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Abstract— Robot manipulators generally rely on complete
knowledge of object geometry in order to plan motions and
compute successful grasps. However, manipulating real-world
objects poses a substantial modelling challenge. New instances
of known object classes may vary from learned models. Objects
that are not perfectly rigid may appear in new configurations
that do not match any of the known geometries.

In this paper we describe an algorithm for learning generative
probabilistic models of object geometry for the purposes of
manipulation; these models capture both non-rigid deformations
of known objects and variability of objects within a known class.
Given a single image of partially occluded objects, the model can
be used to recognize objects based on the visible portion of each
object contour, and then estimate the complete geometry of the
object to allow grasp planning.

We provide two main contributions: a probabilistic model of
shape geometry and a graphical model for performing correspon-
dence between shape descriptions. We show examples of learned
models from image data and demonstrate how the learned models
can be used by a manipulation planner to grasp objects in
cluttered visual scenes.

I. I NTRODUCTION

Robot manipulators largely rely on complete knowledge of
object geometry in order to plan their motion and compute
successful grasps. If an object is fully in view, the object
geometry can be inferred from sensor data and a grasp
computed directly. If the object is occluded by other entities in
the scene, manipulations based on the visible part of the object
may fail; to compensate, object recognition is often used to
identify the location of the object and compute the grasp from
a prior model. However, new instances of a known class of
objects may vary from the prior model, and known objects may
appear in novel configurations if they are not perfectly rigid.
As a result, manipulation can pose a substantial modelling
challenge when objects are not fully in view.

Consider the camera image1 of four toys in a box in
figure 1(a). Having a prior model of the objects is extremely
useful in that visible segments (such as the three visible parts
of the stuffed bear) can be aggregated into a single object,
and a grasp can be planned appropriately as in figure 1(b).
However, having a prior model of the geometry of every
object in the world is not only infeasible but unnecessary.
Although an object such as the stuffed bear may change shape
as it is handled and placed in different configurations, the

1Note that for the purposes of reproduction, the images have been cropped
and modified from the original in brightness and contrast. They are otherwise
unchanged.

(a) Original Image (b) Recovered Geometries

Figure 1. (a) A collection of toys in a box. The toys partially occludeeach
other, making object identification and grasp planning difficult. (b) By using
learned models of the bear, we can identify the bear from the three visible
segments and predict its complete geometry (shown by the red line; the dashed
lines are the predicted outline of the hidden shape). This prediction of the
complete shape can then be used in planning a grasp of the bear (planned
grasp points shown by the blue circles).

general shape in terms of a head, limbs, etc. are roughly
constant. Regardless of configuration, a single robust model
which accounts for deformations in shape should be sufficient
for recognition and grasp planning for most object types.

In this paper we describe an algorithm for learning a
probabilistic model of visual object geometry. Although sta-
tistical models of shape geometry have received attention in
a number of domains including computer vision [9, 7] and
robotics, existing techniques have largely been coupled totasks
such as shape localization [7], recognition and retrieval [18,
1]. Many effective recognition and retrieval algorithms are
discriminative in nature and create representations of theshape
that make it difficult to perform additional inference such as
recovering hidden object geometry. Our primary contribution
is an algorithm for learning generative models of object shapes
as dense 2-D contours, as we are specifically interested in
object geometry for manipulation planning. We use a model
of object shape, known asProcrustean shape[6, 13], that
provides model invariance to translation, scale and rotation;
we generalize this technique to learn object models that are
robust to object variation and deformations.

One of the challenges in inferring dense models of shape
is that in order to compute the likelihood of a particular
shape given a model, we musta priori know which points
in the measured shape correspond to which points in the
model. Thus, our second contribution is to provide a graphical
model for computing correspondences between shapes as a
pre-processing step to the model learning. We conclude with
experimental demonstrations of object detection in cluttered



Algorithm 1 The Manipulation Process.
Require: An image of a scene, and learned models of objects

1: Segment the image into object components
2: Extract contours of components
3: Determine maximum-likelihood correspondence between

observed contours and known models
4: Infer complete geometry of each object from matched

contours
5: Return planned grasp strategy based on inferred geome-

tries

scenes, geometry prediction and grasp planning.

