECT’s implementation is easily available [32]. However, we conjecture that for large dimensional spaces, sequential quadratic programming or concave-convex programming [33] might be better algorithm choices for infill optimization.
This resulted in the following expected improvement (infill not only expensive, but also a possible source of errors when over the current best point as

To overcome this problem, Jones defined the improvement where

Since the number of query points is small, the GP predictions are very easy to compute.

\[\pi \sim N(\hat{\theta}, 2) \] (8)

(4)

\[\pi(\theta) = \Phi \left(\frac{C_{\pi} - \hat{C}^\pi(\theta)}{s(\theta)} \right), \]

where \(C_{\pi} \sim N(\hat{C}^\pi(\theta), s(\theta)^2) \) and \(\Phi \) denotes CDF of the standard Normal distribution. This measure was proposed several decades ago by [27], who used univariate Wiener process. However, as argued by [13], it is sensitive to the value of \(C_{\pi} \). To overcome this problem, Jones defined the improvement over the current best point as \(I(\theta) = \max(0, C_{\pi} - C_{\pi}^\pi(\theta)) \). This resulted in the following expected improvement (infill function):

\[EI(\theta) = \int \left\{ \begin{array}{ll} (C_{\pi} - \hat{C}^\pi(\theta))\Phi(d) + s(\theta)\phi(d) & \text{if } \hat{s} > 0 \\ 0 & \text{if } \hat{s} = 0 \end{array} \right. \]

where \(\phi \) is the PDF of the standard Normal distribution and

\[d = \frac{C_{\pi} - \hat{C}^\pi(\theta)}{s(\theta)}. \]

IV. A CHEAPER COST: THE POSTERIOR CRAMÉR-RAO BOUND

As mentioned in Section II-A, it is not possible to compute the AMSE cost function exactly. In that section, we proposed a simulation approach that required that we run an SLAM filter for each simulated scenario. This approximate filtering step is not only expensive, but also a possible source of errors when approximating the AMSE with Monte Carlo simulations.

The posterior Cramér-Rao bound (PCRB) for nonlinear systems leads to an alternative objective function that is cheaper to evaluate and does not require that we run a SLAM filter. That is, the criterion presented next does not require the adoption of an EKF, UKF, particle filter or any other suboptimal filter in order to evaluate it. The PCRB is a “measure” of the maximum information that can be extracted from the dynamic system when both the measurements and states are assumed random. It is defined as the inverse of the Fisher information matrix \(\mathbf{J} \) and provides the following lower bound on the AMSE:

\[C_{\pi}^{\text{AMSE}} \geq C_{\pi}^{\text{PCRB}} = \mathbf{J}^{-1} \]

Tichavský [35], derived the following Riccati-like recursion to compute the PCRB for any unbiased estimator:

\[\mathbf{J}_{t+1} = \mathbf{D}_t - \mathbf{C}_t' (\mathbf{J}_t + \mathbf{B}_t)^{-1} \mathbf{C}_t + \mathbf{A}_t, \]

where

\[\mathbf{A}_t = \mathbb{E}[\Delta x_{t+1}, x_{t+1} \log p(y_{t+1} | x_{t+1})] \]

\[\mathbf{B}_t = \mathbb{E}[\Delta x_{t+1} \log p(x_{t+1} | x, a_t)] \]

\[\mathbf{C}_t = \mathbb{E}[\Delta x_{t+1} \log p(x_{t+1} | x, a_t)] \]

\[\mathbf{D}_t = \mathbb{E}[\Delta x_{t+1}, x_{t+1} \log p(x_{t+1} | x, a_t)], \]

where the expectations are with respect to the simulated trajectories and \(\Delta \) denotes the Laplacian operator. By simulating (sampling) trajectories, using our observation and transition models, one can easily approximate these expectations with Monte Carlo averages. These averages can be computed off-line and hence the expensive recursion of equation (3) only needs to be done once for all scenarios.

The PCRB approximation method of [35] applies to nonlinear (NL) models with additive noise only. This is not the case in our setting and hence a potential source of error. An alternative PCRB approximation method that overcomes this shortcoming, in the context of jump Markov linear (JML) models, was proposed by [36]. We try both approximations in our experiments and refer to them as NL-PCRB and JML-PCRB respectively.

The AMSE simulation approach of Section II-A using the EKF requires that we perform an expensive Ricatti update (EKF covariance update) for each simulated trajectory. In contrast, the simulation approach using the PCRB only requires one Ricatti update (equation (3)). Thus, the latter approach is considerably cheaper. Yet, the PCRB is only a lower bound and hence it is not guaranteed to be necessarily tight. In the following section, we will provide empirical comparisons between these simulation approaches.

