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Abstract—
Sampling based motion planning methods have been highly

successful in solving many high degree of freedom motion
planning problems arising in diverse application domains such as
traditional robotics, computer-aided design, and computational
biology and chemistry. Recent work in metrics for sampling
based planners provide tools to analyze the model building
process at three levels of detail: sample level, region level, and
global level. These tools are useful for comparing the evolution
of sampling methods, and have shown promise to improve the
process altogether [15], [17], [24].

Here, we introduce a filtering strategy for the Probabilistic
Roadmap Methods (PRM) with the aim to improve roadmap
construction performance by selecting only the samples that are
likely to produce roadmap structure improvement. By measuring
a new sample’s maximum potential structural improvement
with respect to the current roadmap, we can choose to only
accept samples that have an adequate potential for improvement.
We show how this approach can improve the standard PRM
framework in a variety of motion planning situations using
popular sampling techniques.

I. I NTRODUCTION

The generalmotion planningproblem consists of finding
a valid path for an object from a start configuration to a
goal configuration. In the traditional application of robotics,
a valid path is defined as a collision-free path. Many of the
techniques originally designed for robotics have been extended
to other applications such as the study of protein folding in
Biology and Chemistry [3], [5], [21]–[23], virtual prototyping
in manufacturing and mechanical design [4], [8], and the
simulation of characters for animation and games [13], [14].

Unfortunately, exact or complete motion planners are in-
tractable for most practical problems because the complex-
ity grows exponentially with the problem’s dimensionality
[20]. This led researchers to explore sampling based methods
and create incomplete approximate solutions. One popular
sampling-based method is the Probabilistic Roadmap Method
(PRM) [11] which randomly builds aroadmaprepresentation
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of the planning space. Many heuristics have been added to the
PRM framework [1], [6], [9], with the overall goal to increase
the distribution of samples in regions of the space that model
highly constrained robot motions. As a result, there are many
planners to choose from and it is not always clear how to
choose among them.

Dynamically adapting the planning strategy to features
discovered in each problem [7], [10], [16], [18], [24] has
been successful in addressing the shortcomings of a particular
sampling strategy. However these methods need metrics that
gather relevant information about the planning process in order
to make effective decisions to adapt the planning strategy.

Another area of research focuses on creating minimal
roadmaps. VISPRM [19] is a strategy that achieves minimal
roadmaps by accepting only the necessary samples; samples
are accepted only if they improve the structure of the roadmap,
and this criterion is tested in brute-force manner.

In our previous work, we have developed online metrics
[15], [17] to monitor the sampling process to estimate the
performance of the model building process at three levels
of detail: at the sample level, how “good” and efficient are
the samples created? At a small region level, how well are
the small locally-homogeneous regions in the large high-
dimensional space being explored? At a global level, how
well is the “global view” of the high-dimensional space being
modeled? Unfortunately, these questions cannot be directly
answered because there is not a perfect solution to compare
with. These questions are answered indirectly by measuring
the relative performance change over small time intervals for
each of the three levels of detail. The overall goal of this work
is to use the online performance metrics in creating adaptive
sampling algorithms to solve more complex problems.

In this paper we develop a metric and filtering strategy to
estimate the potentialroadmap structural improvementof a
new sample. This estimate of improvement can be used with
a threshold to bias the sampling process towards new samples
that have a higher potential for structural improvement. We
show that this addition to the PRM framework can increase
the speed of roadmap convergence but may come at the price
of roadmap quality.

The remainder of this paper is organized as follows: Section
II introduces previous work in filtering strategies for PRM;
Section III covers how we define and calculateRoadmap



Structure Improvement; Section IV describes the experimental
analysis of this method, and compares the speed of conver-
gence and roadmap quality of the different strategies; Section
V discusses our final conclusions.

II. PRM FILTERING STRATEGIES

The basic PRM framework [11] builds a C-Spaceroadmap
model in two main steps: node generation and node con-
nection. Node generation consists of randomly sampling
configurations, testing them, and keeping the valid ones as
roadmap vertices. For the valid samples kept in the roadmap,
a neighborhood of potential edge candidate samples in the
roadmap is gathered using some simple heuristic (e.g. k-closest
neighbors). Edges between the sample and its neighborhood
are tested with a local planner, and the valid transitions are
kept as roadmap edges. The resulting roadmap can be queried
as many times as needed.

