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Abstract— of the planning space. Many heuristics have been added to the
Sampling based motion planning methods have been highly PRM framework [1], [6], [9], with the overall goal to increas
successful in solving many high degree of freedom motion yne gistribution of samples in regions of the space that hode

planning problems arising in diverse application domains such as | . . .
traditional robotics, computer-aided design, and computational highly constrained robot motions. As a result, there areyman

biology and chemistry. Recent work in metrics for sampling Planners to choose from and it is not always clear how to
based planners provide tools to analyze the model building choose among them.
process at three levels of detail: sample level, region level, and Dynamically adapting the planning strategy to features
global level. These tools are useful for comparing the evolution yiscovered in each problem [7], [10], [16], [18], [24] has
of sampling methods, and have shown promise to improve the b ful in add . th, h 't . ’f .
process altogether [15], [17], [24]. een successful in addressing the shortcomings of a plantlcu
Here, we introduce a filtering strategy for the Probabilistic Sampling strategy. However these methods need metrics that
Roadmap Methods (PRM) with the aim to improve roadmap gather relevant information about the planning processdeio
construction performance by selecting only the samples that are to make effective decisions to adapt the planning strategy.
likely to produce roadmap structure improvement. By measuring  another area of research focuses on creating minimal

a new sample’s maximum potential structural improvement . ) -
with respect to the current roadmap, we can choose to only roadmaps. VSPRM [19] is a strategy that achieves minimal

accept samples that have an adequate potential for improvement foadmaps by accepting only the necessary samples; samples
We show how this approach can improve the standard PRM are accepted only if they improve the structure of the roggima
framework in a variety of motion planning situations using and this criterion is tested in brute-force manner.
popular sampling techniques. In our previous work, we have developed online metrics
[15], [17] to monitor the sampling process to estimate the
performance of the model building process at three levels
The generalmotion planningproblem consists of finding of detail: at the sample level, how “good” and efficient are
a valid path for an object from a start configuration to &he samples created? At a small region level, how well are
goal configuration. In the traditional application of rolest the small locally-homogeneous regions in the large high-
a valid path is defined as a collision-free path. Many of thégimensional space being explored? At a global level, how
techniques originally designed for robotics have beenreldd well is the “global view” of the high-dimensional space kgin
to other applications such as the study of protein folding imodeled? Unfortunately, these questions cannot be directl
Biology and Chemistry [3], [5], [21]-[23], virtual protoping answered because there is not a perfect solution to compare
in manufacturing and mechanical design [4], [8], and thgith. These questions are answered indirectly by measuring
simulation of characters for animation and games [13], .[14khe relative performance change over small time intervais f
Unfortunately, exact or complete motion planners are ireach of the three levels of detail. The overall goal of thiskvo
tractable for most practical problems because the compléz-to use the online performance metrics in creating adaptiv
ity grows exponentially with the problem’s dimensionalitysampling algorithms to solve more complex problems.
[20]. This led researchers to explore sampling based method In this paper we develop a metric and filtering strategy to
and create incomplete approximate solutions. One popukstimate the potentialbadmap structural improvemenidf a
sampling-based method is the Probabilistic Roadmap Metheew sample. This estimate of improvement can be used with
(PRM) [11] which randomly builds aadmaprepresentation a threshold to bias the sampling process towards new samples
that have a higher potential for structural improvement. We
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I. INTRODUCTION



Structure ImprovemenSection IV describes the experimental In this work we are proposing a new filtering strategy based

analysis of this method, and compares the speed of convemy on the current roadmap and an estimate of the structural
gence and roadmap quality of the different strategies;i@ectimprovement. In this way filtering is done before expensive

V discusses our final conclusions. edge local planning.

Il. PRM FILTERING STRATEGIES IIl. ROADMAP STRUCTUREIMPROVEMENT

The basic PRM framework [11] builds a C-Spacadmap In our previous work, we monitored the evolution of the
model in two main steps: node generation and node cdPRM process and classify each new sample. These classifica-
nection. Node generation consists of randomly samplitigpns have been used to compare the quality of samples gen-
configurations, testing them, and keeping the valid ones aated by different sampling strategies. As a quick summary
roadmap vertices. For the valid samples kept in the roadmaach new sampl&X is classified as follows: (See [15], [17]

a neighborhood of potential edge candidate samples in floe more details.)
roadmap is gathered using some simple heuristic (e.g.desto

neighbors). Edges between the sample and its neighborhos
are tested with a local planner, and the valid transitiores ar
kept as roadmap edges. The resulting roadmap can be queri
as many times as needed.