II. T HE MANIPULATION PROCESS

Our goal is to manipulate an object in a cluttered scene–
for example to grasp the bear in figure 1(a). Our proposed
manipulation process is given in algorithm 1. The input to
the algorithm is a single image which is first segmented into
perceptually similar regions. (Although image segmentation is
a challenging research problem, it is outside the scope of this
paper and we rely on existing segmentation algorithms such as
[23].) The boundaries or contours of the image segments are
extracted, and it is these representations of object geometry
that we use throughout this paper.

We first describe how to learn a generative probabilistic
model of a class of objects, given a set of object contours of
the same class. Using the learned models of class geometry,
we next describe how different instances of an object class
can be recognized and localized in a single image of partially
occluded objects. We use the generative model to infer the
hidden parts of each object in order to complete the model of
each object. Finally, we describe how the inferred complete
geometry can be used to compute a grasp.

III. PROBABILISTIC MODELS OF2-D SHAPE

Formally, we represent an objectZ in an image as a set of
n ordered points on the contour of the shape,{z1, z2, . . . zn},
in a two-dimensional Euclidean space, so thatzi = (xi, yi)).
Our goal is to learn a probabilistic, generative model ofZ.
We begin by making the contour invariant with respect to
position and scale, normalizingZ so as to have unit length
with centroid at the origin, that is,

Z′ = {z′i = (xi − x̄, yi − ȳ)} (1)

τ =
Z′

|Z′|
, (2)

whereτ is the pre-shapeof the contourZ. Sinceτ is a unit
vector, the space of all possible pre-shapes ofn points is the
unit hyper-sphere,S2n−3

∗
, called pre-shape space. Since we

can rotate any pre-shape through a great circle orbitO(τ)
of maximal length of the hypersphere without changing the
geometry ofz, we define the “shape” ofZ as an equivalence
class of pre-shapes over rotations.

If we can define a distance metric between shapes, then we
can infer a parametric distribution over the shape space. The
spherical geometry of the pre-shape space requires a geodesic
distance rather than Euclidean distance. The distance between

(a) Example Object (b) Class Distribution

Figure 2. (a) An example image of a chalk compass. The compass
can deform by opening and closing. (b) Sample shapes from the learned
distribution along different eigenvalues of the distribution.

τ1 and τ2 is defined as the smallest distance between their
orbits,

dp[τ1, τ2] = inf[d(ϕ,ψ) : ϕ ∈ O(τ1), ψ ∈ O(τ2)] (3)

d(ϕ,ψ) = cos−1(ϕ · ψ). (4)

Kendall [13] defineddp as the Procrustean metricwhere
d(ϕ,ψ) is the geodesic distance betweenϕ and ψ. We can
solve for the minimization of equation (3) in closed form by
representing the points ofτ1 and τ2 in complex coordinates,
which naturally encode rotation in the plane by scalar complex
multiplication. This givesdp as

dp[τ1, τ2] = cos−1 |τH
2 τ1| (5)

whereτH
2 is the Hermetian, or complex conjugate transpose

of the complex vectorτ2.

A. Learning Shape Models

In order to complete our probabilistic model of object
geometry, we compute a distribution for each object class from
training images. We choose a Gaussian approximation to the
distribution over shapes, which only requires us to compute
the mean and covariance of the training data. This Gaussian
lies in the tangent space to the hypersphere at the mean shape
vector. For each object classi, we compute a mean shapeµi,
from a set of pre-shapes{τ1, . . . , τn} by minimizing the sum
of Procrustean distances from each pre-shape to the mean,

µi = arginf
µ

∑

j

[dp(τj , µ)]2, (6)

subject to the constraint that‖µi‖ = 1. In two dimensions, this
minimization can be done in closed form; iterative algorithms
exist for computingµi in higher dimensions [2, 10].

In order to estimate the covariance of the shape distribution
from the sample pre-shapes{τ1, . . . , τn}, we rotate eachτj to
fit the mean shapeµi (i.e. to minimize Procrustean distance),
and then project the rotated pre-shapes into the tangent space
of the pre-shape hypersphere at the mean shape. We then
use Principle Components Analysis (PCA) in tangent space to
model the principle axes of the Gaussian shape distributionof
{τ1, . . . , τn}. Figure 2(a) shows one example out of a training
set of images of a deformable object. Figure 2(b) shows sample
objects drawn from the learned distribution. The red contour
is the mean, and the green and blue samples are taken along
the first two principal components of the distribution.



