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Abstract—Probabilistic and deterministic planners are two
major approximate-based frameworks for solving motion plan-
ning problems. Both approaches have their own advantages
and disadvantages. In this work, we provide an investigation
to the following question: Is there a planner that can take the
advantages from both probabilistic and deterministic planners?
Our strategy to achieve this goal is to use the point-based
Minkowski sum of the robot and the obstacles in workspace. Our
experimental results show that our new method, called M-sum
planner, which uses the geometric properties of Minkowski sum
to solve motion planning problems, provides advantages over the
existing probabilistic or deterministic planners. In particular, M-
sum planner is significantly more efficient than the Probabilistic
Roadmap Methods (PRMs) and its variants for problems that can
be solved by reusing configurations.

I. I NTRODUCTION

In motion planning, we study the problem of finding a
feasible path for a movable object to navigate in an envi-
ronment with obstacles. Researchers have shown that any
completemethod that solves a general motion planning prob-
lem exactly will take time exponential to the complexity of
the robot [1]. Approximate motion planners have since been
intensively studied; see surveys by LaValle [2]. One of the
most well known approximate planners is theprobabilistic
motion planners (e.g.,PRMs [3] and its variants [4], [5], [6]).
These planners are able to solve high dimensional problems
that were not solvable before.

The success of the probabilistic motion planners is largely
due to their simplicity and efficiency gained from sacrificing
the completeness. As a consequence, when such a planner
fails to find a solution, it cannot be certain whether a path
exists or not. One of the most common reasons causing
the failure of thePRM planners is the presence ofnarrow
passages(the so called ‘narrow passage problem’). Due to
these problems, some recent work focused on developing
deterministicapproximate motion planners [7], [8], [9] that use
more sophisticated geometric algorithms to approximate the
obstacles in configuration space. These methods are provably
less sensitive to narrow passages, thus providing stronger
confidence on the path nonexistence problem. However, as
far as we know, the motion planners in this category can only
handle problems in low (≤ 4) dimensions and are in general
more difficult to implement thanPRMs.

Even with active research on probabilistic and deterministic
motion planners, it is clear that the gap between these two
approaches is still huge. Therefore, in order to bridge the gap,
the question that we will investigate in this paper is:

• Is there a planner that can take the advantages from both
probabilistic and deterministic planners?

The same question has also been raised by Hirsch and
Halperin [10] although their focus is on a more specific
problem: two-disc motion planning. By combining a complete
planner for a single disc with aPRM strategy to coordinate
two discs, their hybrid motion planner efficiently solves prob-
lems with narrow passages. In this paper, we adapt a totally
different strategy and focus on more general problems. More
specifically, we are interested in developing a planner thatis
simple and easily extensible to high dimensional space (the
advantages from probabilistic planners) and remains efficient
even with the presence of the narrow passages (the advantages
from deterministic planners).

Our strategy in developing such a planner is to combine
PRMs with the point-basedMinkowski sum[11] of the robot
and the obstacles in the workspace. Minkowski sum boundary
is closely related to the concept of the “contact space” of
translational robots in motion planning. We will discuss in
detail regarding the definition of the Minkowski sum and its
relationship to the contact space in Section II. For the restof
this section, we will provide an overview of our planner.

Our Approach . We investigate a method, called M-sum
planner, that uses the Minkowski sum of the robot and the
obstacles to facilitate the process of creating a roadmap.
Similar to the probabilistic roadmap methods (PRMs) [3], [4],
[5], [6], the roadmap constructed by M-sum planner represents
the connectivity of the entire free space and can be used to
solve motion planning queries. Due to this similarity we will
focus on the process of building the roadmap only.

Intuitively, M-sum planner produces a set ofn “shapes”
of a robot by rotating or changing its joint angles. We
treat each shape as one translational robot and compute the
Minkowski sum of each shape and obstacles. The vertices
of the Minkowski sum are then connected to form a small
graph. There will ben such graphs constructed at the end of
the process. Finally, we will merge these graphs into a global
roadmap.

An important property of M-sum planner is that it is
significantly more efficient than the Probabilistic Roadmap
Methods (PRMs) and its variants for problems, e.g., Fig. 1,
that can be solved by reusing configurations.

II. RELATED WORK

In this section, we will discuss closely related work onPRMs
and Minkowski sum.