To improve the performance of roadmap construction, man
filtering techniques have been proposed. The general aim {

this filtering is to reduce sampling and local planning in

areas that are easily mapped (oversampling) while biasieg t (8) no samples (b) visibility (c) cc-create

exploration to the difficult regions of C-Space. At the node
level, sometimes called node generation, filtering is dane t
bias sampling to difficult regions of the C-Spaceau®s-
PRM [6], BRIDGE-TEST [9], and OBPRM [1] are examples
of node-level filtering. Similarly, edge pairs can be filre
in different ways from k-closest or neighborhood-radius to
more advanced methods likeiSPRM [12]. Table | briefly (d) ce-merge (e) co-expand (0 cc-oversample
summarizes the PRM filtering techniques mentioned in this s ] )
K Fig. 1. Classification of new nodes when modeling the C-Spé&ee mint
work. robot moving in the plane shown in (a). (b) The first sample inrtfoelel with
TABLE | its visibility region. (c) A new sample lying outside the \agity region of
any other sample creates another component with its own Nigitggion. (d)
ROADMAP-BASED PLANNERS STUDIED A new sample lying in the overlap of the visibility region of dveomponents
allows to merge them. (e) A new sample lying inside the visipitégion of
Method | Node-level Filtering | Edge-level Filtering one component expanding its visibility: cc-expand. (f) A nsmmple lying
BASIC-PRM | only basic CD filter k-closest neighborhood inside the visibility region of one component without chamgits visibility:
[11] cc-oversample.
GAUSs-PRM | after CD check k-closest neighborhood
(6] : .
BRIDGE- after CD check k-closest neighborhood * CC'Cre?te — A new compopeI@C with X as its only
TEST[9] node is created as seen in Figure 1(c). The coverage
OBPRM [1] | only basic CD filter k-closest neighborhood of the roadmap increases by the coverageXfand

VISPRM [12] | after all edge checks all nodes not in current

connected component the connectivity and topology improve due to the new

STRUCTURAL | based on roadmap based on roadmap component.

IMPROVE- structure, before edge structure, before edge « cc-merge —X merges two or more existing components

i G checks checks in the roadmap as seen in Figure 1(d). The coverage, con-

nectivity, and topology improve due to the new pathways
found.

Most of the filtering strategies shown in table 1 filter based ¢ €c-expand —X expands an existing component in the
on information gathered during collision detection tegtsr roadmap as seen in Figure 1(e). The coverage and topol-
example, in Quss-PRM and BRIDGE-TEST many samples ogy improve due to the new pathways found.
may be discarded based on the local region of C-Spaces Cc-oversample —X fails to expand the coverage of a
explored during collision detection tests (whether in ofrer- component in the roadmap as seen in Figure 1(f). The

space, or deep inside obstacle-space); the only samples tha Coverage and connectivity remain constant.

remain are on the boundaries of C-Obstacles. IsRRM VISPRM [19] is an aggressive strategy to eliminate-
many samples (along with its fully computed edges) aexpandand cc-oversamplenodes. It bypasses the neighbor-
discarded if the sample and its edges fail to either merge thood information for a brute-force all-pairs method to sifs
connected components or to create a new one. the sample type. In this paper we will make comparisons to



this work as a case where ontg-createor cc-mergenodes B. Estimating Sample Potential Improvement

are accepted. Following the PRM framework of sample selectigh and
The remainder of this section discusses how we defip@ighborhood identificatiod N, ..., Ni. }, we use the existing

structural improvement, estimate the potential strudtime  rgadmap model to evaluate the potential structural improve

provement of a sample, and design acceptance polices for ghént of a samplex.

