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Abstract—Probabilistic and deterministic planners are two « Is there a planner that can take the advantages from both
major approximate-based frameworks for solving motion plan- probabilistic and deterministic planners?

ning problems. Both approaches have their own advantages . . .
and disadvantages. In this work, we provide an investigation The same question has also been raised by Hirsch and

to the following question: Is there a planner that can take the Halperin [10] although their focus is on a more specific
advantages from both probabilistic and deterministic planners? problem: two-disc motion planning. By combining a complete

Our strategy to achieve this goal is to use the point-based planner for a single disc with @rm strategy to coordinate
Minkowski sum of the robot and the obstacles in workspace. Our . discs, their hybrid motion planner efficiently solvesipr

experimental results show that our new method, called M-sum | ith In thi dant a totall
planner, which uses the geometric properties of Minkowski sum '€MS WIth narrow passages. in this paper, we adapt a totally

to solve motion planning problems, provides advantages over the differ_e_nt strategy an_d focus on more gen.eral pr0b|em3_- More
existing probabilistic or deterministic planners. In particular, M-  specifically, we are interested in developing a planner ihat

sum planner is significantly more efficient than the Probabilistic simple and easily extensible to high dimensional space (the
Roadmap Methods PRws) and its variants for problems that can  4qyantages from probabilistic planners) and remains effici
be solved by reusing configurations. even with the presence of the narrow passages (the advantage
l. INTRODUCTION from determinist_ic planner;). _ _
Our strategy in developing such a planner is to combine

In motion planning, we study the problem of finding &grvs with the point-baseinkowski sum11] of the robot
feasible path for a movable object to navigate in an enving the obstacles in the workspace. Minkowski sum boundary
ronment with obstacles. Researchers have shown that #¥losely related to the concept of the “contact space” of
completemethod that solves a general motion planning prolansiational robots in motion planning. We will discuss in
lem exactly will take time exponential to the complexity ofjetajl regarding the definition of the Minkowski sum and its
the robot [1]. Approximate motion planners have since be@gjationship to the contact space in Section Il. For the oést
intensively studied; see surveys by LaValle [2]. One of thgjs section, we will provide an overview of our planner.
most well known approximate planners is tpeobabilistic Our Approach. We investigate a method, called M-sum
motion planners (e.grRMs [3] and its variants [4], [5], [6]). planner, that uses the Minkowski sum of the robot and the
These planners are able to solve high dimensional problegisstacles to facilitate the process of creating a roadmap.
that were not solvable before. Similar to the probabilistic roadmap method(s) [3], [4],

The success of the probabilistic motion planners is Iargeﬂg]’ [6], the roadmap constructed by M-sum planner repressen
due to their simplicity and efficiency gained from sacrifgin the connectivity of the entire free space and can be used to
the completeness. As a consequence, when such a plargie motion planning queries. Due to this similarity welwil
fails to find a solution, it cannot be certain whether a patdcus on the process of building the roadmap only.
exists or not. One of the most common reasons CaUSingntuitiver, M-sum planner produces a set of “shapes”
the failure of thePRMm planners is the presence a&rrow of a robot by rotating or changing its joint angles. We
passageqthe so called ‘narrow passage problem’). Due tgeat each shape as one translational robot and compute the
these problems, some recent work focused on developigghkowski sum of each shape and obstacles. The vertices
deterministicapproximate motion planners [7], [8], [9] that useyf the Minkowski sum are then connected to form a small
more sophisticated geometric algorithms to approximaée t§raph. There will be: such graphs constructed at the end of

obstacles in configuration space. These methods are pyovahk process. Finally, we will merge these graphs into a globa
less sensitive to narrow passages, thus providing stronggsdmap.

confidence on the path nonexistence problem. However, as\n important property of M-sum planner is that it is
far as we know, the motion planners in this category can ondjgnificantly more efficient than the Probabilistic Roadmap
handle problems in low< 4) dimensions and are in generaliethods ¢rms) and its variants for problems, e.g., Fig. 1,

more difficult to implement thamRMs. that can be solved by reusing configurations.
Even with active research on probabilistic and determimist
motion planners, it is clear that the gap between these two Il. RELATED WORK

approaches is still huge. Therefore, in order to bridge #qg g In this section, we will discuss closely related workremms
the question that we will investigate in this paper is: and Minkowski sum.