Fig. 1. A motion planning problem that can be solved more efficiently
by M-sum planner. The workspace is composed of five parallel walls with
horizontal and vertical windows. M-sum planner takes advantage of

A. Probabilistic Roadmap Methods

Probabilistic roadmap methods (PRMs) generally operate
as follows (see, e.g., [3]). During a preprocessing phase,
a set of configurations in the free space is generated by
sampling configurations at random and retaining those that
are valid. These nodes are then connected to create a roadmap
by inserting edges between nodes if they can be connected
by a simple and fast local planning method. This roadmap
is then queried by first connecting the given start and goal
configurations to the roadmap and then searching for a path
in the roadmap connecting them.

An important shortcoming ofPRMs is their poor perfor-
mance on problems requiring paths that pass through narrow
passages in the free space. This is a direct consequence of how
the nodes are sampled. For example, using the traditional uni-
form sampling [3], any corridor of sufficiently small volume
is unlikely to contain any sampled nodes whatsoever.

Effort has been made to modify the sampling strategy to
increase the number of nodes sampled in narrow corridors.
Intuitively, such narrow corridors may be characterized by
their large surface area to volume ratio. For example, in
[4], [12], nodes are sampled from thecontact space, the set
of configurations for which the robot is in contact with an
obstacle. In [5], the sampling strategy samples pairs of nearby
configurations that are separated by a Gaussian distanced. If
one configuration is free and the other is in collision, then the
free configuration is added to the roadmap. Otherwise, both
configurations are discarded. The Gaussian sampler generates
a higher density of nodes near C-obstacle boundaries. Follow-
ing a similar strategy, the bridge test approach [6] samplestwo
in-collision configurations separated by a Gaussian distanced

and keeps their midpoint if it is free. In [13], preliminary con-
figurations are generated by allowing the robot to penetratethe
obstacles by a small amount. The areas near these nodes are
then re-sampled to find nearby collision-free configurations.
Work has also been proposed to address the narrow passage
problem by analyzing theworkspaceproperties. However,
most of the work using this strategy [14], [15], [16] only
focused on properties of the obstacles. On the contrary, our
method considers both the robot and the obstacles.

B. Hybrid Motion Planners

Recently, several hybrid motion planners have been pro-
posed [17], [18], [19], [20]. All thesemeta-plannersfocus on
combining differentPRMs using machine learning or statistics

collected during sampling to discover when and where to apply
certain sampling strategies.

Few hybrid methods attempt to combine deterministic and
probabilistic planning strategies. Hirsch and Halperin’shybrid
planner [10] studied two-disc motion planning. Zhang et al.[9]
combines adaptive cell decomposition withPRMs but can only
handle problems up to 4 DOF. Another ‘hybrid’ planner that
connects ‘slices’ of configuration space into a global roadmap
has also been discussed in the book by de Berg et al. [21, pp.
283–287] and by Lamiraux and Kavraki [22]. Each slice is
computed by a complete planner for 2D translational robot
using cell decomposition. Two slices are connected if the
subdivisions from both slices overlaps. Unlike these methods
that are limited in specific problems or in low dimensional
space (≤ 4), our hybrid method can handle high dimensional
problems.

C. Minkowski Sum

The Minkowski sum of two setsP andQ in R
d is defined

as:
P ⊕ Q = {p + q | p ∈ P, q ∈ Q}. (1)

Typically, P and Q represent polygons inR2 or polyhedra
in R

3. Minkowski sum boundary is closely related to the
concept of “contact space.” Every point in the contact space
represents a configuration that places the robot in contact with
(but without colliding with) the obstacles. Given a translational
robotP and obstaclesQ, the contact space ofP andQ can be
represented as∂((−P ) ⊕ Q), where−P = {−p | p ∈ P}. In
other words, if a pointx is on the boundary of the Minkowski
sum of two polyhedraP andQ, then the following condition
must be true:

(−P ◦ + x) ∩ Q◦ = ∅ , (2)

whereQ◦ is the open set ofQ andP + x denotes translating
P to x.