PRM framework. Figure 3 illustrates how the potential improvement of a new

sampleX is computed. First, the existing pairwise pathways

) ) ) ) between all neighbord Ny, ..., N} are evaluated. If it is
In this work we filter the sampling process and bias the safynd that some neighbors belong to different connected

ples towards areas that improve the structure of the roadeBmponentsQ‘C) thenX is a potentiatc-mergenode and its
We define strg.ctural improvement as. _ potential structural improvement is set to 100%. Each mgst
« The addition of pathways previously nonexisteot- graph pathway betweed; and N, must be evaluated, and

A. Defining Structural Improvement

merge o a Single Source Shortest Pa(8SSP) algorithm can be used
o Finding shorter pathways between existing nodegs obtain the pathway’; ;. The weight of this pathway can
somecc-expand then be compared to the new potential pathway throgh

P/, = Ni — X — Nj;. The potential improvement ok
is the maximum percentage improvement of gjl; over the
existing P; ;. Algorithm 1 details how the maximum potential
improvement is calculated.

Algorithm 1 Calculation of potentiastructural improvement

Input: The new sampleX, the existing roadmag, and the
sample’s neighborhoodVy, ..., Ny}

Output: maz_imp — Maximum potential improvement, as a
percentage

®) 1: .max_z'mp =0 .
Potential Improvement: 100% Potential Improvement:  100% 2: if {Nl’ 'j"Nk} are not in the samée'C’ of R then
Actual Improvement 100%  Actual Improvement: 0% s maxr-mp = 100%
4. RETURN
5. end if
6: for every N; in {Ny,..., Ny} do
7. Find SSSPR, N;, {Nii1, ..., Ni.})
8. for everyN; in {N;ii,..., Ny} do
o: P; ; = SSSP fromN; to N; throughR
10: Pi’yj = distance fromV; — X — N;
11: improvement = % improvement ofP/ ; over P,
12: max_imp = max(max_imp, improvement )
13:  end for
(d) 14: end for
Potential Improvement: 0% Potential Improvement: ~70%
Actual Improvement: 0%  Actual Improvement: ~70%

C. Sample Acceptance Policy
Fig. 2. Cases of Potential Structural Improvement vs. Actualicgural e’ ial i
Improvement. Solid edges represent existing roadmap patheagsed edges ~Based on a new sample’s potential improvement we can

represent potential neighbors of the new sample make informed decisions about the fate of the sample. By
creating sample improvement thresholds we can effectively
When the addition of a new sample and its correspondiffifer the samples and accept the samples that yield a desired
neighbor edges reduces the distance between any two neigbtential improvement.
bors there is structural improvement. For each new sampleAt one extreme, an improvement threshold of 0% will
we estimate its maximum potential to create such a structuegcept any sample which offers any amount of improvement.
improvement before the edge pairs are actually checked This does not accept all samples, because cases arise where
improve the quality of roadmap nodes and reduce costs. all pathways through the sample offer longer pathways than
Estimating the potential before edge pairs are tested darrently exist in the roadmap.
what differentiates this work from previous work [15], [17] On the other extreme, an improvement threshold of 100%
or VISPRM [12]. Previously, expensive local planners for thaill only accept samples which are potent@i-mergenodes.
edge pairs were needed to make reliable classifications orTiois aggressive threshold comes with quality considenatio
calculate the improvement of a new sample. discussed in Section IV-B.



o Therigid-hook problem, Fig. 4 (right), has a BoF rigid-
body hook robot that should pass through the narrow
openings in the two walls that divide the environment
into three chambers from one side to the other side of
the environment. This is a difficult problem that requires
simultaneous translational and rotational motions.

2) Node Generation Strategie$Ve study theNode Gener-
ation strategies described in Table II.