Figure 3. Order-preserving matching (left) vs. Non-order-preserving match-
ing (right). The thin black lines depict the correspondences between points in
the red and blue contour. Notice the violation of the cyclic-ordering constraint
between the right arms of the two contours in the right image.

B. Shape Classification

Given k previously learned shape classesC1, . . . , Ck with
shape meansµ1, . . . , µk and covariance matricesΣ1, . . . ,Σk,
and given a measurementm of an unknown object shape,
we can now compute the likelihood of a shape class given
a measured object:{P (Ci|m) : i = 1 . . . k}. The shape
classification problem is to find the maximum likelihood class,
Ĉ, which we can compute as

Ĉ = arg max
Ci

P (Ci|m) (7)

= arg max
Ci

P (m|Ci)P (Ci). (8)

Given the mean and covariance of a shape class, we can
compute the likelihood of a measured object given a class
as p(m|Ci) = N (m;µi,Σi). Assuming a uniform prior on
Ci, we can compute the maximum likelihood class as

Ĉ = argmax
Ci

N (m;µi,Σi). (9)

IV. DATA ASSOCIATION AND SHAPE CORRESPONDENCES

Evaluating the likelihood given by equation 9 requires
calculating the Procrustes distancedp between the observed
contourm and the meanµi. The distance between any two
contoursτ1 and τ2 implicitly assumes that there is a known
correspondence between a pointxi in τ1 and some pointyj

in τ2. (There is also an assumption that the lengths ofτ1
andτ2 are the same.) Before we can compute the probability
of a contour, or even learn the mean and covariance of a
set of pre-shapes, we must therefore be able to compute the
correspondences between contours, matching each point inτ1
to a corresponding point onτ2.

Solving for the most likely correspondences between sets
of data is an open problem in a number of fields, including
computer vision and robot mapping. As object geometries
vary due to projection distortions, sensor error, or even natural
object dynamics, determiningwhich part of an object image
corresponds towhich part of a previous image is non-trivial.

Furthermore, by the nature of object contours, our spe-
cific shape correspondence problem contains acyclic order-
preservingconstraint, that is, correspondences between the
two contours cannot “cross” each other. Scott and Nowak [22]
define the Cyclic Order-Preserving Assignment Problem (CO-
PAP) as the problem of finding an optimal one-to-one match-
ing such that the assignment of corresponding points preserves

the cyclic ordering inherited from the contours. Figure 3
shows an example set of correspondences (the thin black
lines) that preserve the cyclic order-preserving constraint on
the left, whereas the correspondences on the right of figure 3
violate the constraint at the right of the shape (notice that
the association lines cross.) In the following sections, we
show how the original COPAP algorithm can be written as
a linear graphical model with the introduction of additional
book-keeping variables.

Our goal is to match the points of one contour,x1, . . . ,xn

to the points on another,y1, . . . ,ym. Let Φ denote a corre-
spondence vector, whereφi is the index ofy to which xi

corresponds; that is:xi → yφi
. We wish to find the most

likely Φ given x andy, that is,Φ∗ = argmaxΦ p(Φ|x,y). If
we assume that the likelihood of individual points{xi} and
{yj} are conditionally independent givenΦ, then

Φ∗ = argmax
Φ

1

Z
p(x,y|Φ)p(Φ) (10)

= argmax
Φ

1

Z

n
∏

i=1

p(xi, yφi
)p(Φ) (11)

whereZ is a normalizing constant.

A. Priors over Correspondences

There are two main terms to equation (10), the prior over
correspondences,p(Φ), and the likelihood of object points
given the correspondences,p(xi,yφi

). We model the prior
over correspondences,p(Φ), as an exponential distribution
subject to the cyclic-ordering constraint. We encode this
constraint in the prior by allowingp(Φ) > 0 if and only if

∃ω s.t. φω < φω+1 < · · · < φn < φ1 < · · · < φω−1. (12)

We call ω the wrapping pointof the assignment vectorΦ.
Each assignment vector,Φ, which obeys the cyclic-ordering
constraint must have a unique wrapping point,ω.