Many methods have been proposed to compute Minkowski
sum (see surveys in [23], [24], [25]). Ghosh [23] proposed a
unified approach to handle 2-d or 3-d convex and non-convex
objects by introducing negative shape and slope diagram rep-
resentation. Slope diagram is closely related toGaussian map,
which has been used to implement very efficient Minkowski
sum computation of convex objects by Fogel and Halperin
[25]. Several other methods have been proposed to handle
convex objects. Guibas and Seidel [26] proposed an output
sensitive method to compute convolution curves, a super-set of
the Minkowski sum boundaries. Kaul and Rossignac [27] pro-
posed a linear time method to generate a set of Minkowski sum
facets. Output sensitive methods that compute the Minkowski
sum of polytopes ind-dimension have also been proposed by
Gritzmann and Sturmfels [28] and Fukuda [29].

Because computing the Minkowski sum of convex polyhe-
dra is easier, most methods that compute the Minkowski sum
of non-convex polyhedra first compute the convex decompo-
sition and then compute the union of the Minkowski sums of
the convex components [30], [24]. Unfortunately, neither the



convex decomposition nor the union of the Minkowski sums
is trivial.

Peternell et al. [31] proposed a method to compute the
Minkowski sum using points densely sampled from the solids,
and compute local quadratic approximations of these points.
However, their method only identifies the outer boundary of
the Minkowski sum, i.e., no hole boundaries. This can be
a serious problem in particular for motion planning. In this
paper, we use the point-based Minkowski sum proposed by
Lien [11] that does not have the undesirable issues above.

III. PRELIMINARY & OVERVIEW

In this section, we define notations that we will use through-
out this paper. We will also give a more detailed overview of
our method (M-sum planner) to end this section.

Separating translational and rotational motions. Given
a configurationC, we separate the configuration into two
components: Translational and rotational configurations.We
represent the configuration asC = {TC ×RC}, whereTC and
RC represents the translational and rotational components of
the configurationC, respectively. To ease our discussion, we
use the notationC(x) to denote the coordinate of a pointx

on the robot after the robot is placed at the configurationC.
Similarly, we denoteTC(x) (or RC(x)) as the coordinates of
a point x after the robot is translated (or rotated) byTC (or
RC). By separating motions, we can handle translational and
rotational motions differently. As we will see later, this sep-
aration provides many benefits in generating and connecting
configurations.
C-slice. Intuitively, a C-slice is a slice (subspace) of the

entire C-space. All configurations in aC-slice are generated
from a “seed” configurationS and the Minkowski sum of the
robot and the obstacles. That is a configurationC in a C-slice
must has the following form:C = {p × RS}, wherep is the
position of a point on the Minkowski sum surface andRS

is the rotational component ofS. Therefore, aC-slice resides
only in a translational-subspace of theC-space. An example
of C-slice is shown in Fig. 2.

Origins. A point x on the Minkowski sum surface is a
combination of two points, which are called the origin ofx.
To simplify our discussion later, we define an operationO(x)
to denote the origin ofx.

Definition 3.1: The origin O(x) of a point x on the
Minkowski sum surface is a pair of pointsp and q

from the robot and the obstacles, respectively, such that
x = p + q.

Note that later in Definition 4.2, we will encounter another
definition of origin for points on the surface of the robot or
the obstacles.

Overview of M-sum planner. Essentially, we iteratively
generaten C-slices fromn randomly selected seeds and then
we connectC-slices into a global roadmap. The main steps of
M-sum planner include: GenerateC-slices (see Section IV),
connect configurations in eachC-slice (see Section V-A), and
connect configurations amongC-slices (see Section V-B).
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Fig. 2. A set of configurations sampled from the boundary ofC-obst using the
Minkowski sum of the robot and the obstacles. FourC-slices are highlighted
in this figure.

IV. MINKOWSKI SUM ROADMAP
GENERATE CONFIGURATIONS

As mentioned earlier, we generate configurations by com-
puting the vertex coordinates of the Minkowski sum of the
obstacles and the robot whose rotation and joint angles are
sampled at random. That is we sample a random configuration
as our ‘seed.’ The translational information of the seed is
discarded (i.e., set to zeros). Then the seed configuration is
placed at the positions of the Minkowski sum vertices to
generatea family of configurations, which we call a ‘C-slice.’
Note that our method does not depend on any kind of sampling
strategy. For example, we can use a configuration generated
by an obstacle-basedPRM [4], [5], [6] as our seed.

