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Abstract— Robot manipulators generally rely on complete
knowledge of object geometry in order to plan motions and
compute successful grasps. However, manipulating real-world
objects poses a substantial modelling challenge. New instances
of known object classes may vary from learned models. Objects
that are not perfectly rigid may appear in new configurations
that do not match any of the known geometries.

In this paper we describe an algorithm for learning generative
probabilistic models of object geometry for the purposes of
manipulation; these models capture both non-rigid deformations
of known objects and variability of objects within a known class. (a) Original Image (b) Recovered Geometries
Given a single image of partially occluded objects, the model can Figure 1. (a) A collection of toys in a box. The toys partially occludach
be used to recognize objects based on the visible portion of eachother, making object identification and grasp planning diffic(b) By using

object contour, and then estimate the complete geometry of the learned models of the bear, we can identify the bear from treethisible
object to allow grasp planning. segments and predict its complete geometry (shown by the redttie dashed

; ; (IR . et lines are the predicted outline of the hidden shape). Thésliption of the

We provide two main Con.t”bu“ons' a probab|||§t|C model of complete shape can then be used in planning a grasp of the flaangd

shape geometry and a graphical model for performing correspon . ¢ : :
e p points shown by the blue circles).

dence between shape descriptions. We show examples of Iearneg
models from image data and demonstrate how the learned models ) )
can be used by a manipulation planner to grasp objects in general shape in terms of a head, limbs, etc. are roughly
cluttered visual scenes. constant. Regardless of configuration, a single robust mode

which accounts for deformations in shape should be sufficien
for recognition and grasp planning for most object types.
Robot manipulators largely rely on complete knowledge of |n this paper we describe an algorithm for learning a
object geometry in order to plan their motion and compuigobabilistic model of visual object geometry. Althougla-st
successful grasps. If an object is fully in view, the objegistical models of shape geometry have received attention i
geometry can be inferred from sensor data and a gragmumber of domains including computer vision [9, 7] and
computed directly. If the object is occluded by other eesitin  robotics, existing techniques have largely been coupléaisics
the scene, manipulations based on the visible part of thecobjsuch as shape localization [7], recognition and retrie®8, [
may fail; to compensate, object recognition is often used 19. Many effective recognition and retrieval algorithmse ar
identify the location of the object and compute the grasmfrodiscriminative in nature and create representations oftiape
a prior model. However, new instances of a known class g{at make it difficult to perform additional inference such a
objects may vary from the prior model, and known objects ma¥covering hidden object geometry. Our primary contrituti
appear in novel configurations if they are not perfectlydigi is an algorithm for learning generative models of objecpsisa
As a result, manipulation can pose a substantial modelliag dense 2-D contours, as we are specifically interested in
challenge when objects are not fully in view. object geometry for manipulation planning. We use a model
Consider the camera imageof four toys in a box in of object shape, known aBrocrustean shapd6, 13], that
figure 1(a). Having a prior model of the objects is extremelyrovides model invariance to translation, scale and tati
useful in that visible segments (such as the three visibits paye generalize this technique to learn object models that are
of the stuffed bear) can be aggregated into a single obje@bust to object variation and deformations.
and a grasp can be planned appropriately as in figure 1(b)one of the challenges in inferring dense models of shape
However, having a prior model of the geometry of eveng hat in order to compute the likelihood of a particular
object in the world is not only infeasible but unnecessan{hane given a model, we muatpriori know which points
Although an object such as the stuffed bear may change sh@p&he measured shape correspond to which points in the
as it is handled and placed in different configurations, thgode|. Thus, our second contribution is to provide a grahic
INote that for the purposes of reproduction, the images hasa bepped model for computing correspondences between shapes as a

and modified from the original in brightness and contrast.yTdre otherwise pre-pr_ocessing step to th_e model Ie_aming- We CO_nCIUde with
unchanged. experimental demonstrations of object detection in dlette

I. INTRODUCTION



Algorithm 1 The Manipulation Process.
Require: Animage of a scene, and learned models of object
1: Segment the image into object components
2: Extract contours of components
3: Determine maximum-likelihood correspondence between
observed contours and known models o
4: Infer complete geometry of each object from matched «
contours
5: Return planned grasp strategy based on inferred geome-
tries

N

(a) Example Object (b) Class Distribution

Figure 2. (@) An example image of a chalk compass. The compass
can deform by opening and closing. (b) Sample shapes from ehendd
distribution along different eigenvalues of the distribat

scenes, geometry prediction and grasp planning.