TABLE Il
ROADMAP-BASED PLANNERS STUDIED

. . . . Planner | Sampling Strategy
Fig. 3. lllustrates calculating the potentittuctural improvementf sample - - - - -
X. N1, N2, N3 are neighbors of(. P; ; represents existing roadmap paths [Bﬁ]S'C'PRM Uniform, keeping all valid configurations

betweenV; and N;. P/ . represents potential new pathways betw@grand _ _
N; through X . J OBPRM [1] Generate invalid samples and push them away to get

valid samples around obstacles
GAUSs-PRM | Uniform sampling, find valid samples within distance

[6] d from invalid samples. Valid samples have a Gaussian

It is important to note that delaying treample acceptance distribution around obstacles
; smitial i ; ; ; imitia] BRIDGE- Uniform sampling, find pairs of invalid samples sepa-
policy for an initial time period is necessary. During the initial TesT[9] rated a distance and keep valid samples between pairs.

phase of roadmap building the model is in a “Quick Learn=
ing” stage [15], [17]. Here, estimations and classificatiar
samples are not accurate due to the primitive knowledge in3) Neighborhood Selection and Local Planner Strategies:
the model. It is not until the majority of the planning spac&/e use simple heuristics for neighborhood selection andlloc
is covered (but not necessarily connected) that the samplanning. We implemented these strategies as described in
estimations and classifications become accurate. In thik w@24]: every new sample in the roadmap attempts to connect
the initial window is set to 20 samples; we plan to automate the 10-closest nodes already in the roadmap by using the
this in future work. straight-line and rotate-at-s local planners [2].
4) Sample Acceptance Policiesthroughout the experi-
IV. EXPERIMENTAL ANALYSIS ments in this paper, we will make comparisons between four
In this study we show the effect of botBtructural Im- sample acceptance polici€¢gable I11) in the PRM framework.
provement Filteringin PRM and MsPRM as two different

sample acceptance policigSur experimental setup, described TABLE Il

in detail below, shows the effect of aggressive policieg tha STYLES OF PRM STUDIED

accept few samples and how it leads to cheaper roadmagky; Style | Description

construction at the cost of roadmap quality. Pure[11] The original PRM strategy, this will be our standard or
. baseline comparison.

A. Experimental Setup Imp=50% This will accept any sample with at least 50% potential
; ; ; ; improvement.

1) MOI'O.n Plannlng Envwonme.ntSThrOUQ.hOUt this paper' Imp=100% This will accept any sample with 100% potential im-

we study instances of the motion planning problem with provement.

different valid and invalid densities, and with a mixture of VisPRM[12] | Visibility PRM is another style of PRM which aims to

open spaces and narrow passages. The instances discussed. ar create a minimal roadmap.

o The rigid-walls problem, Fig. 4 (left), has a 6oF
rigid-body box robot that should pass through the small 5) Methods of Comparison:We compare the different
openings (slightly larger than the robot) in the walls thadcceptance policies in two ways. In a table we average the
divide the environment into five chambers from one sidétatistics gathered over 20 random iterations of each set of
to the other side. Three of the chambers are clutter@drameters. Table 1V describes the statistics we gatherdd a
with small cube-shaped obstacles. This problem has a &eraged for comparison.
Space that is similar to its workspace, with four narrow We also show the effects of filtering on a single run by
passages and open and cluttered spaces in between. plotting the evolution of the diameter of the largest coniedc

« The rigid-maze problem, Fig. 4 (center), has am8F component. For these plots we fix the random seed across the
rigid-body robot that should pass through a series @ffferent parameter tests to ensure that the diffeaeeptance
tunnels with some dead-ends from the top to the bottomeliciesare working with the same stream of random samples.
This problem is interesting because its C-Space resembles ] .
the workspace with two clear free areas, the tunnefs Quality Compromises
form a long and narrow passage with dead ends, and theThe decision to discard samples with low potential for
obstacle occupies the majority of the planning space. improvement comes at the cost of reduced roadmap quality. To



(Walls) (Maze) (Hook)

Fig. 4. (Walls) 6-DOFcubic robot, four short passaged/dze solid view, 600F robot, and wire view; look) 6-DoFhook robot, two medium passages.