Even though our strategy is straightforward, the difficulty
of computing the Minkowski sum and its boundary remains
unsolved. As we have seen in Section II, no existing methods
can provide a robust and efficient method to compute the
Minkowski sum boundary of polyhedra. Fortunately, using the
recent work proposed by Lien [11], we can efficiently compute
the Minkowski sum boundary if it is represented by points
only. In the following section, we will provide a sketch of
how to create such a point-based representation.

A. Generate points on the Minkowski sum boundary

Our goal is to produce a set of points thatcover the
boundary of the Minkowski sum of two given polyhedra,P

and Q. More specifically, we will generate a point setS so
thatS is ad-covering of the Minkowski sum boundary, where
d is a user-specified value. Intuitively,d controls the sampling



density of a boundary. A smallerd will produce a denser
approximation of the boundary.

Our approach is composed of three main steps. First, we
sample two point sets from the inputP and Q. Second, we
generate the Minkowski sum of the point sets simply using the
definition in Eqn. 1. Third, we separate the boundary points
(both hole and external boundaries) from the internal points.

Step 1: Sample points. Let P andQ be two polyhedra. We
generate two point sets fromP andQ, denoted asSP andSQ.
The point setS representing the Minkowski sum boundary of
P andQ is simply

(SP ⊕ SQ) ∩ ∂(P ⊕ Q) . (3)

Because we want the point setS to cover the entire Minkowski
sum boundary w.r.t. a user specified intervald, we have to
make sure that the pointsSP is a dp-covering of∂P and the
pointsSQ is a dq-covering of∂Q. It is our task to determine
the values ofdp anddq from the inputd.

As shown in Theorem 4.1, we can guarantee that the final
point set is at least ad-covering of the Minkowski sum
boundary of P and Q by simply letting dp = dq = d.
Moreover, since the boundaries ofP and Q are known, we
can easily generateSP and SQ that d-cover ∂P and ∂Q,
respectively.

Theorem 4.1:[11] Let SP and SQ be two d-covering
point sets sampled from two polyhedral surface∂P and
∂Q and letSP⊕Q = SP ⊕SQ andS = SP⊕Q∩∂(P⊕Q).
Then,S must be ad-covering point set of∂(P ⊕ Q).

Step 2: Compute the Minkowski sum. This step is
straightforward. UsingSP and SQ, we computeSP⊕Q by
simply following the Minkowski sum definition in Eqn. 1.

Step 3: Extract boundary points. In this final step, we
separate (filter) points to two groups: Boundary points and
inner points. Boundary points will be returned as our final
answer and inner points will be discarded.

The first filter, namednormal filter determines if a pair of
sample points (fromP and Q, resp.) is an inner point by
examining theirorigins (defined later in Definition 4.2) and
orientations. Kaul and Rossignac [27] have shown that a facet
of the Minkowski sum boundary can only come from a facet
of P and a vertex fromQ (or vice versa) or from a new
facet formed by two edges ofP and Q if the facet, vertex
and edges are properly oriented [27]. Our strategy is derived
directly from their observation. Since our points are sampled
from the polyhedral surface, we define theorigin of a sample
to ease our discussion.

Definition 4.2: The origin of a sample x, denoted as
O(x), is a facet, an edge or a vertex of a polyhedron
from which x is sampled.

Let p and q be a pair of points sampled fromP and Q,
respectively. We decide ifp + q is an inner point by checking
the orientation ofO(p) andO(q).

Consider the case whenO(p) is a vertex andO(q) is a
facet (or vice versa). We first define a supporting planeP at

the pointp + q parallel to facetO(q). Then, we translateP
by q so that vertexO(p) coincides with the pointp + q. The
point p+ q must be an inner point when the (open) half space
defined by the planeP intersects at least one edge incident to
the vertexO(p).

Now, consider the case whenO(p) andO(q) are both edges.
Similarly, we define a supporting planeP at pointp+q whose
outward normal is the cross product of two vectors parallel to
edgesO(p) andO(q). Then, we translateP by q and Q by
p so that edgesO(p) and O(q) coincide with the planeP.
The pointp + q must be an inner point when the facets that
incident to edgesO(p) andO(p) are on the different sides of
the planeP.