71 and r, is defined as the smallest distance between their

Il. THE MANIPULATION PROCESS orbits,
Our goal is to manipulate an object in a cluttered scene— )
for example to grasp the bear in figure 1(a). Our proposed dp[m, 7] = mf[dl(‘/”w o € O(n), ¢ € O(r)] (3)
manipulation process is given in algorithm 1. The input to  d(¢,9) = cos™'(¢-1). 4

the algorithm is a single image which is first segmented in
perceptually similar regions. (Although image segmeatais

a challenging research problem, it is outside the scopeisf t ve for the minimizati f ti 3 in closed f b
paper and we rely on existing segmentation algorithms sgch>g Ve for In€ minimization ot equation (3) in closed form by

[23].) The boundaries or contours of the image segments é?é{resentmg the points of ‘F.’md.TQ in complex coordinates,
extracted, and it is these representations of object geyme\‘ﬁ' 'C.h F‘a“.”a”y ef.‘co‘?'e rotation in the plane by scalar campl
that we use throughout this paper. multiplication. This givest, as

We first describe how to learn a generative probabilistic dp[ri, ) = cos™t|rdln| (5)
model of a class of objects, given a set of object contours of
the same class. Using the learned models of class geometjere s’ is the Hermetian or complex conjugate transpose
we next describe how different instances of an object clagsthe complex vector.
can be recognized and localized in a single image of partial .
occluded objects. We use the generative model to infer the Learning Shape Models
hidden parts of each object in order to complete the model ofln order to complete our probabilistic model of object
each object. Finally, we describe how the inferred complegeometry, we compute a distribution for each object claw® fr

}gendall [13] definedd, as the Procrustean metricwhere
ﬁl(gp,w) is the geodesic distance betweenand ). We can

geometry can be used to compute a grasp. training images. We choose a Gaussian approximation to the
distribution over shapes, which only requires us to compute
Ill. PROBABILISTIC MODELS OF2-D SHAPE the mean and covariance of the training data. This Gaussian

Formally, we represent an objeZtin an image as a set of lies in the tangent space to the hypersphere at the mean shape
n ordered points on the contour of the shafwe,, z-,...z,}, vector. For each object classwe compute a mean shapeg,
in a two-dimensional Euclidean space, so that (x;,v;)). from a set of pre-shapes, ..., 7,} by minimizing the sum
Our goal is to learn a probabilistic, generative modelZof of Procrustean distances from each pre-shape to the mean,
We begin by making the contour invariant with respect to

position and scale, normalizing so as to have unit length pi = axginf Y "[dy (75, 1)), (6)
with centroid at the origin, that is, B
7 = {Zi=(x; -7,y — )} 1) subject to the constraint thit; || = 1. In two dimensions, this
7/ minimization can be done in closed form; iterative algarith

= = (2) exist for computingu; in higher dimensions [2, 10].