To improve the performance of roadmap construction, many
filtering techniques have been proposed. The general aim of
this filtering is to reduce sampling and local planning in
areas that are easily mapped (oversampling) while biasing the
exploration to the difficult regions of C-Space. At the node
level, sometimes called node generation, filtering is done to
bias sampling to difficult regions of the C-Space; GAUSS-
PRM [6], BRIDGE-TEST [9], and OBPRM [1] are examples
of node-level filtering. Similarly, edge pairs can be filtered
in different ways from k-closest or neighborhood-radius to
more advanced methods like VISPRM [12]. Table I briefly
summarizes the PRM filtering techniques mentioned in this
work.

TABLE I

ROADMAP-BASED PLANNERS STUDIED

Method Node-level Filtering Edge-level Filtering

BASIC-PRM
[11]

only basic CD filter k-closest neighborhood

GAUSS-PRM
[6]

after CD check k-closest neighborhood

BRIDGE-
TEST [9]

after CD check k-closest neighborhood

OBPRM [1] only basic CD filter k-closest neighborhood
V ISPRM [12] after all edge checks all nodes not in current

connected component
STRUCTURAL

IMPROVE-
MENT

FILTERING

based on roadmap
structure, before edge
checks

based on roadmap
structure, before edge
checks

Most of the filtering strategies shown in table I filter based
on information gathered during collision detection tests.For
example, in GAUSS-PRM and BRIDGE-TEST many samples
may be discarded based on the local region of C-Space
explored during collision detection tests (whether in openfree-
space, or deep inside obstacle-space); the only samples that
remain are on the boundaries of C-Obstacles. In VISPRM
many samples (along with its fully computed edges) are
discarded if the sample and its edges fail to either merge two
connected components or to create a new one.

In this work we are proposing a new filtering strategy based
only on the current roadmap and an estimate of the structural
improvement. In this way filtering is done before expensive
edge local planning.

III. ROADMAP STRUCTURE IMPROVEMENT

In our previous work, we monitored the evolution of the
PRM process and classify each new sample. These classifica-
tions have been used to compare the quality of samples gen-
erated by different sampling strategies. As a quick summary,
each new sampleX is classified as follows: (See [15], [17]
for more details.)

(a) no samples (b) visibility

new

(c) cc-create

new

(d) cc-merge

new

(e) cc-expand

new

(f) cc-oversample

Fig. 1. Classification of new nodes when modeling the C-Space of a point
robot moving in the plane shown in (a). (b) The first sample in themodel with
its visibility region. (c) A new sample lying outside the visibility region of
any other sample creates another component with its own visibility region. (d)
A new sample lying in the overlap of the visibility region of two components
allows to merge them. (e) A new sample lying inside the visibility region of
one component expanding its visibility: cc-expand. (f) A newsample lying
inside the visibility region of one component without changing its visibility:
cc-oversample.

• cc-create — A new componentCC with X as its only
node is created as seen in Figure 1(c). The coverage
of the roadmap increases by the coverage ofX and
the connectivity and topology improve due to the new
component.

• cc-merge —X merges two or more existing components
in the roadmap as seen in Figure 1(d). The coverage, con-
nectivity, and topology improve due to the new pathways
found.

• cc-expand —X expands an existing component in the
roadmap as seen in Figure 1(e). The coverage and topol-
ogy improve due to the new pathways found.

• cc-oversample —X fails to expand the coverage of a
component in the roadmap as seen in Figure 1(f). The
coverage and connectivity remain constant.

V ISPRM [19] is an aggressive strategy to eliminatecc-
expandand cc-oversamplenodes. It bypasses the neighbor-
hood information for a brute-force all-pairs method to classify
the sample type. In this paper we will make comparisons to



this work as a case where onlycc-createor cc-mergenodes
are accepted.

The remainder of this section discusses how we define
structural improvement, estimate the potential structural im-
provement of a sample, and design acceptance polices for the
PRM framework.

