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Abstract— We develop an algorithm to decouple a multi-robot
path planning problem into subproblems whose solutions can
be executed sequentially. Given an external path planner for
general configuration spaces, our algorithm finds an execution
sequence that minimizes the dimension of the highest-dimensional
subproblem over all possible execution sequences. If the external
planner is complete (at least up to this minimum dimension),
then our algorithm is complete because it invokes the external
planner only for spaces of dimension at most this minimum. Our
algorithm can decouple and solve path planning problems with
many robots, even with incomplete external planners. We show
scenarios involving 16 to 65 robots, where our algorithm solves
planning problems of dimension 32 to 130 using a PRM planner
for at most eight dimensions. 1

I. INTRODUCTION

In this paper, we discuss the problem of path planning

for multiple robots, which arises in different applications

in Robotics. The objective is to move multiple robots in a

common workspace from a given start configuration to a given

goal configuration without mutual collisions and collisions

with obstacles. We assume that an exact representation of the

geometry of the robots and the workspace is given.

This problem has been studied extensively. Approaches are

often characterized as centralized (a better term would be

coupled) or decoupled: A coupled planner computes a path

in a combined configuration space, which essentially treats

the robots as a single combined robot. A decoupled planner

may compute a path for each robot independently, then use

a coordination diagram to plan collision-free trajectories for

each robot along its path. Or it may plan a trajectory for each

robot in order of priority and avoid the positions of previously

planned robots, which are considered as moving obstacles.

Decoupled planners are generally faster, usually because

fewer degrees of freedom are considered at one time. Un-

fortunately, they are usually not complete – some coupling

may be necessary, as when two robots each have their goal

as the other’s start position, so a decoupled planner may not

find a solution, even when one exists. Centralized or coupled

planners, on the other hand, may be complete in theory, but

they may need to work in configuration spaces of impractically

high dimensions, regardless of how challenging the actual

instance of the planning problem is – two robots in separate

rooms would still be considered as a system with double the

degrees of freedom, even though their tasks can be carried out

independently without interference.
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In this paper, we demonstrate an algorithm for multiple

robot planning problems that decomposes any instance of

multi-robot planning into a sequence of sub-problems with the

minimum degree of coupled control. Informally, the control of

two robots must be directly coupled if they must move at the

same time to achieve their goals. The transitive closure of

the direct coupling relationship is an equivalence relation that

partitions the robots into classes that must be planned together

as a composite. The degree of a composite robot is the sum

of the number of degrees of freedom of the individual robots

that are coupled.

We partition the robots into an ordered sequence of com-

posite robots so that each composite can move from start

to goal in turn, and minimize the maximum degree of all

composite robots. If the problem instance has degree of

coupling α, our algorithm is complete if we have access to

an external general-purpose path planner that is complete for

up to α degrees of freedom. Although the number of robots

may appear exponentially in the combinatorial parts of the

algorithm (though our experiments show that this worst case

may be avoided), their degrees of freedom do not blow up

the complexity of planning. Thus, our implementation is able

to solve challenging scenarios which cannot be solved by

traditional multi-robot planners. It is applicable to robots of

any kind with any number of degrees of freedom, provided

that our external planner is too.

After a brief review of related work in Section II, we define

in Section III the notions of composite robots and execution

sequences and constraints upon them, which we assume are

returned from our external planner. In Section IV we present

our algorithm and prove its properties, and in Section VI we

discuss our experimental results. We conclude the paper in

Section VII.

II. RELATED WORK

Path planning for multiple robots has been extensively

studied for decades. For the general background and theory

of motion planning and coordination, we refer readers to [10,

13]. In this section, we review prior work that addresses similar

problems as ours.

As mentioned earlier, prior work for multiple robots are

often classified into coupled and decoupled planners. The

coupled approaches aggregate all the individual robots into one

large composite system and apply single-robot motion plan-

ning algorithms. Much of classical motion planning techniques



for exact motion planning, randomized motion planning and

their variants would apply directly [10, 9, 11, 13].

Decoupled approaches plan for each robot individually and

then perform a velocity tuning step in order to avoid collisions

along these paths [29, 23, 18, 20, 22]. Alternatively, other

schemes such as coordination graphs [15], or incremental

planning [21] can help to ensure that no collisions occur along

the paths. Prioritized approaches plan a trajectory for each

robot in order of priority and avoid the positions of previously

planned robots, which are considered as moving obstacles [7].

The choice of the priorities can have a large impact on the

performance of the algorithm [27]. Some planners also search

through a space of prioritizations [3, 4].

In addition, hybrid methods combine aspects of both cou-

pled and decoupled approaches to create approaches that are

more reliable or offer completeness but also scale better than

coupled approaches [1, 2, 14, 26, 19, 5].