Due to variations in object geometry, the model must
allow for the possibility that some sequence of points of
{xi, . . . ,xj} do not correspond to any points iny, for ex-
ample, if sensor noise has introduced spurious points along
an object edge or if the shapes vary in some significant way,
such as an animal contour with three legs where another has
four. We “skip” individual correspondences inx by allowing
φi = 0. (Pointsyj are skipped when∄i s.t. φi = j). We would
like to minimize the number of such skipped assignments, so
we give diminishing likelihood toφ as the number of skipped
points increases. Therefore, forΦ with k skipped assignments
(in x andy),

p(Φ) =

{

1

ZΦ

exp{−k(Φ) · λ} if Φ is cyclic ordered

0 otherwise,
(13)

where ZΦ is a normalizing constant andλ is a likelihood
penalty for skipped assignments.

B. Correspondence Likelihoods

Given an expression for the correspondence prior, we also
need an expression for the likelihood that two pointsxi and
yφi

correspond to each other,p(xi,yφi
), which we model as



the likelihood that the local geometry of the contours match.
Section III described a probabilistic model for global geomet-
ric similarity using the Procrustes metric, and we specialize
this model to computing the likelihood of local geometries,
which we call theProcrustean Local Shape Distance(PLSD).

We first need a description of the local shape aboutxi.
In order to be robust to the local spacing ofx’s points, we
sample points evenly spaced aboutxi. We define thelocal
neighborhoodof sizek aboutxi as:

ηk(xi) = 〈δi
x(−2k∆), ..., δi

x(0), ..., δi
x(2k∆)〉 (14)

whereδi
x(d) returns the point fromx’s contour interpolated a

distance ofd starting fromxi and continuing clockwise ford
positive or counter-clockwise ford negative. (Also,δi

x(0) =
xi.) The parameter∆ determines the step-size between in-
terpolated neighborhood points, and thus the resolution of
the local neighborhood shape. We have found that setting∆
such that the largest neighborhood is20% of the total shape
circumference yields good results on most datasets.

The Procrustean Local Shape Distance,dPLS , between two
points,xi andyj is the mean Procrustean shape distance over
neighborhood sizesk:

dPLS(xi, yj) =

∫

k

ξk · dP [ηk(xi), ηk(yj)] (15)

with neighborhood size priorξ. No closed form exists for this
integral so we approximate it using a sum over a discrete set
of neighborhood sizes.

C. A Graphical Model for Shape Correspondences

Although we assume independence between local features
xi andyj , the cyclic-ordering constraint leads to dependencies
between the assignment variablesφi in a non-trivial way—in
fact, the sub-graph ofΦ is fully connected since eachφi must
know the values of all the other assignments,φj , in order to
determine whether the matching is order-preserving or not.
Computing the maximum likelihoodΦ is therefore a non-
trivial loopy graphical inference problem.

We can avoid this problem and break most of these de-
pendencies by introducing variablesαi and ω, where αi

corresponds to the last non-zero assignment beforeφi and
ω corresponds to the wrapping point from section IV-A.
With these additional variables, eachφi depends only on the
wrapping point, which is stored inω as well as the last non-
zero assignment,αi; the cyclic ordering-constraint is thus
encoded bypco(φi), such that

pco(φi) =



















1

Zco

: if φi > αi or

φi < αi andωi = i or
φi = 0

0 : otherwise,

(16)

which gives (17)

p(Φ) =
1

ZΦ

(exp{−k(Φ) · λ)
∏

i

pco(φi). (18)

If we initially assign the wrapping pointω, the state vector
{αi, φi} then yields a cyclic Markov chain. The standard ap-
proach to solving this cyclic Markov chain is to try setting the

wrapping point,ω, to each possible value from1 to n. Given
ω = k, the cycle is broken into a linear chain (according to
equation 12), which can be solved by dynamic programming.
It is this introduction of theαi andω variables that is the key
to the efficient inference procedure by converting the loopy
graphical model into a linear chain.

In this approach, the point-assignment likelihoods are con-
verted into a cost functionC(i, φi) by taking a log likelihood,
andφ is optimized using

Φ∗ = argmax
Φ

log
∏

i

p(xi,yφi
)p(Φ)

∏

i

pco(φi) (19)

= argmin
Φ

(

∑

i

C(i, φi)

)

+ λ · k(φ) (20)

s.t. ∀φi pco(φi) > 0

wherek(Φ) is the number of points skipped in the assignment
Φ. Solving for Φ using equation (20) takesO(n2m) running
time; however a bisection strategy exists in the dynamic
programming search graph which reduces the complexity to
O(nm log n) [22].