—T ' — —— collected during sampling to discover when and where toyappl
| | certain sampling strategies.
‘ | Few hybrid methods attempt to combine deterministic and

probabilistic planning strategies. Hirsch and Halperhybrid
planner [10] studied two-disc motion planning. Zhang ef3l.
combines adaptive cell decomposition witRms but can only
Fig. 1. A motion planning problem that can be solved more efittje handle problems up to 4 DOF. Another ‘hybrid’ planner that
by M-sum planner. The workspace is composed of five paralldlsweith ‘al ) ; i i
h)(;rizontal a?nd vertical windowsp. M-sum pla‘r)mer takes atbrﬂ;ﬂ of ﬁggn;ggs bse“ecne?jisgucszlgagiurﬁﬂgnbf)?)ict?y";teo ge?_sz?laﬁ??gr op.
283-287] and by Lamiraux and Kavraki [22]. Each slice is
computed by a complete planner for 2D translational robot
using cell decomposition. Two slices are connected if the
Probabilistic roadmap method®Kwms) generally operate sypdivisions from both slices overlaps. Unlike these mesho
as follows (see, e.g., [3]). During a preprocessing phasgat are limited in specific problems or in low dimensional

a set of configurations in the free space is generated gyace ¢ 4), our hybrid method can handle high dimensional
sampling configurations at random and retaining those thgbplems.

are valid. These nodes are then connected to create a roadmap
by inserting edges between nodes if they can be connec®dMinkowski Sum

by a simple and fast local planning method. This roadmap.l_he Minkowski sum of two set® andQ in RY is defined
is then queried by first connecting the given start and gog%

A. Probabilistic Roadmap Methods

configurations to the roadmap and then searching for a path
in the roadmap connecting them. PoQ={p+alpePqecq}) @

An important shortcoming oPRMS is their poor perfor- Typically, P and Q represent polygons ifR? or polyhedra
mance on problems requiring paths that pass through narmgwp3s Minkowski sum boundary is closely related to the
passages in the free space. This is a direct consequence/of Bgncept of “contact space.” Every point in the contact space
the nodes are sampled. For example, using the traditional Ugpresents a configuration that places the robot in contitiat w
form sampling [3], any corridor of sufficiently small volume,t without colliding with) the obstacles. Given a trattislaal
is unlikely to contain any sampled nodes whatsoever. robot P and obstacle€), the contact space d* andQ can be

Effort has been made to modify the sampling strategy fepresented a8((—P) & Q), where—P = {—p | p € P}. In
increase the number of nodes sampled in narrow corridogsher words, if a point: is on the boundary of the Minkowski

Intuitively, such narrow corridors may be characterized y,m of two polyhedra® and Q, then the following condition
their large surface area to volume ratio. For example, {yst be true:

[4], [12], nodes are sampled from tlentact spacethe set (—P° +2)NQ° =0 )
of configurations for which the robot is in contact with an ’
obstacle. In [5], the sampling strategy samples pairs oftiyea whereQ° is the open set of) and P + = denotes translating
configurations that are separated by a Gaussian distarife P to z.
one configuration is free and the other is in collision, thea t Many methods have been proposed to compute Minkowski
free configuration is added to the roadmap. Otherwise, bafm (see surveys in [23], [24], [25]). Ghosh [23] proposed a
configurations are discarded. The Gaussian sampler geserahified approach to handle 2-d or 3-d convex and non-convex
a higher density of nodes near C-obstacle boundarieS.VFOHQ)bjects by introducing negative shape and slope diagram rep
ing a similar strategy, the bridge test approach [6] samles resentation. Slope diagram is closely relate@tussian map
in-collision configurations separated by a Gaussian digtdn which has been used to implement very efficient Minkowski
and keeps their midpoint if it is free. In [13], preliminargre  sum computation of convex objects by Fogel and Halperin
figurations are generated by allowing the robot to penetiete [25]. Several other methods have been proposed to handle
obstacles by a small amount. The areas near these nodescarex objects. Guibas and Seidel [26] proposed an output
then re-sampled to find nearby collision-free configurationsensitive method to compute convolution curves, a sugesfse
Work has also been proposed to address the narrow passageMinkowski sum boundaries. Kaul and Rossignac [27] pro-
problem by analyzing thevorkspaceproperties. However, posed a linear time method to generate a set of Minkowski sum
most of the work using this strategy [14], [15], [16] onlyfacets. Output sensitive methods that compute the Minkbwsk
focused on properties of the obstacles. On the contrary, aim of polytopes ini-dimension have also been proposed by
method considers both the robot and the obstacles. Gritzmann and Sturmfels [28] and Fukuda [29].