TABLE V
AVERAGE STATISTICS GATHERED WHILE SOLVING THEMazeENVIRONMENT

Sample Acceptance Policy
Sampler Measure | Pure | Tmp =50% [ Imp = 100% | VISPRM [12]
% Samples Accepted 100% t 2.92% 1.60% 0.28%
CD-Calls 1,224,784 96,522 57,642 1,010,809
Basic-PRM [11] Largest CC Dia 328.2 327.2 338.5 434.3
Time Struct Imp (sec) none 40.32 10.60 none
Total Time (sec) 1,207.3 154.9 38.1 239.9
% Samples Accepted 100% 54.79% 49.87% 19.30%+t
CD-Calls 873,011} 622,088 622,447 1,100,653
BRIDGE-TEST [9] Largest CC Dia 280.41 287.8 2457 509.2
Time Struct Imp (sec) nonej 0.19 0.18 none
Time (sec) 256.3 180.2 179.8 317.2
% Samples Accepted 100% § 12.50% 7.64% 1.66%t
CD-Calls 308,871} 93,168 82,232 328,388
GAUSS-PRM [6] Largest CC Dia 3217 3255 326.5 436.7
Time Struct Imp (sec) nonef 2.86 2.08 none
Time (sec) 99.11 46.5 40.1 103.9
% Samples Accepted 100% 1 82.9% 9.63% 4.41%7
CD-Calls 720,818j 619,470 456,050 957,076
OBPRM [1] Largest CC Dia 332.91 346.8 409.6 917.3
Time Struct Imp (sec) none 10.23 2.69 none
Time (sec) 219.67 2147 138.5 265.8
1 — represents implementations as defined in [1], [6], [9], [11B].

TABLE IV . .
sample acceptance policy selects every attempt; this serve
STATISTICS AVERAGED FOR COMPARISON . . .
as our quality baselind2ure PRM provides the best roadmap
Statistic | Description quality here because the filtering process inevitably ressov
% Samples| The ratio of samples accepted by the policy to the total nodes and edges that would have refined existing paths in the
Accepted generated. roadmap.
CD-Calls The total number of Collision Detections preformed.
Largest The diametf;]r of the largest C(f)nﬂected Comrﬁnent ;VhiCh Measuring the largest component’s diameter is not an exact
CC Dia represents the vast majority of the connectable roadmap. : i
The distance is measured in the number of resolution ticks.mea}sure of roaqup quallt.y, but can be used as an aPprOX'
Time The time spent calculating thestimated structural im- ~ mation [24]. The diameter is the longest shortest-path @ th
(Strugt Imp | provementdescribed in this paper. roadmap, and the quality we consider refers to how effigientl
sec ; :
Time (sec) | The total time spent in PRM: Sampling, Local Planning, the robot can move between the two extreme points in the

and Struct Imp. Additional time generating statistics (e.g. foadmap.
Largest CC Dia) is not included.
9 ) In Tables V, VI, and VII, we can evaluate the average

Largest CC Diameter. Here we see that the sample acceptance
policiesImp=50%andIimp=100%lead to roadmaps where the

compare the quality between the differes@mple acceptance diameter is only slightly larger than that &ure while Vis-
policies in PRM, we examine how the largest connecteBRM'’s more aggressive sample acceptance policy significant
component’s diameter evolves over the number of valideduces the roadmap quality compared with other policlés; t
samples evaluated (as shown in figure 5). Th@e PRM can be seen in the significantly larger component diameters.



AVERAGE STATISTICS GATHERED WHILE SOLVING THEHOOKENVIRONMENT

TABLE VI

Sample Acceptance Policy
Sampler Measure | Pure [ Tmp =50% [ Tmp = 100% [ VISPRM [12]
% Samples Accepted n/a* t n/a* 4.72% 0.47%
CD-Calls nfa* { n/a* 200,635 4,552,916
BAsIC-PRM [11] Largest CC Dia n/a* { n/a* 189.0 301.6
Time Struct Imp (sec) nonej n/a* 846.1 none
Total Time (sec) n/a* i n/a* 1,937.4 3334
% Samples Accepted 100% 1 81.8% 71.6% 11.5%+%
CD-Calls 2,438,478; 2,406,267 1,859,074 2,633,966
BRIDGE-TEST [9] Largest CC Dia 145.91 136.4 1455 2495
Time Struct Imp (sec) none 1.15 0.84 none
Time (sec) 343.07 341.7 269.3 346.5
% Samples Accepted 100% t 63.9% 43.6% 5.32%7
CD-Calls 341,562F 130,773 121,713 1,018,312
GAUSSs-PRM [6] Largest CC Dia 171.8¢ 182.4 181.1 364.4
Time Struct Imp (sec) noney 14.27 11.43 none
Time (sec) 31757 208.9 196.4 211.4
% Samples Accepted 100% f 99.1% 83.5% 17.6%7
CD-Calls 122,4667 109,750 107,483 330,648
OBPRM [1] Largest CC Dia 177.5 185.4 180.2 259.4
Time Struct Imp (sec) nonej 0.65 0.92 none
Time (sec) 9.66 1 9.39 9.21 20.95
1 — represents implementations as defined in [1], [6], [9], [11P].