Z'| In order to estimate the covariance of the shape distributio
where is the pre-shapeof the contourZ. Sincer is a unit from the sample pre-shapés,, ..., r,}, we rotate each; to
vector, the space of all possible pre-shapes @oints is the fit the mean shapg; (i.e. to minimize Procrustean distance),
unit hyper-sphereS2"—3, called pre-shape spaceSince we and then project the rotated pre-shapes into the tangeoé spa
can rotate any pre-shape through a great circle affit) of the pre-shape hypersphere at the mean shape. We then
of maximal length of the hypersphere without changing these Principle Components Analysis (PCA) in tangent space to
geometry ofz, we define the “shape” dZ as an equivalence model the principle axes of the Gaussian shape distribation
class of pre-shapes over rotations. {m,...,}. Figure 2(a) shows one example out of a training

If we can define a distance metric between shapes, then s&t of images of a deformable object. Figure 2(b) shows sampl
can infer a parametric distribution over the shape space. Tdbjects drawn from the learned distribution. The red contou
spherical geometry of the pre-shape space requires a deodssthe mean, and the green and blue samples are taken along
distance rather than Euclidean distance. The distancesketwthe first two principal components of the distribution.



the cyclic ordering inherited from the contours. Figure 3
shows an example set of correspondences (the thin black
lines) that preserve the cyclic order-preserving constran
the left, whereas the correspondences on the right of figure 3
violate the constraint at the right of the shape (notice that
the association lines cross.) In the following sections, we
show how the original COPAP algorithm can be written as
a linear graphical model with the introduction of additibna
book-keeping variables.
Figure 3. Order-preserving matching (left) vs. Non-order-presggvinatch- Our goal is to match the pOintS of one contox, ..., x,
ing (right). The thin black lines depict the correspondanioetween points in to the points on anothey,...,y,,. Let & denote a corre-
the red and blue contour. Notice the violation of the cyolidering constraint spondence vector, wherg; is the index ofy to which x;
between the right arms of the two contours in the right image. . . . -

corresponds; that isx; — y4,. We wish to find the most
B. Shape Classification likely ® givenx andy, that is,®* = argmaxg p(®|x,y). If
we assume that the likelihood of individual points;} and
{y,} are conditionally independent giveln, then

Given k previously learned shape class@s, ..., Cy with

shape meang, ..., ux and covariance matrices, ..., 3,
and given a measuremenh of an unknown object shape, d* — 1 V(P 10
we can now compute the likelihood of a shape class given argglax Zp(X’Y| Jp(®) (10)
a measured object{ P(C;/m) : i = 1...k}. The shape 184
classification problem is to find the maximum likelihood slas = argmax [ 2@, vs.)p(2) (11)
C, which we can compute as ® i=1
¢ = arg IrgiXP(Cﬂm) ) where Z is a normalizing constant.
A. Priors over Correspondences
= arg max P(m|C;)P(C;). (8) _ P _ )
Ci There are two main terms to equation (10), the prior over

Given the mean and covariance of a shape class, we &9frespondences(®), and the likelihood of object points
compute the likelihood of a measured object given a clagien the correspondences(x;,y,,). We model the prior
as p(m|Cy) = N(m;p;, ;). Assuming a uniform prior on ©Ver correspondencegy(®), as an exponential distribution

C;, we can compute the maximum likelihood class as subject to the cyclic-ordering constraint. We encode this
v constraint in the prior by allowing(®) > 0 if and only if

é = N s M, Ei . 9
arggfax (rms i, ) ®) Jw st G < Pt < < Pp < Q1 <o < Quo1. (12)
IV. DATA ASSOCIATION AND SHAPE CORRESPONDENCES We call w the wrapping pointof the assignment vectcp.

Evaluating the likelihood given by equation 9 requireEaCh assignment vectok, which obeys the cyclic-ordering

calculating the Procrustes distandg between the observed Sonstraint must have a unique wrapping poin,

contourm and the mean;. The distance between any two Due to varlatlon_s_l_n object geometry, the mode! must
allow for the possibility that some sequence of points of