Because computing the Minkowski sum of convex polyhe-
dra is easier, most methods that compute the Minkowski sum

Recently, several hybrid motion planners have been prof non-convex polyhedra first compute the convex decompo-
posed [17], [18], [19], [20]. All theseneta-plannergocus on sition and then compute the union of the Minkowski sums of
combining differentPRMs using machine learning or statisticthe convex components [30], [24]. Unfortunately, neithes t

B. Hybrid Motion Planners



convex decomposition nor the union of the Minkowski sums

is trivial. " {/ - -
Peternell et al. [31] proposed a method to compute the robot H H H H

Minkowski sum using points densely sampled from the solids,
and compute local quadratic approximations of these points
However, their method only identifies the outer boundary of
the Minkowski sum, i.e., no hole boundaries. This can be
a serious problem in particular for motion planning. In this

paper, we use the point-based Minkowski sum proposed by
Lien [11] that does not have the undesirable issues above.

I1l. PRELIMINARY & OVERVIEW

In this section, we define notations that we will use through-
out this paper. We will also give a more detailed overview of
our method (M-sum planner) to end this section.

Separating translational and rotational motions Given
a configurationC, we separate the configuration into two
components: Translational and rotational configurations.
represent the configuration 85= {T¢ x R¢}, whereT¢ and
R¢ represents the translational and rotational components of
the configurationC, respectively. To ease our discussion, we
use the notatiorC'(z) to denote the coordinate of a point
on the robot after the robot is placed at the configuratibn Fig. 2. A set of configurations sampled from the boundarg-abst using the
Similarly, we denotel’> () (or Ro(x)) as the coordinates of Minkowski sum of the robot and the obstacles. FGslices are highlighted

. . in this figure.
a pointx after the robot is translated (or rotated) By (or
R¢). By separating motions, we can handle translational and

rotational motions differently. As we will see later, thigps IV. MINKOWSKI SUM ROADMAP
aration provides many benefits in generating and connecting ' GENERATE CONFIGURATIONS
configurations.

C-slice. Intuitively, a C-slice is a slice (subspace) of the As mentioned earlier, we generate configurations by com-
entire C-space. All configurations in &-slice are generated puting the vertex coordinates of the Minkowski sum of the
from a “seed” configuratiors and the Minkowski sum of the obstacles and the robot whose rotation and joint angles are
robot and the obstacles. That is a configuratibin a C-slice sampled at random. That is we sample a random configuration
must has the following formC = {p x Rs}, wherep is the as our ‘seed.” The translational information of the seed is
position of a point on the Minkowski sum surface afg discarded (i.e., set to zeros). Then the seed configurasion i
is the rotational component &. Therefore, a-slice resides placed at the positions of the Minkowski sum vertices to
only in a translational-subspace of tespace. An example generatea family of configurationswhich we call a C-slice’’
of C-slice is shown in Fig. 2. Note that our method does not depend on any kind of sampling

Origins. A point 2 on the Minkowski sum surface is astrategy. For example, we can use a configuration generated
combination of two points, which are called the originaaf by an obstacle-baserRM [4], [5], [6] as our seed.

To simplify our discussion later, we define an operatidf:) Even though our strategy is straightforward, the difficulty
to denote the origin of. of computing the Minkowski sum and its boundary remains
— — _ unsolved. As we have seen in Section I, no existing methods
Definition 3.1: The origin O(z) of a pointz on the|  can provide a robust and efficient method to compute the
Minkowski sum surface is a pair of points and ¢|  \jinkowski sum boundary of polyhedra. Fortunately, using th
from the robot and the obstacles, respectively, such| thatecent work proposed by Lien [11], we can efficiently compute
r=rtq the Minkowski sum boundary if it is represented by points

Note that later in Definition 4.2, we will encounter anothepnly: In the following section, we will provide a sketch of
definition of origin for points on the surface of the robot oPOW to create such a point-based representation.
the obstacles.