A. Defining Structural Improvement

In this work we filter the sampling process and bias the sam-
ples towards areas that improve the structure of the roadmap.
We define structural improvement as:

• The addition of pathways previously nonexistent:cc-
merge

• Finding shorter pathways between existing nodes:
somecc-expand

(a)

Potential Improvement: 100%

Actual Improvement 100%

(b)

Potential Improvement: 100%

Actual Improvement: 0%

(d)

Potential Improvement: 0%

Actual Improvement: 0%

(e)

Potential Improvement:∼70%

Actual Improvement: ∼70%

Fig. 2. Cases of Potential Structural Improvement vs. Actual Structural
Improvement. Solid edges represent existing roadmap pathways, dashed edges
represent potential neighbors of the new samplev.

When the addition of a new sample and its corresponding
neighbor edges reduces the distance between any two neigh-
bors there is structural improvement. For each new sample
we estimate its maximum potential to create such a structural
improvement before the edge pairs are actually checked to
improve the quality of roadmap nodes and reduce costs.

Estimating the potential before edge pairs are tested is
what differentiates this work from previous work [15], [17]
or VISPRM [12]. Previously, expensive local planners for the
edge pairs were needed to make reliable classifications or to
calculate the improvement of a new sample.

B. Estimating Sample Potential Improvement

Following the PRM framework of sample selectionX and
neighborhood identification{N1, ..., Nk}, we use the existing
roadmap model to evaluate the potential structural improve-
ment of a sampleX.

Figure 3 illustrates how the potential improvement of a new
sampleX is computed. First, the existing pairwise pathways
between all neighbors{N1, ..., Nk} are evaluated. If it is
found that some neighbors belong to different connected
components (CC), thenX is a potentialcc-mergenode and its
potential structural improvement is set to 100%. Each existing
graph pathway betweenNi and Nj must be evaluated, and
a Single Source Shortest Path(SSSP) algorithm can be used
to obtain the pathwayPi,j . The weight of this pathway can
then be compared to the new potential pathway throughX:
P ′

i,j = Ni → X → Nj . The potential improvement ofX
is the maximum percentage improvement of allP ′

i,j over the
existingPi,j . Algorithm 1 details how the maximum potential
improvement is calculated.

Algorithm 1 Calculation of potentialstructural improvement
Input: The new sampleX, the existing roadmapR, and the

sample’s neighborhood{N1, ..., Nk}
Output: max imp – Maximum potential improvement, as a

percentage
1: max imp = 0

2: if {N1, ..., Nk} are not in the sameCC of R then
3: max imp = 100%

4: RETURN
5: end if
6: for everyNi in {N1, ..., Nk} do
7: Find SSSP(R, Ni, {Ni+1, ..., Nk})
8: for everyNj in {Ni+1, ..., Nk} do
9: Pi,j = SSSP fromNi to Nj throughR

10: P ′

i,j = distance fromNi → X → Nj

11: improvement = % improvement ofP ′

i,j over Pi,j

12: max imp = max( max imp, improvement )
13: end for
14: end for

C. Sample Acceptance Policy

Based on a new sample’s potential improvement we can
make informed decisions about the fate of the sample. By
creating sample improvement thresholds we can effectively
filter the samples and accept the samples that yield a desired
potential improvement.

At one extreme, an improvement threshold of 0% will
accept any sample which offers any amount of improvement.
This does not accept all samples, because cases arise where
all pathways through the sample offer longer pathways than
currently exist in the roadmap.

On the other extreme, an improvement threshold of 100%
will only accept samples which are potentialcc-mergenodes.
This aggressive threshold comes with quality considerations
discussed in Section IV-B.



Fig. 3. Illustrates calculating the potentialstructural improvementof sample
X. N1, N2, N3 are neighbors ofX. Pi,j represents existing roadmap paths
betweenNi andNj . P

′

i,j represents potential new pathways betweenNi and
Nj throughX.

It is important to note that delaying thesample acceptance
policy for an initial time period is necessary. During the initial
phase of roadmap building the model is in a “Quick Learn-
ing” stage [15], [17]. Here, estimations and classifications of
samples are not accurate due to the primitive knowledge in
the model. It is not until the majority of the planning space
is covered (but not necessarily connected) that the sample
estimations and classifications become accurate. In this work
the initial window is set to 20 samples; we plan to automate
this in future work.

IV. EXPERIMENTAL ANALYSIS

In this study we show the effect of bothStructural Im-
provement Filteringin PRM and VISPRM as two different
sample acceptance policies. Our experimental setup, described
in detail below, shows the effect of aggressive policies that
accept few samples and how it leads to cheaper roadmap
construction at the cost of roadmap quality.