WhenO(p) andO(q) are both vertices or whenO(p) and
O(q) are a vertex-edge pair, we can break them into several
instances of the edge-edge and vertex-facet cases above.

This filter is efficient, but it alonecannot filter out all
inner points. The second filter, namedCD filter uses collision
detection to separate boundary points from inner points. CD
filter is computational more expensive but it provides an
unambiguous decision. An example of the Minkowski sum
generated by this point-based representation is shown in Fig. 3.

P Q P ⊕ Q

Fig. 3. This figure shows a 0.01-covering point set of the Minkowski sum
boundary of two hook-like models. Note that allP , Q and P ⊕ Q are
represented by densely sampled points.

V. MINKOWSKI SUM ROADMAP
CONNECT CONFIGURATIONS

Connecting configurations is usually the most expensive
step in building a roadmap. In the following, we will show
that, using some simple properties of the Minkowski sum,
not only we can connect configurations more efficiently but
also can increase the chance of connecting configurations. It
is important to note that the new local planners proposed
below are not applicable to samples generated by regular
PRMs. To ease our discussion, we separate our approaches into
connecting configurations within aC-slice and amongC-slices.

A. Connecting Configurations within AC-slice

Connecting configurations in aC-slice can be done more
efficiently than connecting configurations generated by random
sampling. The reason for this is that we can quickly eliminate
configurations that cannot be connected by simply examining
the connectivity of the geometries (mesh) of the robot and the
obstacles. We will make this claim more clearly next.



Let C1 and C2 be two configurations in the sameC-slice
i.e., C1 and C2 have the same rotation and joint angles.
Moreover, we can representCi aspi + qi wherepi is a point
from the robotP andqi is a point from the obstacleQ. Now,
we can only make a connection betweenC1 andC2 if C1 and
C2 satisfy one of the following requirements:

• q1 = q2 andp1p2 lies on a triangle ofP .
• p1 = p2 andq1q2 lies on a triangle ofQ.
• Origins of p1, p2, q1, q2 are edges andO(p1) = O(p2)

andO(q1) = O(q2).

These tests can be done in constant time. All we have
to do is to keep these information during the construction
of the Minkowski sum. IfC1 and C2 do not satisfy all the
requirements above, we will skip the pair. Otherwise, we will
use collision detection of check of they are indeed connectable.
The following theorem supports this approach.

Theorem 5.1:Only a pair of configurations that satisfy
one of the criteria above can form a connection.

Proof: The boundary of the Minkowski sum of two
polygons can only come the edges of the polygons. Therefore
if two vertices on the Minkowski sum boundary are connected,
then they must come from an edge of one of the polygons.

The boundary of the Minkowski sum of two polyhedra can
only come the facets of the polyhedra or from the sweep area
of two edges, one from each polyhedron, i.e., one edge from
the robot and one edge from the obstacle. In both cases, if
two vertices on the Minkowski sum boundary are connected,
then they must come from a facet of the polyhedra or from a
new facet that is generated by a pair of edges; each from one
of the polyhedra.

Note that if there are more than one obstacle in the
workspace, the method mentioned above will not connect
configurations that are generated from different obstacles. We
still need the traditional approaches (e.g., k-closest) toconnect
the configurations between obstacles.

B. Connecting Configurations AmongC-slices

Connecting configurations amongC-slices is similar to
connecting configurations among connected components of a
roadmap inPRMs. Similar to connecting individual configu-
rations, it is also more desirable to connect each connected
component (CC) to itsk-closest CCs (instead of to all CCs).
However, inPRMs, there is no well defined distance metrics
for CCs [32]. On the contrary, for M-sum planner, the distance
between twoC-slices can simply be measured as the difference
between their rotation and joint angles (of the seeds). There-
fore connecting configurations amongC-slices can be handled
more naturally for M-sum planner when we attempt to order
C-slices (or CCs) from near to far.

Moreover, following the same strategy of connecting config-
urations within aC-slice, we are allowed to use the properties
of Minkowski sum to increase the chance of connecting
configurations from twoC-slices. In the rest of this section,
we will proposed two local planners. The key characteristic

of these local planners is that they connect configurations by
‘walking’ on the C-obst boundary.