V. SHAPE COMPLETION

We now turn to the problem of estimating the complete
geometry of an object from an observation of part of its
contour. We phrase this as a maximum likelihood estimation
problem, estimating the missing points of a shape with respect
to the Gaussian tangent space shape distribution.

Let us represent a shape as:

z = [z1 z2]
T (21)

wherez1 = m contains thep points of our partial observation
of the shape, andz2 contains then − p unknown points that
complete the shape. Given a shape distributionD on n points
with meanµ and covariance matrixΣ, and givenz1 containing
p measurements (p < n) of our shape, our task is to compute
the lastn − p points which maximize the joint likelihood,
P

D
(z). (We implicitly assume that correspondences from the

partial shapez to the modelD are known–we later show how
to compute partial shape correspondences in order to relax this
assumption.)

In order for us to transform our completed vector,z =
(z1, z2)

T , into a pre-shape, we must first normalize translation
and scale. However, this cannot be done without knowing
the lastn− p points. Furthermore, the Procrustes minimizing
rotation fromz’s pre-shape toµ depends on the missing points,
so any projection into the tangent space (and corresponding
likelihood) will depend in a highly non-linear way on the
location of the missing points. We can, however, compute the
missing pointsz2 given an orientation and scale. This leads to
an iterative algorithm that holds the orientation and scalefixed,
computesz2 and then computes a new orientation and scale
given the newz2. The translation term can then be computed
from the completed contourz.

We derivez2 given a fixed orientationθ and scaleα in the
following manner. For a complete contourz, we normalize for
orientation and scale using

z′ =
1

α
Rθz (22)



Figure 4. An example of occluded objects, where the bear occludes the
compass. (a) The original image and (b) the image segmented into (unknown)
objects. The contour of each segment must be matched against a known model.

whereRθ is the rotation matrix ofθ. To centerz′, we then
subtract off the centroid:

w = z′ −
1

n
Cz′ (23)

where C is the2n× 2n checkerboard matrix,

C =













1 0 · · · 1 0
0 1 · · · 0 1
...

...
.. .

...
...

1 0 · · · 1 0
0 1 · · · 0 1













. (24)

Thusw is the centered pre-shape. Now letM be the matrix
that projects into the tangent space defined by the Gaussian
distribution (µ,Σ):

M = I − µµT (25)

The Mahalanobis distance with respect toD from Mw to the
origin in the tangent space is:

d
Σ

= (Mw)T Σ−1Mw (26)

Minimizing d
Σ

is equivalent to maximizingP
D

(·), so we
continue by setting

∂d
Σ

∂z2

equal to zero, and letting

W1 = M1(I1 −
1

n
C1)

1

α
R1

θ (27)

W2 = M2(I2 −
1

n
C2)

1

α
R2

θ (28)

where the subscripts “1” and “2” indicate the left and right
sub-matrices ofM , I, andC that match the dimensions ofz1

and z2. This yields the following system of linear equations
which can be solved for the missing data,z2:

(W1z1 +W2z2)
T Σ−1W2 = 0 (29)

As described above, equation (29) holds for a specific
orientation and scale. We can then use the estimate ofz2

to re-optimize θ and α and iterate. Alternatively, we can
simply sample a number of candidate orientations and scales,
complete the shape of each sample, and take the completion
with highest likelihood (lowestd

Σ
).

To design such a sampling algorithm, we must choose a
distribution from which to sample orientations and scales.One
idea is to match the partial shape,z1, to the partial mean shape,
µ1, by computing the pre-shapes ofz1 andµ1 and finding the
Procrustes fitting rotation,θ∗, from the pre-shape ofz1 onto
the pre-shape ofµ1. This angle can then be used as a mean for
a von Mises distribution (the circular analog of a Gaussian)

from which to sample orientations. Similarly, we can sample
scales from a Gaussian with meanα0–the ratio of scales of
the partial shapesz1 andµ1 as in

α0 =
‖z1 −

1

p
C1z1‖

‖µ1 −
1

p
C1µ1‖

. (30)

Any sampling method for shape completion will have a
scale bias–completed shapes with smaller scales project to
a point closer to the origin in tangent space, and thus have
higher likelihood. One way to fix this problem is to solve for
z2 by performing a constrained optimization ondΣ where the
scale of the centered, completed shape vector is constrained
to have unit length:

‖x′ −
1

n
Cx′‖ = 1. (31)

This constrained optimization problem can be attacked
with the method of Lagrange multipliers, and reduces to the
problem of finding the zeros of a(n−p)th order polynomial in
one variable, for which numerical techniques are well-known.