Overview of M-sum planner. Essentially, we iteratively
generaten C-slices fromn randomly selected seeds and then Our goal is to produce a set of points thebver the
we connect-slices into a global roadmap. The main steps dfoundary of the Minkowski sum of two given polyhedi@,
M-sum planner include: Generatéslices (see Section 1V), and ). More specifically, we will generate a point s&tso
connect configurations in eachslice (see Section V-A), and that.S is ad-covering of the Minkowski sum boundary, where
connect configurations amorislices (see Section V-B). d is a user-specified value. Intuitively,controls the sampling

A. Generate points on the Minkowski sum boundary



density of a boundary. A smalled will produce a denser the pointp + ¢ parallel to facetO(q). Then, we translatd®
approximation of the boundary. by ¢ so that vertexD(p) coincides with the poinp + ¢. The
Our approach is composed of three main steps. First, weint p + ¢ must be an inner point when the (open) half space
sample two point sets from the inpit and (). Second, we defined by the plan® intersects at least one edge incident to
generate the Minkowski sum of the point sets simply using tllee vertexO(p).
definition in Eqn. 1. Third, we separate the boundary points Now, consider the case whéhp) andO(q) are both edges.
(both hole and external boundaries) from the internal gointSimilarly, we define a supporting plafieat pointp+q whose
Step 1: Sample pointsLet P and( be two polyhedra. We outward normal is the cross product of two vectors paratlel t
generate two point sets from and(), denoted as’» andSg. edgesO(p) and O(q). Then, we translaté’ by ¢ and Q by
The point setS representing the Minkowski sum boundary op so that edge®)(p) and O(q) coincide with the planeP.

P and@ is simply The pointp + ¢ must be an inner point when the facets that
incident to edge®)(p) andO(p) are on the different sides of
(9P ©So) NP & Q) - ) the planeP.

Because we want the point s&to cover the entire Minkowski ~ When O(p) and O(q) are both vertices or whe@®(p) and
sum boundary w.r.t. a user specified interdalwe have to O(q) are a vertex-edge pair, we can break them into several
make sure that the poini$p is a d,-covering of0F and the instances of the edge-edge and vertex-facet cases above.
points.Sq is ad,-covering of JQ). It is our task to determine  This filter is efficient, but it alonecannot filter out all
the values ofd, andd, from the inputd. inner points. The second filter, nam&® filter uses collision

As shown in Theorem 4.1, we can guarantee that the firddtection to separate boundary points from inner points. CD
point set is at least al-covering of the Minkowski sum filter is computational more expensive but it provides an
boundary of P and @) by simply lettingd, = d, = d. unambiguous decision. An example of the Minkowski sum
Moreover, since the boundaries &f and Q are known, we generated by this point-based representation is showryirBFi
can easily generatép and Sq that d-cover 0P and 0Q),
respectively.

Theorem 4.1:[11] Let Sp and S; be two d-covering g J\

point sets sampled from two polyhedral surfate and ¢ / \

0Q and letSpgg = Sp®Sg andS = SpagNd(PE&Q). | ’_\

Then, S must be ad-covering point set 0bD(P @ Q). ! “ _s= .
P Q

Step 2: Compute the Minkowski sum This step is | $
straightforward. UsingSp and Sg, we computeSpgq by PaQ
simply following the Minkowski sum definition in Eqn. 1.

Step 3: Extract boundary points. In this final step, we Fig. 3. This figure shows a 0.01-covering point set of the Mimgki sum

fil . ' B d ! bqundary of two hook-like models. Note that &, @ and P & Q are

_separate_ (filter) points to t_WO groups: Boundary points _arpﬁp,esemed by densely sampled points.
inner points. Boundary points will be returned as our final
answer and inner points will be discarded.