contourst; and 1, implicitly assumes that there is a known 4 X dt ints i f
correspondence between a paintin 7, and some poiny ; {Xi’i"’.;‘f} o no _corrr(]equn do an()j/ poIn's w, for ex- |
in 7. (There is also an assumption that the lengthsrof ampié, IT Sensor noise has Intro uced spurious p_qlnts along
and, are the same.) Before we can compute the probabil®) object edge_ or if the shap_es vary in some significant way,
of a contour. or even learn the mean and covariance o ch as an animal contour with three legs where another has
set of pre-shapes, we must therefore be able to compute ftﬂ‘éi (\)NeP S.k'p 'nd'V'dlli.al cc:jrreﬁp;rlldences_mbbyv\? Ilowmlg
correspondences between contours, matching each point irf’i = U- (Pointsy; are skipped whefi s.t. ¢; = j). We wou

ike to minimize the number of such skipped assignments, so

to a corresponding point ofp. ) T, )
Solving for the most likely correspondences between sdf§ 9ve diminishing likelihood t@ as the number of skipped

of data is an open problem in a number of fields, includinﬁgints increases. Therefore, forwith & skipped assignments
computer vision and robot mapping. As object geometries * andy),

vary due to projection distortions, sensor error, or evenrnah L exp{—k(®)- A} if ®is cyclic ordered
object dynamics, determininghich part of an object image p(®) = { #* (13)
corresponds tavhich part of a previous image is non-trivial.

Furthermore, by the nature of object contours, our spghere Z5 is a normalizing constant andl is a likelihood
cific shape correspondence problem contairsyeic order- penalty for skipped assignments.
preserving constraint, that is, correspondences between the o
two contours cannot “cross” each other. Scott and Nowak [2B] Correspondence Likelihoods
define the Cyclic Order-Preserving Assignment Problem (CO-Given an expression for the correspondence prior, we also
PAP) as the problem of finding an optimal one-to-one matcheed an expression for the likelihood that two poirtsand
ing such that the assignment of corresponding points presery,, correspond to each other(x;,y,,), which we model as

0 otherwise,



the likelihood that the local geometry of the contours matciwrapping pointw, to each possible value frointo n. Given
Section Il described a probabilistic model for global getm w = k, the cycle is broken into a linear chain (according to
ric similarity using the Procrustes metric, and we spezgali equation 12), which can be solved by dynamic programming.
this model to computing the likelihood of local geometriedt is this introduction of they; andw variables that is the key
which we call theProcrustean Local Shape Distan(®LSD). to the efficient inference procedure by converting the loopy
We first need a description of the local shape about graphical model into a linear chain.

In order to be robust to the local spacing 6 points, we In this approach, the point-assignment likelihoods are- con
sample points evenly spaced aboyt We define thelocal verted into a cost functiof’(i, ¢;) by taking a log likelihood,

neighborhoodof size k aboutx; as: and ¢ is optimized using

ne(xs) = (65(=2FA), ..., 68(0), ..., 6L (2FA))  (14) o = argmax log Hp(xi, Vo )p(®) Hpco(@) (19)
whered? (d) returns the point fromx’s contour interpolated a ' '
distgpce ofd starting fromx_i and continu_ing clockwlise iji = argmin (Z c(, ¢i)> ) (20)
positive or counter-clockwise fai negative. (Alsod%(0) = @ -
x;.) The paramete”A determines the step-size between in- S.t.V6: peo(di) > 0

terpolated neighborhood points, and thus the resolution of ] ) ) ) )

the local neighborhood shape. We have found that setingWherek(®) is the number of points skipped in the assignment

such that the largest neighborhood2i&% of the total shape ®- Solving for & using equation (20) takeS(n>m) running

circumference yields good results on most datasets. time; however a bisection strategy exists in the dynamic
The Procrustean Local Shape Distanég; 5, between two Programming search graph which reduces the complexity to

points,z; andy; is the mean Procrustean shape distance ov@fnmlogn) [22].

neighborhood sizes: V. SHAPE COMPLETION
o _ _ We now turn to the problem of estimating the complete
dprs(zi,y;) = /kfk - dpli(2), e (y;)] (15) " geometry of an object from an observation of part of its

with neighborhood size priaf. No closed form exists for this contour. We phrase this as a maximum likelihood estimation

integral so we approximate it using a sum over a discrete %ﬁgfn&a lejssggﬁt't;% tréitn:szgg sr?;ms grs?risbrlﬁi%?] with retspe
of neighborhood sizes. g p p .