(a) Partial contour to be completed (b) Completed as compass

(c) Completed as stuffed animal (d) Completed as jump rope

Figure 5. Shape completion of the partial contour of the compass in figure 4.
Note that the correct completion (b) captures the knob in the top of the
compass. The hypothesized completions in (c) and (d) lead to very unlikely
shapes.

A. Partial Shape Class Likelihood

Let z = {z1, z2} be the completed shape, wherez1 is
the partial shape corresponding to measurementm, and z2

is unknown. The probability of the class given the observed
part of the contourz1 is then

P (Ci|z1) =
P (Ci, z1)

P (z1)
∝

∫

P (Ci, z1, z2)dz2 (32)

Rather than marginalize over the hidden data,z2, we can
approximate this marginal with an estimateẑ2, the output of
our shape completion algorithm, yielding:

P (Ci|z1) ≈ η · P (z1, ẑ2|Ci) (33)

whereη is a normalizing constant (and can be ignored during
classification), andP (z1, ẑ2|Ci) is the complete shape class
likelihood of the completed shape.



B. Partial Shape Correspondences

In order to calculate the maximum likelihood shape comple-
tion ẑ2 with respect to a shape modelD, we must know which
points inD the observed pointsz1 correspond to. In practice,
z1 may contain multiple disconnected contour segments which
must be associated with hidden contour segments to form a
complete contour–take for example, the two compass handles
in figure 5. Before the hidden contours can be inferred between
the handles, observable contours must be ordered. We can
constrain the connection ordering by noting that the interiors
of all the observed object segments must remain on the interior
of any completed shape. For most real-world cases, this topo-
logical constraint is enough to identify a unique connection
ordering; in cases where the ordering of components is still
ambiguous, a search process through the orderings can be used
to identify the most likely correspondences.

Given a specific ordering of observed contour segments, we
can adapt our graphical model from section IV to compute
the correspondence between an ordered set of partial contour
segments and a model mean shape,µ. First, we add a set of
hidden, or “wildcard” points connecting the partial contour
segments. This forms a complete contour,zc, where some of
the points are hidden and some are observed. We then run a
modified COPAP algorithm, where the only modification is
that all “wildcard” points onzc may be assigned to any of
µ’s points with no cost. (We must still pay a penalty ofλ for
skipping hidden points, however.)

In order to identify how large the hidden contour is (and
therefore, how many hidden points should be added to connect
the observed contour segments), we use the insight that objects
of the same type generally have a similar scale. We can
therefore use the ratio of the observed object segment areas
to the expected full shape area to (inversely) determine the
ratio of hidden points to observed points. If no size priors are
available, one may also perform multiple completions with
varying hidden points ratios, and select the best completion
using a generic prior such as the minimum description length
(MDL) criterion.

Using this partial shape correspondence algorithm, we em-
ploy an iterative procedure to complete the hidden parts of an
object contour–(1) compute the partial shape correspondences,
(2) complete the shape given the partial correspondences, (3)
compute thefull shape correspondences from the completed
shape to the model, (4) re-complete the shape using the new
correspondences, and repeat (3) and (4) until convergence.

VI. GRASPPLANNING

Recall from Section II that our manipulation strategy is a
pipelined process–first, we estimate the complete geometric
structure of the scene; then, we plan a grasp. But before we can
get into the details about how an individual object is grasped,
we must first decidewhich object to grasp. The problem
domains which we are primarily interested in–such as the
“box-of-toys” world of Figure 1–are domains in which there is
a single “desired” object or object type; for example, a teddy
bear. Thus, our ultimate goal is to retrieve a specific objector
class of object from the scene. Sometimes, the desired object
will be at the top of the pile, fully in view. In this case, after

analyzing the image and recognizing the object, we will be
able to plan a grasp to retrieve the object, irrespective of the
placement of other objects in the scene. However, if the desired
object is occluded, before attempting to pick it up, we must
determine the probability that the sensed object is actually the
desired object, and the probability that a planned grasp on the
accessible part of the object will be successful. If either of
these probabilities are below a pre-determined threshold,we
first remove one or more occluding objects and then re-analyze
the scene before planning a grasp of the desired object. We
implement the first test as a threshold on the class likelihood of
the sensed object,p(Ci|m) > 0.7; the second test is a function
of our strategy for grasping a single object, described below.