The first filter, namedhormal filter determines if a pair of V. MINKOWSKI SUM ROADMAP
sample points (fromP and @, resp.) is an inner point by CONNECT CONFIGURATIONS
examining theirorigins (defined later in Definition 4.2) and , . ) i v th )
orientations. Kaul and Rossignac [27] have shown that & face COMNecting configurations is usually the most expensive

of the Minkowski sum boundary can only come from a face€P in building a roadmap. In the following, we will show
of P and a vertex fromQ (or vice versa) or from a new that, using some simple properties of the Minkowski sum,

facet formed by two edges aP and Q if the facet, vertex not only we can connect configurations more efficiently but

and edges are properly oriented [27]. Our strategy is dériv@lso can increase the chance of connecting configurations. |

directly from their observation. Since our points are sanpl 'S Important to note that the new local planners proposed
from the polyhedral surface, we define thegin of a sample below are not applicable to samples generated by regular
to ease our discussion PRMS. To ease our discussion, we separate our approaches into

connecting configurations within@slice and among-slices.

Definition 4.2: The origin of a sample z, denoted as

O(z), is a facet, an edge or a vertex of a polyhedron A, Connecting Configurations within &slice
from which 2 is sampled.

Connecting configurations in &-slice can be done more
Let p and ¢ be a pair of points sampled frof? and Q, efficiently than connecting configurations generated byoam
respectively. We decide jf + ¢ is an inner point by checking sampling. The reason for this is that we can quickly elingnat
the orientation ofO(p) and O(q). configurations that cannot be connected by simply examining
Consider the case whe®(p) is a vertex andO(q) is a the connectivity of the geometries (mesh) of the robot aed th
facet (or vice versa). We first define a supporting pldhat obstacles. We will make this claim more clearly next.




Let C; and Cy be two configurations in the sangeslice of these local planners is that they connect configuratigns b
i.e., C; and Cy have the same rotation and joint angleswalking’ on the C-obst boundary.
Moreover, we can represett asp; + g; wherep; is a point Connecting two configurations with the same origins
from the robotP andg; is a point from the obstacl®. Now, Given two configurationg”; and C> that are generated from
we can only make a connection betwegnandC, if C; and differentC-slices and have the origins (see Definition 3.1) from

C, satisfy one of the following requirements: the same pointg andq of the robot and the obstacle, respec-
« q1 = ¢ andpip; lies on a triangle ofP. tively, i.e, O(C1) = O(C2) = (p, ). Let Cy = S1(p) + ¢ and
« p1 = p» andqigz lies on a triangle of. Cy = S?(p) + ¢, whereS; are the seed configurations of the
« Origins of p1, po, q1, ¢ are edges and(p;) = O(p,) C-slicei.
and O(q1) = O(ge). When a straight-line local planner (or other simple local

These tests can be done in constant time. All we ha‘%anners [33]) fails to connedl’y and C2, we can attempt
connect them as follows. First, we construct a new seed

to do is to keep these information during the constructio p ionS. — SitS: \which is the mid point th
of the Minkowski sum. IfC; and Cy do not satisfy all the conc;gura?on St'_S 2 dgN II(\:I Its the m:acp(l':)lnt the t\;vo
requirements above, we will skip the pair. Otherwise, we wipccC contigurations; and.5;. INext, we uses 1o compute

use collision detection of check of they are indeed coniéeta anew MkaWSk.' sum.pomﬁ.g _ Ss(p) +¢. If C3 s on t.he
The following theorem supports this approach. C-obst surface, i.e.(s5 is collision free, then we recursively

connectC,C3 and C3Cs in the same manner (because now
Theorem 5.1:0nly a pair of configurations that satisfy C;, C> and (s all have the same origin). In short, this local
one of the criteria above can form a connection. planner connects two configurations between tuslices by
walking on the surface af-obst.

Proof: The boundary of the Minkowski sum of two c ting t fi i h -
polygons can only come the edges of the polygons. Therefore onnecting two contigurations wnose origins are con-

if two vertices on the Minkowski sum boundary are connectet ’ectted n workstpz;cfe leg_r;f tw%tccl)_nﬂgur:tlons?_l and 02d
then they must come from an edge of one of the polygons. at are generated from dilteredsiices. ssuming”, an .
> share one of the point in their origins. Let the shared point

The boundary of the Minkowski sum of two polyhedra ca . .
only come the facets of the polyhedra or from the sweep arga 2 pointg of the obstacle. That iS, = 5:1(p1) + ¢ and
of two edges, one from each polyhedron, i.e., one edge from _ . 52(p2) + g, wherep, andp; are two points on the robot
the robot and one edge from the obstacle. In both cases Si is the see_d conﬂguratlon_s O.f tideslice i. Everything
two vertices on the Minkowski sum boundary are connecte il be the same if th? shared point is from the robot. Next, we
then they must come from a facet of the polyhedra or from IIIlsee that we can increase the chance of conne@ipgnd
new facet that is generated by a pair of edges; each from o if p1 andp, are from the same edge or the same triangle
of the polyhedra. of the rqbot. . P1+ps