Let us represent a shape as:
z = [z1 22" (21)

rez; = m contains the points of our partial observation
of the shape, and, contains then — p unknown points that
complete the shape. Given a shape distribufibon n points
with meanu and covariance matriX, and givenz; containing
ﬁ%measurement33(< n) of our shape, our task is to compute
P,

C. A Graphical Model for Shape Correspondences

Although we assume independence between local features
x; andy;, the cyclic-ordering constraint leads to dependenci@%
between the assignment variablgsin a non-trivial way—in
fact, the sub-graph ob is fully connected since each must
know the values of all the other assignments, in order to
determine whether the matching is order-preserving or n

Computing the maximum likelihood is therefore a non- R
trivial loopy graphical inference problem. . (z). (We implicitly assume that correspondences from the

We can avoid this problem and break most of these d@@rtial shapex to the modelD are known—we_ later show hOW
pendencies by introducing variables, and w, where a; to compute partial shape correspondences in order to feiax t

corresponds to the last non-zero assignment befgrand asfnuﬂfég)rnf)or Us 1o transform our completed vectar —
w corresponds to the wrapping point from section IV-A p T

With these additional variables, each depends only on the (21 25)", into a pre-shape, we must first normalize translation
wrapping point, which is stored in as well as the last non- and scale. However, this cannot be done without knowing

zero assignmentq;; the cyclic ordering-constraint is thusthe I‘."‘Stn p Pomts. Furthermore, the Procrustgs minimizing
rotation fromz’s pre-shape ta. depends on the missing points,

encoded by, (¢;), such that coE !
S0 any projection into the tangent space (and corresponding

e lastn — p points which maximize the joint likelihood,

% Sif ¢y > a; or likelihood) will depend in a highly non-linear way on the
é; < a; andw; = i or location of the missing points. We can, however, compute the
Peo(Pi) = ‘o 01 ’ (16) missing pointsz, given an orientation and scale. This leads to
i = . an iterative algorithm that holds the orientation and stizés,
0 :otherwise, computesz, and then computes a new orientation and scale
which gives (17) given the newzs. The translation term can then be computed

1 from the completed contour.
p(®) = 7(eXp{—k(¢) N ][[peo(d))  (18)  We derivez, given a fixed orientatiod and scalex in the
® i following manner. For a complete contasrwe normalize for
If we initially assign the wrapping point, the state vector orientation and scale using
{a;, ¢;} then yields a cyclic Markov chain. The standard ap- , 1
proach to solving this cyclic Markov chain is to try settirfgpt z = ER(:’Z (22)



from which to sample orientations. Similarly, we can sample
scales from a Gaussian with meag—the ratio of scales of
the partial shapeg;, andu; as in
1z1 — 5Chza |
o= —F . (30)
w1 — 5 Crpal]

Any sampling method for shape completion will have a
Figure 4. An example of occluded objects, where the bear occludes tB€ale biascompleted shapes with smaller scales project to
Cgmpass-h(a) The 0”9:(“3' "r?age and (b) theb'mage ﬁegmen_ted""“';l"g‘gnl) a point closer to the origin in tangent space, and thus have
objects. The contour of each segment must be matched agaimstva kmodel. ;o p o jikelihood. One way to fix this problem is to solve for
where Ry is the rotation matrix o). To centerz, we then 22 by performing a constrained optimization dn where the
subtract off the centroid: scale of the centered, completed shape vector is condlraine
to have unit length:

w=12z — lC’z’ (23) 1
n |z’ — =Ca'|| = 1. (31)
n

where C is the2n x 2n checkerboard matrix, . : .
This constrained optimization problem can be attacked

ro - 10 with the method of Lagrange multipliers, and reduces to the

01 - 01 problem of finding the zeros of @ —p)th order polynomial in
C=|: . . (24) one variable, for which numerical techniques are well-know