A. Experimental Setup

1) Motion Planning Environments:Throughout this paper
we study instances of the motion planning problem with
different valid and invalid densities, and with a mixture of
open spaces and narrow passages. The instances discussed are:

• The rigid-walls problem, Fig. 4 (left), has a 6-DOF

rigid-body box robot that should pass through the small
openings (slightly larger than the robot) in the walls that
divide the environment into five chambers from one side
to the other side. Three of the chambers are cluttered
with small cube-shaped obstacles. This problem has a C-
Space that is similar to its workspace, with four narrow
passages and open and cluttered spaces in between.

• The rigid-maze problem, Fig. 4 (center), has a 6-DOF

rigid-body robot that should pass through a series of
tunnels with some dead-ends from the top to the bottom.
This problem is interesting because its C-Space resembles
the workspace with two clear free areas, the tunnels
form a long and narrow passage with dead ends, and the
obstacle occupies the majority of the planning space.

• Therigid-hookproblem, Fig. 4 (right), has a 6-DOF rigid-
body hook robot that should pass through the narrow
openings in the two walls that divide the environment
into three chambers from one side to the other side of
the environment. This is a difficult problem that requires
simultaneous translational and rotational motions.

2) Node Generation Strategies:We study theNode Gener-
ation strategies described in Table II.

TABLE II

ROADMAP-BASED PLANNERS STUDIED

Planner Sampling Strategy
BASIC-PRM
[11]

Uniform, keeping all valid configurations

OBPRM [1] Generate invalid samples and push them away to get
valid samples around obstacles

GAUSS-PRM
[6]

Uniform sampling, find valid samples within distance
d from invalid samples. Valid samples have a Gaussian
distribution around obstacles

BRIDGE-
TEST [9]

Uniform sampling, find pairs of invalid samples sepa-
rated a distanced and keep valid samples between pairs.

3) Neighborhood Selection and Local Planner Strategies:
We use simple heuristics for neighborhood selection and local
planning. We implemented these strategies as described in
[24]: every new sample in the roadmap attempts to connect
to the 10-closest nodes already in the roadmap by using the
straight-line and rotate-at-s local planners [2].

4) Sample Acceptance Policies:Throughout the experi-
ments in this paper, we will make comparisons between four
sample acceptance policies(Table III) in the PRM framework.

TABLE III

STYLES OF PRM STUDIED

PRM Style Description
Pure [11] The original PRM strategy, this will be our standard or

baseline comparison.
Imp=50% This will accept any sample with at least 50% potential

improvement.
Imp=100% This will accept any sample with 100% potential im-

provement.
V ISPRM [12] Visibility PRM is another style of PRM which aims to

create a minimal roadmap.

5) Methods of Comparison:We compare the different
acceptance policies in two ways. In a table we average the
statistics gathered over 20 random iterations of each set of
parameters. Table IV describes the statistics we gathered and
averaged for comparison.

We also show the effects of filtering on a single run by
plotting the evolution of the diameter of the largest connected
component. For these plots we fix the random seed across the
different parameter tests to ensure that the differentacceptance
policiesare working with the same stream of random samples.

B. Quality Compromises

The decision to discard samples with low potential for
improvement comes at the cost of reduced roadmap quality. To



(Walls) (Maze) (Hook)

Fig. 4. (Walls) 6-DOFcubic robot, four short passages; (Maze) solid view, 6-DOF robot, and wire view; (Hook) 6-DOFhook robot, two medium passages.

TABLE V

AVERAGE STATISTICS GATHERED WHILE SOLVING THEMazeENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% V ISPRM [12]

BASIC-PRM [11]

% Samples Accepted 100%† 2.92% 1.60% 0.28%†
CD-Calls 1,224,784† 96,522 57,642 1,010,809†

Largest CC Dia 328.2† 327.2 338.5 434.3†
Time Struct Imp (sec) none† 40.32 10.60 none†

Total Time (sec) 1,207.3† 154.9 38.1 239.9†

BRIDGE-TEST [9]

% Samples Accepted 100%† 54.79% 49.87% 19.30%†
CD-Calls 873,011† 622,088 622,447 1,100,653