V. EXPERIMENTS

We present two sets of experiments. The first experiment is very simple as it is aimed at illustrating the approach. It involves a fixed-horizon stochastic planning domain. The second set of experiments is concerned with exploration with receding horizon policies in more realistic settings. In all cases, the aim is to find the optimal path in terms of posterior information about the map and robot pose. For clarification, other terms contributing to the cost, such as time and obstacles are not considered, but the implementation should be straightforward.
A. Fixed-horizon planning

The first experiment is the one described in Figure 1. Here, the start and end positions of the path are fixed. The robot has to compute the coordinates of three intermediate way-points and, hence, the policy has six parameters. For illustration purposes we chose a simple environment consisting of 5 landmarks (with vague priors). We placed an informative prior on the initial robot pose. Figure 6 shows three different robot trajectories computed during policy optimization. The trajectories are also indicated in the Monte Carlo AMSE cost evolution plot. The 6D optimization requires less than 50 iterations. We found that the optimal trajectory allowed the robot to observe the maximum number of features. However, since the prior on the robot’s initial pose is informative (narrow Gaussian), feature A is originally detected with very low uncertainty. Consequently, the robot tries to maintain that feature in the field of view to improve the localization. A greedy strategy would have focused only on feature A, improving the estimation of that feature and the robot, but dropping the global posterior estimate.

B. Receding-horizon planning

In this experiment, the a priori map has high uncertainty (1 meter standard deviation – see Figure 7). The robot is a differential drive vehicle equipped with odometers and a stereo camera that provides the location of features. The field of view is limited to 7 meters and 90°, which are typical values for reliable stereo matching. We assume that the camera and a detection system that provides a set of observations every 0.5 seconds. The sensor noise is Gaussian for both range and bearing, with standard deviations $\sigma_{\text{range}} = 0.2 \cdot \text{range}$ and $\sigma_{\text{bearing}} = 0.5^\circ$. The policy is given by a set of ordered way-points. Each way-point is defined in terms of heading and distance with respect to the robot pose at the preceding way-point. The distance between way-points is limited to 10 meters and the heading should be in the interval $[-3\pi/4, 3\pi/4]$. It is obvious that the OLC algorithms have a lower computational cost. Using the AMSE cost and the map of Figure 7, the times for OLC1, OLC3 and OLFC3 are approximately 6, 30 and 75 minutes (using an un-optimized Matlab implementation). On the other hand, the OLC methods can get trapped in local minima, as shown in Figure 7. Due to the limited planning horizon of OLC1, it barely explores new areas. OLC3 tends to overshoot as it only replans at the third way-point. OLFC3, on the other hand, replans at each step and as a result is able to steer to the unexplored part of the map. Figure 8 plots the evolution of the uncertainty in this trap situation for 15 experimental runs. The controller with feedback is clearly the winner because it avoids the trap. This behavior is stable across different runs.

We repeated this experiment with different initial random maps (5 landmarks). Figure 9 shows the methods perform similarly as worst-case situations are rare.

The next set of simulations is used to experimentally
validate the PCRB approximation of the AMSE cost. We increase the size and the complexity of the environment to 30 landmarks in a 25 by 25 meters squared area. Figure 10 shows the trace of the covariance matrix of the map and robot location, estimated using OLFC3, for the three approximations discussed in this paper. The JML-PCRB remains close to the simulated AMSE. This indicates that this bound is tight and a good choice in this case. On the other hand, NL-PCRB seems to be too loose. In this larger map, the computational times for the approximate AMSE and JML-PCRB were approximately 180 and 150 minutes respectively.

VI. DISCUSSION AND FUTURE WORK

We have presented an approach for stochastic exploration and planning rooted in strong statistical and decision-theoretic foundations. The most important next step is to test the proposed simulator on a real robotic domain. One needed step in this implementation is enabling the robot to add new landmarks to the existing map, while still within our decision-theoretic framework. We also note that our method is directly applicable to the problem of planning the architecture of a dynamic sensor network. In terms of modelling, we need to
introduce richer cost functions and constraints. In terms of algorithm improvement, we must design infill optimization strategies for high-dimensional policies. Whenever gradients are available, the approach presented here could be improved by ensuring that the regression function matches the gradients at the query points. Finally, on the theoretical front, we plan to build upon early work on correlated bandits to obtain theoretical performance bounds and, hence, confidence intervals that could potentially do better than the current infill criterion.

ACKNOWLEDGMENTS

We would like to thank Eric Brochu, Nick Roy, Hendrik Kueck and Andrew Ng for valuable discussions. This project was supported by NSERC, MITACS and the Dirección General de Investigación de Spain, project DPI2006-13578.

REFERENCES