Connecting two configurations with the same origins.
Given two configurationsC1 andC2 that are generated from
differentC-slices and have the origins (see Definition 3.1) from
the same pointsp andq of the robot and the obstacle, respec-
tively, i.e,O(C1) = O(C2) = (p, q). Let C1 = S1(p) + q and
C2 = S2(p) + q, whereSi are the seed configurations of the
C-slice i.

When a straight-line local planner (or other simple local
planners [33]) fails to connectC1 and C2, we can attempt
to connect them as follows. First, we construct a new seed
configurationS3 = S1+S2

2
, which is the mid point the two

seed configurationsS1 and S2. Next, we useC3 to compute
a new Minkowski sum pointC3 = S3(p) + q. If C3 is on the
C-obst surface, i.e.,C3 is collision free, then we recursively
connectC1C3 and C3C2 in the same manner (because now
C1, C2 andC3 all have the same origin). In short, this local
planner connects two configurations between twoC-slices by
walking on the surface ofC-obst.

Connecting two configurations whose origins are con-
nected in workspace. Given two configurationsC1 and C2

that are generated from differentC-slices. AssumingC1 and
C2 share one of the point in their origins. Let the shared point
be a pointq of the obstacle. That isC1 = S1(p1) + q and
C2 = S2(p2)+q, wherep1 andp2 are two points on the robot
andSi is the seed configurations of theC-slice i. Everything
will be the same if the shared point is from the robot. Next, we
will see that we can increase the chance of connectingC1 and
C2 if p1 andp2 are from the same edge or the same triangle
of the robot.

We first compute the midpointp3 = p1+p2

2
. Then,

we can split C1C2 into three segments:C1(S1(p3) + q),
(S1(p3) + q)(S2(p3) + q), and(S2(p3) + q)C2. Observe that
the first and the last segments connect two configurations in
the sameC-slice, which is a problem that we have already
handled in Section V-A and the second segment connects two
configurationswith the same originin different C-slices. This
is exactly the problem that we have encountered earlier.

VI. PUTTING IT ALL TOGETHER

Algorithm VI.1 summarizes all the methods we have dis-
cussed so far. The output of Algorithm VI.1 is a roadmap.

In the rest of this section, we will discuss the advantages
and the limitations of the M-sum planner.

A. Advantages of M-sum planner

There are several important advantages of M-sum planner
over thePRM planners. First, M-sum planner can connect the
configurations more efficiently (see Sections V-A and V-B)
using more powerful local planners, which are not applicable
to the regularPRM samples. In addition, M-sum planner reuses
configurations, including the “good” configurations that fitinto
the narrow passages. This property allows M-sum planner
to solve problems more efficiently even in high dimensions.



Algorithm VI.1: M-SUM-ROADMAP(P,Q, n, k)

comment:P andQ are the robot and the obstacles, respectively

Initialize the roadmapR ← ∅
Initialize C-slicesS ← ∅
for i ← 1 to n

do







Sample a configurationCi and set its translation to 0
Si ←points on∂( − Ci(P ) ⊕ Q)
S ← S ∪ {Ci, Si}

R ← S

Sort S using the distance from a randomly pickedC-slice
for i ← 1 to n

do







R ← R ∪ (edges inSi)
for j ← (i − k

2
) to (i + k

2
)

do R ← R ∪ (edges betweenSi andSj)

In our experiments, we see that M-sum planner outperforms
PRMs regardless the dimensionality of the C-space.

Second, M-sum planner expresses different behaviors when
different inputs are given. For example, given problems with
the translational robot, M-sum planner automatically becomes
a deterministic planner. These are the problems that can be
solved significantly more efficiently by the deterministic plan-
ners than by the probabilistic planners, in particular whenthere
are narrow passages. M-sum planner becomes a probabilistic
planner for problems whose rotational motions dominate the
C-space.

Third, M-sum planner separates the translational and ro-
tational motions. Configurations are first generated and con-
nected using only translation. Then the configurations are
connected into the final roadmap using only rotation. This
strategy provides several advantages. For example, we can
use a deterministic manner to generate translational portion of
the configuration and use a probabilistic manner to generate
rotational portion of the configuration. We can also use a dis-
tance metric for translation and use another distance metric for
rotations and avoid the confusing of combining or weighting
different distance metrics [33].