10 -~ 10

0 1 0 1

Thusw is the centered pre-shape. Now fet be the matrix
that projects into the tangent space defined by the Gaussi
distribution (u, X):

M =1—pp" (25)
The Mahalanobis distance with respectiidrom Mw to the (a) Partial contour to be completed (b) Completed as compass
origin in the tangent space is:
d, = (Mw)TS ' Mw (26)

Minimizing d. is equivalent to maximizingP,(-), so we
continue by settin% equal to zero, and letting

1 1
Wy = M, (I, — —C1)—R} 27)

711 ? (c) Completed as stuffed animal (d) Completed as jump rope
Wo = My (I — 702)—}22 (28)

Figure 5. Shape completion of the partial contour of the compass indigur

wqn “woyn Note that the correct completion (b) captures the knob in te df the
where the subscripts “1” and “2” indicate the left and I"ghtt.ompass The hypothesized completions in (c) and (d) leadriourdikely

sub-matrices of\/, I, andC that match the dimensions ef shapes.
and z,. This yields the following system of linear equations
which can be solved for the missing data; A. Partial Shape Class Likelihood

(Whz1 + Wazo) T2 W =0 (29) Let z = {z1,z2} be the completed shape, whezg is
the partial shape corresponding to measuremantand z»

As described above, equation (29) holds for a Specifi¢ nknown. The probability of the class given the observed
orientation and scale. We can then use the estimate,of part of the contour; is then

to re-optimize# and o and iterate. Alternatively, we can P(Cyuz)
¢ X /P(Ci,zl,ZQ)dZQ (32)

simply sample a number of candidate orientations and scales P(Ci|zy) =

complete the shape of each sample, and take the completion P(z1)

with highest likelihood (lowestl,)). Rather than marginalize over the hidden data, we can
To design such a sampling algorithm, we must chooseapproximate this marginal with an estimatg the output of

distribution from which to sample orientations and scal@se our shape completion algorithm, yielding:

idea is to match the partial shapg, to the partial mean shape, .

11, by computing the pre-shapes zf and i, and finding the P(Cilz1) » 1 P21, 22|C) (33)

Procrustes fitting rotatiord*, from the pre-shape af; onto wheren is a normalizing constant (and can be ignored during

the pre-shape qf;. This angle can then be used as a mean folassification), andP(z1, z2|C;) is the complete shape class

a von Mises distribution (the circular analog of a Gaussiafikelihood of the completed shape.



B. Partial Shape Correspondences analyzing the image and recognizing the object, we will be

In order to calculate the maximum likelihood shape compl@pl€ t0 plan a grasp to retrieve the object, irespectivehef t
tion 2, with respect to a shape modb|, we must know which placement of other objects in the scene. However, if theelési
points in D the observed points; correspond to. In practice, ©Pj€ct is occluded, before attempting to pick it up, we must
z1 may contain multiple disconnected contour segments whi€ftérmine the probability that the sensed object is agtulad
must be associated with hidden contour segments to fornfigSired object, and the probability that a planned grasmen t
complete contour—take for example, the two compass handhegessible pe}r.t.of the object will be succe;sful. If either o
in figure 5. Before the hidden contours can be inferred batwel'€Se probabilities are below a pre-determined thresivotd,
the handles, observable contours must be ordered. We &5 remove one or more occluding objects and then re-aealyz
constrain the connection ordering by noting that the ioteri the scene before planning a grasp of the desired object. We
of all the observed object segments must remain on the anterfTPlement the first test as a threshold on the class liketifaio
of any completed shape. For most real-world cases, this tofge Sensed object(C;|jm) > 0.7; the second test is a function
logical constraint is enough to identify a unique connectic®f OUr strategy for grasping a single object, describedvaelo

ordering; in cases where the ordering of components is sl Grasping a Single Object
ambiguous, a search process through the orderings can the us
to identify the most likely correspondences.