Note that if there are more than one obstacle in the V& first compute the midpoinps =_*7. Then,
workspace, the method mentioned above will not conneff Can split€1C; into three _segmentsCy(S1(ps) + ),
configurations that are generated from different obstatiées (51(p3) +¢)(S2(ps) + ¢), and(Sz(ps) + ¢)Cz. Observe that

still need the traditional approaches (e.g., k-closestptmect tEe first :Cndllthe Ias;}t. Shegme”ts c;)cl)nnecrt] two cor?flguraltlonj in
the configurations between obstacles. the sameC-slice, which is a problem that we have already

handled in Section V-A and the second segment connects two
configurationswith the same originn different C-slices. This

] ] ) ) o is exactly the problem that we have encountered earlier.
Connecting configurations among-slices is similar to

connecting configurations among connected components of a V]. PUTTING IT ALL TOGETHER

roadmap inPRMS. Similar to connecting individual configu- ) . )

rations, it is also more desirable to connect each connected90rithm VI.1 summarizes all the methods we have dis-

component (CC) to ité-closest CCs (instead of to all CCS)_cussed so far. The output of Algorithm VI.1 is a roadmap.

However, inPRMs, there is no well defined distance metrics N the rest of this section, we will discuss the advantages

for CCs [32]. On the contrary, for M-sum planner, the disean@nd the limitations of the M-sum planner.

between twa-slices can simply be measured as the difference

between their rotation and joint angles (of the seeds). &hef* Advantages of M-sum planner

fore connecting configurations amodeslices can be handled There are several important advantages of M-sum planner

more naturally for M-sum planner when we attempt to ordewver thePrRm planners. First, M-sum planner can connect the

C-slices (or CCs) from near to far. configurations more efficiently (see Sections V-A and V-B)
Moreover, following the same strategy of connecting configising more powerful local planners, which are not applieabl

urations within aC-slice, we are allowed to use the propertieto the regularrRM samples. In addition, M-sum planner reuses

of Minkowski sum to increase the chance of connectingpnfigurations, including the “good” configurations thairiib

configurations from twaC-slices. In the rest of this section,the narrow passages. This property allows M-sum planner

we will proposed two local planners. The key characteristio solve problems more efficiently even in high dimensions.

B. Connecting Configurations Amoidgslices



the corridors tharPRM does. ]
Although Theorem 6.1 is theoretically interesting since no
comment: P andQ are the robot and the obstacles, respectively existing obstacle-basedRms can guarantee this, practically
speaking, a smalld makes computation more expensive.
Moreover, M-sum planner cannot guarantee to increase the
sampling inside the narrow passages surrounded’{mpst
hat is the result of robot’s self-collision. This leads osthe
imitations of the M-sum planner.

Algorithm VI.1: M-sumM-ROADMAP(P, Q, n, k)

Initialize the roadmapR — 0
Initialize C-slices.S « 0
for i —1ton
Sample a configuratiof; and set its translation to (§
do { S; «points ond( — C;(P) ® Q)
S — SuU{C;,S;} B. Limitations of M-sum planner
R—S
Sort S using the distance from a randomly pickéeklice
fori—1ton
R — RU (edges inS;)
do {for j« (i—%)to (i+%)
do R — R U (edges betwees; and.S;)

We envision M-sum planner provide a new framework to
combine probabilistic and deterministic planners. Evenuth
it does not provide a total solution to our question, M-sum
planner provides a simple and efficient planner to solve a
certain type of common motion planning problems. In this
section, we discuss its limitations.