Largest CC Dia 280.4† 287.8 245.7 509.2
Time Struct Imp (sec) none† 0.19 0.18 none

Time (sec) 256.3† 180.2 179.8 317.2

GAUSS-PRM [6]

% Samples Accepted 100%† 12.50% 7.64% 1.66%†
CD-Calls 308,871† 93,168 82,232 328,388

Largest CC Dia 321.7† 325.5 326.5 436.7
Time Struct Imp (sec) none† 2.86 2.08 none

Time (sec) 99.1 † 46.5 40.1 103.9

OBPRM [1]

% Samples Accepted 100%† 82.9% 9.63% 4.41%†
CD-Calls 720,818† 619,470 456,050 957,076

Largest CC Dia 332.9† 346.8 409.6 917.3
Time Struct Imp (sec) none† 10.23 2.69 none

Time (sec) 219.6† 214.7 138.5 265.8
† — represents implementations as defined in [1], [6], [9], [11],[12].

TABLE IV

STATISTICS AVERAGED FOR COMPARISON

Statistic Description
% Samples
Accepted

The ratio of samples accepted by the policy to the total
generated.

CD-Calls The total number of Collision Detections preformed.
Largest
CC Dia

The diameter of the largest connected component which
represents the vast majority of the connectable roadmap.
The distance is measured in the number of resolution ticks.

Time
Struct Imp
(sec)

The time spent calculating theestimated structural im-
provementdescribed in this paper.

Time (sec) The total time spent in PRM: Sampling, Local Planning,
and Struct Imp. Additional time generating statistics (e.g.
Largest CC Dia) is not included.

compare the quality between the differentsample acceptance
policies in PRM, we examine how the largest connected
component’s diameter evolves over the number of valid-
samples evaluated (as shown in figure 5). ThePure PRM

sample acceptance policy selects every attempt; this serves
as our quality baseline.Pure PRM provides the best roadmap
quality here because the filtering process inevitably removes
nodes and edges that would have refined existing paths in the
roadmap.

Measuring the largest component’s diameter is not an exact
measure of roadmap quality, but can be used as an approxi-
mation [24]. The diameter is the longest shortest-path in the
roadmap, and the quality we consider refers to how efficiently
the robot can move between the two extreme points in the
roadmap.

In Tables V, VI, and VII, we can evaluate the average
Largest CC Diameter. Here we see that the sample acceptance
policiesImp=50%andImp=100%lead to roadmaps where the
diameter is only slightly larger than that ofPure, while VIS-
PRM’s more aggressive sample acceptance policy significantly
reduces the roadmap quality compared with other policies; this
can be seen in the significantly larger component diameters.



TABLE VI

AVERAGE STATISTICS GATHERED WHILE SOLVING THEHookENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% V ISPRM [12]

BASIC-PRM [11]

% Samples Accepted n/a* † n/a* 4.72% 0.47%†
CD-Calls n/a* † n/a* 200,635 4,552,916†

Largest CC Dia n/a* † n/a* 189.0 301.6†
Time Struct Imp (sec) none† n/a* 846.1 none†

Total Time (sec) n/a* † n/a* 1,937.4 333.4†

BRIDGE-TEST [9]

% Samples Accepted 100%† 81.8% 71.6% 11.5%†
CD-Calls 2,438,478† 2,406,267 1,859,074 2,633,966

Largest CC Dia 145.9† 136.4 145.5 249.5
Time Struct Imp (sec) none† 1.15 0.84 none

Time (sec) 343.0† 341.7 269.3 346.5

GAUSS-PRM [6]

% Samples Accepted 100%† 63.9% 43.6% 5.32%†
CD-Calls 341,562† 130,773 121,713 1,018,312

Largest CC Dia 171.8† 182.4 181.1 364.4
Time Struct Imp (sec) none† 14.27 11.43 none

Time (sec) 317.5† 208.9 196.4 211.4

OBPRM [1]

% Samples Accepted 100%† 99.1% 83.5% 17.6%†
CD-Calls 122,466† 109,750 107,483 330,648

Largest CC Dia 177.5† 185.4 180.2 259.4
Time Struct Imp (sec) none† 0.65 0.92 none

Time (sec) 9.66 † 9.39 9.21 20.95
† — represents implementations as defined in [1], [6], [9], [11],[12].
n/a* — the planner was unable to consistently solve the problem.