n/a* — the planner was unable to consistently solve the erabl

TABLE VI
AVERAGE STATISTICS GATHERED WHILE SOLVING THENVallSENVIRONMENT

Sample Acceptance Policy
Sampler Measure | Pure | Tmp = 50% [ Tmp = 100% | VISPRM [12]
% Samples Accepted  100% 34.4% 7.76% 4.03%7
CD-Callls 813,877 83,573 48,669 599,239
Basic-PRM [11] Largest CC Dia 476.3 527.7 518.2 936.3
Time Struct Imp (sec) none 8.53 5.60 none
Total Time (sec) 207.6 27.59 12.97 40.587
% Samples Accepted  100%t 89.6% 44.4% 13.7%+t
CD-Calls 395,514 324,548 303,785 599,438
BRIDGE-TEST [9] Largest CC Dia 535.7 582.2 610.7 1,002.7
Time Struct Imp (sec) none 2.58 3.52 none
Time (sec) 33.19 29.74 27.39 42.23
% Samples Accepted  100% 88.5% 19.6% 10.8%7
CD-Calls 358,524 202,494 99,039 401,057
Gauss-PRM [6] Largest CC Dia 486.4 516.5 578.7 1,034.9
Time Struct Imp (sec) none 8.49 7.90 none
Time (sec) 51.12 44.56 21.01 28.27
% Samples Accepted  100% 95.2% 38.1% 11.4%+%
CD-Calls 399,078 181,127 111,142 572,487
OBPRM [1] Largest CC Dia 540.2 590.0 649.4 1,121.7
Time Struct Imp (sec) none 3.92 3.96 none
Time (sec) 69.83 25.05 14.79 40.07

T — represents implementations as defined in [1], [6], [9], [11R].

C. Speed of Improvement

To compare thespeed of improvemertietween different
sample acceptance policiega PRM, we examine how the

[17], [24]. Additionally, tables of average statistics lyated
when solving the queries are shown fdtazein Table V,
Hook in Table VI, andWallsin Table VII.

largest connected component’s diameter evolves over the nu All sample acceptance policies for a given planner provide
ber of Collision Detections (shown in Figure 6). Both a riseome level of improvement ovdPure the amount of im-
and a fall in the component’s diameter signify an improvetmemrovement depends on the type of planner. A combination of
a rise corresponds to an addition of connected C-Space, anubde-level filtering and thestructural improvemenfiltering

fall corresponds to improvements in shorter pathways. \We alcan also be advantageous. For Mazeenvironment, Bsic-
show when the point at which the query for the environmef®RM with Imp=100% preformed best with Guss-PRM

is solved, although this is a poor metric for comparisong,[15and Imp=100%at a close second. In thdook environment,
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Fig. 5. Maximum roadmap diameter over nhumber of attempts inMaeeenvironment with Bsic-PRM.

OBPRM with Imp=100% outperformed the other samplers In the future, we plan to explore adaptive ways to control
by a large margin. In théValls environment, Bsic-PRM the sample acceptance policin addition to filtering, we are
and OBPRM withimp=100% preformed well. exploring strategies to search the roadmap and locate afeas
All of the tests shown here show the power of intelligerpotential improvement to guide the sampling process. We als
sample acceptance policies. In most cases, an intelligptdn to estimate improvement of other criteria, such as path
policy combined with node-level filtering can lead to significlearance, when filtering samples and edges.
cant improvements. The trade-off in roadmap quality can be
significant for an aggressive acceptance policy. Fortiyate REFERENCES
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