One of the limitations of M-sum planner is that the user need
to decide the value of. From the completeness perspective,
. a smalld is desirable since it allows M-sum planner to tightly
In our experiments, we see that M-sum planner outperforragyer thec-obst surfaces. From the efficiency perspective, a
PRV regardless the dimensionality of the C-space. larger d (e.g., larger than the length of the longest edge of

Second, M-sum planner expresses different behaviors Whgg ropot and obstacles in the workspace) is desirable since
different inputs are given. For example, given problemdwikewer configurations are generated. In the optimal sitaatio
the translational robot, M-sum planner automatically bees on|y the vertices of the Minkowski sum boundary are included
a deterministic planner. These are the problems that canjRenhe samples. However, it is well known that the Minkowski
solved significantly more efficiently by the deterministia  sym of the vertices of two polyhedra may not include all the
ners than by the probabilistic planners, in particular e  yertices of the Minkowski sum of the polyhedra. Because this
are narrow passages. M-sum planner becomes a probabiligigpens only in some rare cases (e.g., two grate-like shapes
planner for problems whose rotational motions dominate thg qyr experiments, we simply use a largeFurther research
C-space. is required to determine the value @ffrom a given problem.

Third, M-sum planner separates the translational and ro-another limitation of M-sum planner is that it cannot
tational motions. Configurations are first generatEd and C%ﬁicienﬂy handle prob|em5, such as the a|pha puzz|e or fixed
nected using only translation. Then the configurations apgse robot arms, which require simultaneous translatiods a
connected into the final roadmap using only rotation. Thigtations or have no translational degrees of freedom.daeth

strategy provides several advantages. For example, we g@fblems, reusing configurations will not be helpful and M-
use a deterministic manner to generate translationalguodf  sym planner downgrades tor&m planner.

the configuration and use a probabilistic manner to generate
rotational portion of the configuration. We can also use a dis VII. EXPERIMENTAL RESULTS
tance metric for translation and use another distance crfetri |mp|ementing M-sum p|anner is Straightforward_ We devel-

rotations and avoid the confusing of combining or weightingped software based on the proposed planner in C++. All

different distance metrics [33]. experimental results are collected on an Intel CPU at 2.13
Finally, M-sum planner can generate samples that cover i3¢iz with 3 GB of RAM. The software is available from our

surface of the C-space obstacl€sapst). This can be done project webpage.

by giving M-sum planner a smail (smaller than the length  |n this section, we compare M-sum planner to threem

of the shortest edge in workspace). The consequences of {Rifiants:prm [3], GaussiarPRM [5], and Bridge-tespRrM [6].

is that the possibility of generating configurations in D&IT |n our experiments, we use four workspaces shown in Fig. 4.

passages must be increased. These problems have robots with 3, 6, 8, 10 degrees of

freedom, respectively. We study the efficiency of configorat

of generating configurations using M-sum planner in nar- gener'ation and the efficiency of solving the;e fqur motion
row passages must be larger than that using the tradi ionaplannlng problems. The results are summarized in Tables |

PRM if the same number of configurations are gener ted."jmd . ) .
M-sum planner generates configurations nearC-obst

Proof: Sketch Because narrow corridors can be characnore efficiently than PrRMs do in all studied casesIn
terized by their large surface area to volume ratio, M-suifable I, we collect theconfiguration generation timegom
planner that generates samples that cover the surfacés othe planners. It is clear th&Rrwm is the most efficient method
obst must has higher probability of generating sampleslénsisince it does not deliberately place or filter samples. M-sum

Theorem 6.1:Given a translational robot, the possibility




TABLE I
EXPECTEDSOLUTION TIME (E; = %)

Gaussian| Bridge test
Environment | M-sum PRM PRM PRM
Fig. 4(a) 0.3s 219s 149s 5134 s
Fig. 4(b) 0.4s 104.0 s 109 s 1760.8 s
Fig. 4(c) 27.2s| 2002.6 s 82.0s 70234 s
Fig. 4(d) 228 s| 5073.1s| 3509.6 s| 35735.1s

(Al PRMs connect a configuration to its = 20 closest configurations.
Gaussian and Bridge-testRMs used = 0.1 in all environments. Bridge-
testPRM is not combined with uniformprMm.)

wheret, is the averaged running time overruns using a
given planner angh is the probability of successfully solving
the problem from these runs using the same planner. In all
experiments, we set = 100. One can viewE; as the time
spent before the planner can find a solution (which may requir
several runs).