Finally, M-sum planner can generate samples that cover the
surface of the C-space obstacles (C-obst). This can be done
by giving M-sum planner a smalld (smaller than the length
of the shortest edge in workspace). The consequences of this
is that the possibility of generating configurations in narrow
passages must be increased.

Theorem 6.1:Given a translational robot, the possibility
of generating configurations using M-sum planner in nar-
row passages must be larger than that using the traditional
PRM if the same number of configurations are generated.

Proof: Sketch. Because narrow corridors can be charac-
terized by their large surface area to volume ratio, M-sum
planner that generates samples that cover the surfaces ofC-
obst must has higher probability of generating samples inside

the corridors thanPRM does.
Although Theorem 6.1 is theoretically interesting since no

existing obstacle-basedPRMs can guarantee this, practically
speaking, a smalld makes computation more expensive.
Moreover, M-sum planner cannot guarantee to increase the
sampling inside the narrow passages surrounded byC-obst
that is the result of robot’s self-collision. This leads us to the
limitations of the M-sum planner.

B. Limitations of M-sum planner

We envision M-sum planner provide a new framework to
combine probabilistic and deterministic planners. Even though
it does not provide a total solution to our question, M-sum
planner provides a simple and efficient planner to solve a
certain type of common motion planning problems. In this
section, we discuss its limitations.

One of the limitations of M-sum planner is that the user need
to decide the value ofd. From the completeness perspective,
a smalld is desirable since it allows M-sum planner to tightly
cover theC-obst surfaces. From the efficiency perspective, a
larger d (e.g., larger than the length of the longest edge of
the robot and obstacles in the workspace) is desirable since
fewer configurations are generated. In the optimal situation,
only the vertices of the Minkowski sum boundary are included
in the samples. However, it is well known that the Minkowski
sum of the vertices of two polyhedra may not include all the
vertices of the Minkowski sum of the polyhedra. Because this
happens only in some rare cases (e.g., two grate-like shapes),
in our experiments, we simply use a larged. Further research
is required to determine the value ofd from a given problem.

Another limitation of M-sum planner is that it cannot
efficiently handle problems, such as the alpha puzzle or fixed-
base robot arms, which require simultaneous translations and
rotations or have no translational degrees of freedom. In these
problems, reusing configurations will not be helpful and M-
sum planner downgrades to aPRM planner.

VII. EXPERIMENTAL RESULTS

Implementing M-sum planner is straightforward. We devel-
oped software based on the proposed planner in C++. All
experimental results are collected on an Intel CPU at 2.13
GHz with 3 GB of RAM. The software is available from our
project webpage.

In this section, we compare M-sum planner to threePRM

variants:PRM [3], GaussianPRM [5], and Bridge-testPRM [6].
In our experiments, we use four workspaces shown in Fig. 4.
These problems have robots with 3, 6, 8, 10 degrees of
freedom, respectively. We study the efficiency of configuration
generation and the efficiency of solving these four motion
planning problems. The results are summarized in Tables I
and II.

M-sum planner generates configurations nearC-obst
more efficiently than PRMs do in all studied cases. In
Table I, we collect theconfiguration generation timesfrom
the planners. It is clear thatPRM is the most efficient method
since it does not deliberately place or filter samples. M-sum



(a) (b)

(c)

(d)

(e)

Fig. 4. (a) Bug trap environment. The robot (bug) is a translational robot
in a 3D workspace. The width of the workspace is 23.5 (units).(b) A 3D
free-flying rigid robot with 6 DOF. The width of the workspaceis 10 (units)
(c) A 8-DOF articulated robot. The width of the workspace is 30 (units).
(d) A 10-DOF articulated robot. The width of the workspace is40 (units).
It also shows a roadmap with 3000 nodes generated by M-sum planner (e)
A roadmap with 3000 nodes generated by GaussianPRM (with d = 0.1) is
shown.