TABLE VII

AVERAGE STATISTICS GATHERED WHILE SOLVING THEWallsENVIRONMENT

Sample Acceptance Policy
Sampler Measure Pure Imp = 50% Imp = 100% V ISPRM [12]

BASIC-PRM [11]

% Samples Accepted 100%† 34.4% 7.76% 4.03%†
CD-Calls 813,877† 83,573 48,669 599,239†

Largest CC Dia 476.3† 527.7 518.2 936.3†
Time Struct Imp (sec) none† 8.53 5.60 none†

Total Time (sec) 207.6† 27.59 12.97 40.58†

BRIDGE-TEST [9]

% Samples Accepted 100%† 89.6% 44.4% 13.7%†
CD-Calls 395,514† 324,548 303,785 599,438

Largest CC Dia 535.7† 582.2 610.7 1,002.7
Time Struct Imp (sec) none† 2.58 3.52 none

Time (sec) 33.19† 29.74 27.39 42.23

GAUSS-PRM [6]

% Samples Accepted 100%† 88.5% 19.6% 10.8%†
CD-Calls 358,524† 202,494 99,039 401,057

Largest CC Dia 486.4† 516.5 578.7 1,034.9
Time Struct Imp (sec) none† 8.49 7.90 none

Time (sec) 51.12† 44.56 21.01 28.27

OBPRM [1]

% Samples Accepted 100%† 95.2% 38.1% 11.4%†
CD-Calls 399,078† 181,127 111,142 572,487

Largest CC Dia 540.2† 590.0 649.4 1,121.7
Time Struct Imp (sec) none† 3.92 3.96 none

Time (sec) 69.83† 25.05 14.79 40.07
† — represents implementations as defined in [1], [6], [9], [11],[12].

C. Speed of Improvement

To compare thespeed of improvementbetween different
sample acceptance policiesin PRM, we examine how the
largest connected component’s diameter evolves over the num-
ber of Collision Detections (shown in Figure 6). Both a rise
and a fall in the component’s diameter signify an improvement:
a rise corresponds to an addition of connected C-Space, and a
fall corresponds to improvements in shorter pathways. We also
show when the point at which the query for the environment
is solved, although this is a poor metric for comparisons [15],

[17], [24]. Additionally, tables of average statistics gathered
when solving the queries are shown for:Maze in Table V,
Hook in Table VI, andWalls in Table VII.

All sample acceptance policies for a given planner provide
some level of improvement overPure; the amount of im-
provement depends on the type of planner. A combination of
node-level filtering and thenstructural improvementfiltering
can also be advantageous. For theMazeenvironment, BASIC-
PRM with Imp=100% preformed best with GAUSS-PRM
and Imp=100% at a close second. In theHook environment,



Fig. 5. Maximum roadmap diameter over number of attempts in theMazeenvironment with BASIC-PRM.

OBPRM with Imp=100% outperformed the other samplers
by a large margin. In theWalls environment, BASIC-PRM
and OBPRM withImp=100%preformed well.

All of the tests shown here show the power of intelligent
sample acceptance policies. In most cases, an intelligent
policy combined with node-level filtering can lead to signifi-
cant improvements. The trade-off in roadmap quality can be
significant for an aggressive acceptance policy. Fortunately
Structural Improvement Filteringallows the policy to be tuned.

V. CONCLUSIONS

In this paper we introduced an addition to the PRM
framework that effectively filters samples and edges thereby
increasing the percentage of samples which improve the
roadmap structure. We have created a metric that can estimate
the maximum potential roadmap structural improvement for
each new sample and we have used this metric to improve
PRM roadmap construction.

We have shown how varying thesample acceptance policy
can affect both the speed of roadmap improvement and the
overall quality of the roadmap. In particular, we have shown
that, for all samplers tested, good samples are effectively
identified without a drastic sacrifice in roadmap quality. The
largest benefit was observed when using uniform samples
produced by BASIC-PRM, making it very competitive with
the other strategies.

In the future, we plan to explore adaptive ways to control
the sample acceptance policy. In addition to filtering, we are
exploring strategies to search the roadmap and locate areasof
potential improvement to guide the sampling process. We also
plan to estimate improvement of other criteria, such as path
clearance, when filtering samples and edges.
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