Given a specific ordering of observed contour segments,
can adapt our graphical model from section IV to compu
the correspondence between an ordered set of partial cront(%ﬁ
segments and a model mean shapekFirst, we add a set of
hidden, or “wildcard” points connecting the partial contou
segments. This forms a complete contaur, where some of
the points are hidden and some are observed. We then run a
modified COPAP algorithm, where the only modification is
that all “wildcard” points onz. may be assigned to any of
u's points with no cost. (We must still pay a penalty ofor
skipping hidden points, however.)

In order to identify how large the hidden contour is (and
therefore, how many hidden points should be added to connect
the observed contour segments), we use the insight thattebje
of the same type generally have a similar scale. We can
therefore use the ratio of the observed object segment areas
to the expected full shape area to (inversely) determine therigure 6. Our mobile manipulator with a two link arm and gripper.
ratio of hidden points to observed points. If no size priaes a
available, one may also perform multiple completions with The input to the grasp planning system is the object ge-
varying hidden points ratios, and select the best completiometry with the partial contours completed as described in
using a generic prior such as the minimum description lengBection V. The output of the system is two regions, one for
(MDL) criterion. each finger of the gripper, that can provide an equilibrium

Using this partial shape correspondence algorithm, we egrasp for the object following the algorithms for stableggra
ploy an iterative procedure to complete the hidden partsof ang described in [19]. Intuitively, the fingers are placed on
object contour—(1) compute the partial shape correspareden opposing edges so that the forces exerted by the fingers can
(2) complete the shape given the partial corresponden8gs, dancel each other out. Friction is modeled as Coulomb dicti
compute thefull shape correspondences from the completedth empirically estimated parameters.
shape to the model, (4) re-complete the shape using the newhe grasp planner is implemented as search for a pair
correspondences, and repeat (3) and (4) until convergenceof grasping edges that yield maximal regions for the two
grasping fingers using the geometric conditions derived by
Nguyen [19]. Two edges can be paired if their friction cones

Recall from Section Il that our manipulation strategy is are overlapping. Given two edges that can be paired we
pipelined process—first, we estimate the complete geoeneidentify maximal regions for placing the fingers so that we
structure of the scene; then, we plan a grasp. But before we can tolerate maximal uncertainty in the finger placementgusi
get into the details about how an individual object is graspeNguyen’s criterion [19].
we must first decidewhich object to grasp. The problem If the desired object is fully observed, we can use the
domains which we are primarily interested in—such as tlabove grasping algorithm unchanged. If it is partially aded,
“box-of-toys” world of Figure 1-are domains in which thegse iwe must filter out finger placements which lie on hidden
a single “desired” object or object type; for example, a teddinferred) portions of the object’s boundary. If, afterdiing
bear. Thus, our ultimate goal is to retrieve a specific obpect out infeasible grasps, there is still an accessible grasp of
class of object from the scene. Sometimes, the desiredtobjgafficient quality according to Nguyen’s criterion, we can
will be at the top of the pile, fully in view. In this case, afte attempt a grasp of the object.

Ve have developed a grasp planning system for our mobile
manipulator (shown in figure 6), a two-link arm on a mobile

§se with an in-house-designed gripper with two opposable
ers. Each finger is a structure capable of edge and surface
tact with the object to be grasped.