A. Grasping a Single Object

We have developed a grasp planning system for our mobile
manipulator (shown in figure 6), a two-link arm on a mobile
base with an in-house-designed gripper with two opposable
fingers. Each finger is a structure capable of edge and surface
contact with the object to be grasped.

Figure 6. Our mobile manipulator with a two link arm and gripper.

The input to the grasp planning system is the object ge-
ometry with the partial contours completed as described in
Section V. The output of the system is two regions, one for
each finger of the gripper, that can provide an equilibrium
grasp for the object following the algorithms for stable grasp-
ing described in [19]. Intuitively, the fingers are placed on
opposing edges so that the forces exerted by the fingers can
cancel each other out. Friction is modeled as Coulomb friction
with empirically estimated parameters.

The grasp planner is implemented as search for a pair
of grasping edges that yield maximal regions for the two
grasping fingers using the geometric conditions derived by
Nguyen [19]. Two edges can be paired if their friction cones
are overlapping. Given two edges that can be paired we
identify maximal regions for placing the fingers so that we
can tolerate maximal uncertainty in the finger placement using
Nguyen’s criterion [19].

If the desired object is fully observed, we can use the
above grasping algorithm unchanged. If it is partially occluded,
we must filter out finger placements which lie on hidden
(inferred) portions of the object’s boundary. If, after filtering
out infeasible grasps, there is still an accessible grasp of
sufficient quality according to Nguyen’s criterion, we can
attempt a grasp of the object.



VII. R ESULTS

(a) Original image (b) Segmentation (c) Contours

(d) Bat Completion (e) Rat Completion (f) Grasp

Figure 7. An example of a very simple planning problem involving three
objects. The chalk compass is fully observed, but the stuffedrat and green
bat are partially occluded by the compass. After segmentation(b), the image
decomposes into five separate segments shown in (c). The learned models of
the bat and the rat can be completed (d) and (e), and the completecontour of
the stuffed rat is correctly positioned in the image (f). The two blue circles
correspond to the planned grasp that results from the computed geometry.

(a) Original image (b) Segmentation (c) Contours

(d) Bear Completion (e) Dolphin Completion (f) Grasp

Figure 8. A more complex example involving four objects. The blue bat
and the yellow banana are fully observed, but the stuffed bear and dolphin
are significantly occluded. After segmentation (b), the imagedecomposes into
five separate segments shown in (c). The learned models of the bear and the
dolphin can be completed (d) and (e), and the complete contour of the stuffed
bear is is correctly positioned in the image (f). The two blue circles correspond
to the planned grasp given the geometry.

We built a shape dataset containing 11 shape classes (6
of which are seen in figures 7 and 8). We collected 10
images of each object type, segmented the object contours
from the background, and used the correspondence and shape
distribution learning algorithms of sections III and IV to
build probabilistic shape models for each class, using con-
tours of 100 points each. We reduced the dimensionality of
the covariance using Principal Components Analysis (PCA).
Reducing the covariance to three principal components led to
100% prediction accuracy of the training set, and 98% cross-
validated (k = 5) prediction accuracy.

Object Partial Complete
ring 3/8 15/15
bat 7/10 8/10
rat 9/13 4/4
bear 7/7 7/7
fish 9/9 6/6
banana - 1/2
dolphin 1/2 -
compass 1/3 5/5
totals 37/52 46/49

71.15% 93.88%
detect> 5% 42/52 48/49

80.77% 97.96%

Table I
CLASSIFICATION RATES ON TEST SET.