TABLE I
COMPUTATION TIME TO GENERATEn CONFIGURATIONS

Gaussian Bridge test
Environment n M-sum PRM PRM PRM

Fig. 4(a) 50 0.04 s 0.02 s 0.20 s 105.05 s
Fig. 4(b) 200 0.25 s 0.02 s 0.74 s 53.77 s
Fig. 4(c) 1000 0.32 s 0.06 s 2.58 s 336.13 s
Fig. 4(d) 2000 14.54 s 0.30 s 23.50 s 8176.41 s

planner is the most efficient among the planners that attempt
to generate configurations near theC-obst. Figs. 4(d) and
(e) show two roadmaps generated by M-sum planner and
the GaussianPRM, respectively. It is clear that configurations
generated by M-sum planner are much denser around the
boundary while the configurations generated by GaussianPRM

are more scattered. A reason of the scatteredness is because
the GaussianPRM not only samples configurations near theC-
obst generated from the workspace obstacle but also samples
near theC-obst generated from self-collisions. Another reason
of the scatteredness is due to the Gaussian distance parameter
d required by GaussianPRM. Picking a good value ofd used
by both Gaussian and Bridge testPRMs is usually tricky and
is problem dependent.

M-sum planner solves all studied cases more efficiently
than PRMs do. In Table II, we study theexpectedcomputation
time to solve these four problems. The expected solution time
Et is measured as:

Et =
tx

p
,

TABLE II
EXPECTEDSOLUTION TIME (Et =

tx

p
)

Gaussian Bridge test
Environment M-sum PRM PRM PRM

Fig. 4(a) 0.3 s 21.9 s 14.9 s 513.4 s
Fig. 4(b) 0.4 s 104.0 s 10.9 s 1760.8 s
Fig. 4(c) 27.2 s 2002.6 s 82.0 s 7023.4 s
Fig. 4(d) 22.8 s 5073.1 s 3509.6 s 35735.1 s

(All PRMs connect a configuration to itsk = 20 closest configurations.
Gaussian and Bridge-testPRMs used = 0.1 in all environments. Bridge-
test PRM is not combined with uniformPRM.)

where tx is the averaged running time overx runs using a
given planner andp is the probability of successfully solving
the problem from thesex runs using the same planner. In all
experiments, we setx = 100. One can viewEt as the time
spent before the planner can find a solution (which may require
several runs).

We observe from our experimental results that M-sum
planner is the most efficient planner in all four environments.
More precisely, in all four environments, M-sum planner is 40,
35, 3 and 150 times, respectively, faster than GaussianPRMs,
the best planner among the threePRMs.

It is clear that in the bug-trap environment M-sum planner
is much more efficient than the all the otherPRMs because
M-sum planner essentially becomes a deterministic motion
planner. In the U-shape robot environment (Fig. 4(b)), M-
sum planner still outperformsPRM planners because once a
configuration that fits into the hole in the wall is generated,M-
sum planner will use this particular configuration to generate
a family of configurations (i.e.,C-slice) around the hole and
solves the problem.

Although we expect the performs of M-sum planner and
PRMs become closer when theC-space has higher dimension-
ality (> 6), M-sum planner still outperformsPRM planners
in the cases with articulated robots (Figs. 4(c) and (d)). This
is because M-sum planner has ability toreuseconfigurations
including the “good” configurations, e.g., configurations that
fit into the narrow passage. For example, in Fig. 4(c), the robot
can fold into a triangle and fit into the hole, and in Fig. 4(d)
the robot can make itself flat and slide through the bottom
of the obstacle. M-sum planner picks up these promising
configurations and generates more configurations from them
(C-slices). In PRMs, good configurations are generated and
used only once.

VIII. CONCLUSION

We proposed a motion planner, called M-sum planner, that
takes advantages from the probabilistic and the deterministic
approximate motion planners. We have shown that Minkowski
sum is the key of this hybrid planner. Using the properties
of the Minkowski sum, we are able to generate configura-
tions uniformly on the surface of theC-obst and make more
connections between configurations thanPRMs do using more
powerful local planners. In our experimental results we show
that M-sum planner outperformsPRMs in all studied problems,
even for problems with a 10 DOF robot.



Finally, we would like to conclude this paper by pointing out
the similarity between M-sum planner and the ideas sketched
in the ‘Future Research’ section in [10].

One way to [solve the full rigid motion planning
problem for polyhedron among polyhedra] is to
use a “slicing” method, where we build a coarse
gird (which fixes the rotational dofs of the robot)
we construct an explicit representation of the free
space (we call these representations complete cross-
sections). We then usePRM techniques to connect
between the complete cross-sections. How to ef-
fectively make these connections is a non-trivial
challenge. — Hirsch and Halperin [10].
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