We observe from our experimental results that M-sum
planner is the most efficient planner in all four environnsent
Fig. 4. (a) Bug trap environment. The robot (bug) is a traiwtal robot More precisely, in all four environments, M-sum planner@s 4

;n a {?D WO_rKZDact;e-tThfh vgi%tg gf Ttﬂe W%rfp?fﬁ is 23;(-5 (un(Isg-(A 3tD) 35, 3 and 150 times, respectively, faster than Gaussiaws,
ree-1lying rigia robot wi . e wi (6] € Workspase units
(c) A 8-DOF artiqulated robot. The wic_ith of the workspace & @lni_ts). the t_)eSt planner _among the thrEEMS_'

(d) A 10-DOF articulated robot. The width of the workspaced (units). It is clear that in the bug-trap environment M-sum planner

It also shows a roadmap with 3000 nodes generated by M-summeaide) js much more efficient than the all the otherwms because
Ahroadmap with 3000 nodes generated by Gaussri (with d = 0.1) IS \1_sm planner essentially becomes a deterministic motion
shown. . .

planner. In the U-shape robot environment (Fig. 4(b)), M-

TABLE | sum planner still outperformsrm planners because once a
COMPUTATION TIME TO GENERATE7T CONFIGURATIONS configuration that fits into the hole in the wall is generatdd,
Gaussian| Bridge test sum planner will use this particular configuration to getera
Environment n || M-sum | PRM PRM PRM a family of configurations (i.e.C-slice) around the hole and
Fig. 4(a) 50 || 0.04s| 0.02s 020s| 105.05s solves the problem.
Fig. 4(b) 200 [ 0.25s| 0.02s 0.74s 53.77 s Althouah t th ¢ £ M | d
Fig. 4(0) 1000 | 0.32s| 0.06s| 258s| 33613s ough we expect the periorms or M-sum pfanner an
Fig. 4(d) 2000 || 1454s| 030s| 2350s| 8176.41s PRMs become closer when tliespace has higher dimension-

ality (> 6), M-sum planner still outperformerM planners

in the cases with articulated robots (Figs. 4(c) and (d)jsTh

is because M-sum planner has abilityreuseconfigurations
planner is the most efficient among the planners that atteny¢luding the “good” configurations, e.g., configuratiohstt
to generate configurations near tBeobst. Figs. 4(d) and fit into the narrow passage. For example, in Fig. 4(c), thetob
(e) show two roadmaps generated by M-sum planner aggh fold into a triangle and fit into the hole, and in Fig. 4(d)
the GaussiamRrwM, respectively. It is clear that configurationghe robot can make itself flat and slide through the bottom
generated by M-sum planner are much denser around Htethe obstacle. M-sum planner picks up these promising
boundary while the configurations generated by Gaussi@n configurations and generates more configurations from them

are more scattered. A reason of the scatteredness is becgausslices). In PrRMs, good configurations are generated and
the GaussiamRM not only samples configurations near the ysed only once.

obst generated from the workspace obstacle but also samples
near theC-obst generated from self-collisions. Another reason VIIl. CONCLUSION
of the scatteredness is due to the Gaussian distance parametyye proposed a motion planner, called M-sum planner, that

d required by Gaussiarrm. Picking a good value of used takes advantages from the probabilistic and the detertitinis
by both Gaussian and Bridge teskwvs is usually tricky and gpproximate motion planners. We have shown that Minkowski
is problem dependent. sum is the key of this hybrid planner. Using the properties

M-sum planner solves all studied cases more efficiently of the Minkowski sum, we are able to generate configura-
than PRMms do. In Table I, we study thexpecteccomputation tions uniformly on the surface of thé-obst and make more
time to solve these four problems. The expected solutioe tisonnections between configurations thrwvs do using more
E; is measured as: powerful local planners. In our experimental results wewsho
that M-sum planner outperforneRwms in all studied problems,
even for problems with a 10 DOF robot.
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Finally, we would like to conclude this paper by pointing outi4]
the similarity between M-sum planner and the ideas sketched

in the ‘Future Research’ section in [10].

[
The bug trap environment is modified from the Motion

[15]
One way to [solve the full rigid motion planning
problem for polyhedron among polyhedra] is to
use a “slicing” method, where we build a coarse
gird (which fixes the rotational dofs of the robot)
we construct an explicit representation of the free
space (we call these representations complete cross- [17]
sections). We then userRM techniques to connect
between the complete cross-sections. How to ef-
fectively make these connections is a non-trivial
challenge. — Hirsch and Halperin [10].

(16]

(18]
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