In figures 7 and 8 we show the results of two manipulation
experiments, where in each case we seek to retrieve a single
type of object from a box of toys, and we must locate and
grasp this object while using the minimum number of object
grasps possible. In both cases, the object we wish to retrieve is
occluded by other objects in the scene, and so a naive grasping
strategy would first remove the objects on top of the desired
object until the full object geometry is observed, and only
then would it attempt to retrieve the object. Using the inferred
geometry of the occluded object boundaries to classify and
plan a grasp for the desired object, we find in both cases
that we are able to grasp the object immediately, reducing the
number of grasps required from 3 to 1. In addition, we were
able to successfully complete and classify the other objects in
each scene, even when a substantial portion of their boundaries
was occluded. The classification of this test set of 7 object
contours (from 6 objects classes) was 100% (note the correct
completions in figures 7 and 8 of the occluded objects).

For a more thorough evaluation, we repeated the same type
of experiment on 20 different piles of toys. In each test, we
again sought to retrieve a single type of object from the box of
toys, and in some cases, the manipulation algorithm required
several grasps in order to successfully retrieve an object,due to
either not being able to find the object right away, or because
the occluding objects were blocking access to a stable grasp
of the desired object.

In total, 52 partial and 49 complete contours were classified,
33/35 grasps were successfully executed (with 3 failures
due to a hardware malfunction which were discounted). In
table I, we show classification rates for each class of object
present in the images. Partially-observed shapes were correctly
classified 71.15% of the time, while fully-observed shapes
were correctly classified 93.88% of the time. Several of the
errors were simply a result of ambiguity–when we examine
the > 5% detection rates (i.e. the percentage of objects for
which the algorithm gave at least5% likelihood to the correct
class), we see an improvement to 80.77% for partial shapes,
and 97.96% for full shapes. While a few of the detection errors
were from poor or noisy image segmentations, most were
from failed correspondences from the observed contour to the
correct shape model. The most common reason for these failed
correspondences was a lack of local features for the COPAP
algorithm to latch onto with the PLSD point assignment cost.
These failures would seem to argue for a combination of local



and global match likelihoods in the correspondence algorithm,
which is a direction we hope to explore in future work.

VIII. R ELATED WORK

Statistical shape modeling began with the work on landmark
data by Kendall [13] and Bookstein [4] in the 1980s. In recent
years, more complex statistical shape models have arisen, for
example, in the active contours literature [3]. We believe ours
is one of the first works to perform probabilistic inference of
deformable objects from partially occluded views. In termsof
shape classification, shape contexts [1] and spin images [12]
provide robust frameworks for estimating correspondences
between shape features for recognition and modelling prob-
lems; our work is very related but our initial experiments
with these descriptors motivated our work for a better shape
model for partial views of objects. Classical statistical shape
models require a large amount of human intervention (e.g.
hand-labelled landmarks) in order to learn accurate modelsof
shape [6]; only recently have algorithms emerged that require
little human intervention [9, 7].

We also build on classical and recent results on motion
planning and grasping, manipulation, uncertainty for modeling
in robot manipulation, POMDPs applied to mobile robots,
kinematics, and control. The initial formulation of the problem
of planning robot motions under uncertainty was the preimage
backchaining paper [16]. It was followed up with further
analysis and implementation [5, 8], analysis of the mechanics
and geometry of grasping [17], and grasping algorithm that
guarantees geometrically closure properties [19]. Lavalle and
Hutchinson [15] formulated both probabilistic and nondeter-
ministic versions of the planning problem through information
space. Our manipulation planner currently does not take ad-
vantage of the probabilistic representation of the object,but
we plan to extend our work to this domain.

More recently, Grupen and Coelho [11] have constructed a
system that learns optimal control policies in an information
space that is derived from the changes in the observable modes
of interaction between the robot and the object it is manipulat-
ing. Ng et al. [21] have used statistical inference techniques to
learn manipulation strategies directly from monocular images;
while these techniques show promise, the focus has been
generalizing as much as possible from as simple a data source
as possible. It is likely that the most robust manipulation
strategies will result from including geometric information
such as used by Pollard and Zordan [20].

IX. CONCLUSIONS

In future work, we hope to demonstrate improved perfor-
mance on recognition tasks by incorporating additional priors
into the correspondence and completion models, in order to
bias the inference procedure towards smoother, more natural
correspondences and completions. The shape classes that we
have found to cause the most problems for our model con-
tain multiple articulations and self-occlusions, which suggests
that it may be useful to combine a skeleton or parts-based
models with our global parametric models in order to achieve
robustness to these highly variable shapes.
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