VI. GRASPPLANNING



Object Partial Complete

VIlI. RESULTS fing 378 15715
bat 7/10 8/10
rat 9/13 4/4
bear 17 717
S fish 9/9 6/6
A banana - 1/2
dolphin 1/2 -
/s compass 1/3 5/5
i\ fotals 3752 46749
71.15% 93.88%
- detect> 5% | 42/52 48]49
(a) Original image (b) Segmentation (c) Contours 80.77%  97.96%
Table |

CLASSIFICATION RATES ON TEST SET

In figures 7 and 8 we show the results of two manipulation
experiments, where in each case we seek to retrieve a single
_ , type of object from a box of toys, and we must locate and

(d) Bat Completion (e) Rat Completion () Grasp grasp this object while using the minimum number of object
Figure 7. An example of a very simple planning problem involving thredrasps possible. In both cases, the object we wish to retisev
objects. The chalk compass is fully observed, but the stufiécand green occluded by other objects in the scene, and so a naive ggaspin

bat are partially occluded by the compass. After segment#étiprthe image - ; ;
decomposes into five separate segments shown in (c). The s of Strategy would first remove the objects on top of the desired

the bat and the rat can be completed (d) and (e), and the conepieteur of OPject until the full object geometry is observed, and only
the stuffed rat is correctly positioned in the image (f). The blue circles  then would it attempt to retrieve the object. Using the irddr

correspond to the planned grasp that results from the commeemetry. geometry of the occluded object boundaries to classify and
plan a grasp for the desired object, we find in both cases
that we are able to grasp the object immediately, reduciag th

an number of grasps required from 3 to 1. In addition, we were
ﬂ ’\ able to successfully complete and classify the other objiect
C\ N each scene, even when a substantial portion of their boigsdar
AL

| . C?pﬁ was occluded. The classification of this test set of 7 object

contours (from 6 objects classes) was 100% (note the correct
completions in figures 7 and 8 of the occluded objects).

For a more thorough evaluation, we repeated the same type
of experiment on 20 different piles of toys. In each test, we
s ! again sought to retrieve a single type of object from the box o
C\ \ toys, and in some cases, the manipulation algorithm redjuire
S L several grasps in order to successfully retrieve an oljjeetto
/\~> L) either not being able to find the object right away, or because
( ‘ ! the occluding objects were blocking access to a stable grasp
(d) Bear Completion  (e) Dolphin Completion (f) Grasp of the desired object.
Figure 8. A more complex example involving four objects. The blue baé In total, 52 partial and 49 complete contours W_ere Class.lfmd
and the yellow banana are fully observed, but the stuffed bed dolphin 33/35 grasps were successfully executed (with 3 failures
are significantly occluded. After segmentation (b), the imégeomposes into due to a hardware malfunction which were discounted). In
five separate segments shown in (C). The leamed models of #reahd the  tgpje |, we show classification rates for each class of object
dolphin can be completed (d) and (e), and the complete confahestuffed . . .
bear is is correctly positioned in the image (f). The two bliseles correspond Present in the images. Partially-observed shapes wereatlyrr
to the planned grasp given the geometry. classified 71.15% of the time, while fully-observed shapes
were correctly classified 93.88% of the time. Several of the
We built a shape dataset containing 11 shape classeseffors were simply a result of ambiguity—-when we examine
of which are seen in figures 7 and 8). We collected ltbe > 5% detection rates (i.e. the percentage of objects for
images of each object type, segmented the object contowtsich the algorithm gave at leas% likelihood to the correct
from the background, and used the correspondence and shapss), we see an improvement to 80.77% for partial shapes,
distribution learning algorithms of sections Il and IV toand 97.96% for full shapes. While a few of the detection errors
build probabilistic shape models for each class, using cowere from poor or noisy image segmentations, most were
tours of 100 points each. We reduced the dimensionality fsbm failed correspondences from the observed contourdo th
the covariance using Principal Components Analysis (PCAjorrect shape model. The most common reason for these failed
Reducing the covariance to three principal componentsdeddorrespondences was a lack of local features for the COPAP
100% prediction accuracy of the training set, and 98% crosagorithm to latch onto with the PLSD point assignment cost.
validated ¢ = 5) prediction accuracy. These failures would seem to argue for a combination of local

(a) Original image (b) Segmentation (c) Contours




and global match likelihoods in the correspondence algar;t X. ACKNOWLEDGEMENTS
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