Geometric assembly problems initially seem closely related,

especially when they speak of the number of “hands” or

distinct motions needed to assemble and configuration of

objects [16, 24, 17]. The various blocking graphs described in

[28, 8] inspired the constraint graphs that we use. Differences

can be seen on closer inspection: Assembly problems often

restrict motions to simple translations or screws, and the aim

is to create subassemblies that will then move together. (Our

individual robots would need coordinated planning to move

together as a subassembly.) Start positions for objects are

usually uncomplicated, but assembly plans may need to be

carried by some manipulator that must be able to reach or

grasp the objects. In some sense, our algorithm combines these

ideas: it captures constraints and then uses them to reduce the

complexity of the motions that are planned.

III. DEFINITIONS AND PRELIMINARIES

Our multi-robot planning problem is formally defined as

follows. The input consists of n robots, r1, . . . , rn, and a com-

mon workspace in which these robots move (imagine a two-

or three-dimensional scene with obstacles). The configuration

space of robot ri, denoted C(ri), has dimension dim(ri) equal

to the number of degrees of freedom of robot ri. Each robot

ri has a start configuration si ∈ C(ri) and a goal configuration

gi ∈ C(ri).
The task is to compute a path π : [0, 1] ∈ C(r1) × . . . ×

C(rn), such that initially π(0) = (s1, . . . , sn), finally π(1) =
(g1, . . . , gn), and at each intermediate time t ∈ [0, 1], with

robots positioned at π(t), no robot collides with an obstacle in

the workspace or with another robot. At times we will refer to

trajectories, which are the projections of a path into the space

of a subset of robots.

The rest of this section gives precise definitions and prop-

erties for notions that we use to construct our algorithm for

computing plans for composite robots with minimum degree

of coupling.

A. The Coupled Relation from a Solution Path

Consider a path π that solves a multi-robot planning prob-

lem, as defined above. For each robot ri, we define an active

(a) (b) (c)

Fig. 1. Three simple example problems for circular planar robots,
with start (gray) and goal (white) configurations shown. The dark gray
delineates the static obstacles. Solution sequences for (a) = [r3, r2, r1]
and (b) = [r3, r1r2]. Instance (c) has four solution sequences,
[r2, r1, r3, r4],[r2, r1, r4, r3],[r2, r4, r1, r3], and [r4, r1, r2, r3].

interval τi ⊂ [0, 1] as the open interval from the first time

ri leaves its start position to the last time ri reaches its goal

position.

Definition 1 (Coupled relation). Two robots ri, rj are directly

coupled if their active intervals intersect, τi ∩ τj 6= ∅. The

transitive closure of this relation is an equivalence relation, and

we say that robots in the same equivalence class are coupled.

On the interval [0, 1], the equivalence classes of the coupled

relation determine the connected subsets of the union of all

active intervals. If we list the equivalence classes in order of

increasing time, we get a sequence of coupled or composite

robots that can be abstracted from a specific path as an

execution sequence, as we define in the next subsection.

The degree of coupling of a solution path is the maximum

of the sum of the degrees of freedom in any connected set

of active intervals; these are the maximum number of degrees

of freedom that need be considered simultaneously by any

coupled planner to construct or validate this sequential plan.

The degree of coupling of a planning instance is the mini-

mum degree of coupling of any solution path. Our algorithm

finds a solution path that achieves the minimum degree of

coupling α for the given instance, by using an external coupled

planner on problems with at most α degrees of freedom.

While hard, puzzle-like problem instances may still require

a full-dimensional configuration space, we argue that many

“realistic” problems, even those involving many robots, can

be solved with much lower dimensional planning.

B. Execution Sequences

In our algorithm, we will decompose the multi-robot motion

planning problem into lower-dimensional sub-problems that

can be sequentially executed. In these sub-problems, some

individual robots will be coupled and considered as composite

robots by the lower-dimensional planner.

Definition 2 (Composite Robot). We define a composite robot

R ⊆ {r1, . . . , rn} as a subset of the n robots that is treated

as one coupled or composite body. R’s configuration space,

C(R), is the Cartesian product of the configuration spaces of

the robots in R, its dimension is the sum of the degrees of

freedom of the robots in R: dim(R) =
∑

ri2 R dim(ri), and its

active interval is the smallest interval that contains the union

of the active intervals of all ri ∈ R.



Since individual robots can also be thought of as composite,

we will tend to omit the word “composite” and just say

“robot.” When we want to emphasize the composite nature

of a robot, we concatenate the individual robots it consists of.

For example {r1, r2} = r1r2.

Definition 3 (Execution Sequence). We define an execution

sequence S as an ordered partition of the n robots into a

sequence S = (R1, . . . , Rk) of composite robots, such that

R1 ∪ · · · ∪ Rk = {r1, . . . , rn} and Ri ∩ Rj = ∅ for i 6= j.

An execution sequence is valid if it is the sequence of

equivalence classes of the coupled relation for some solution

path (with no collisions).

We call a valid execution sequence a solution sequence.

Our algorithm will find a solution sequence with the

minimum number of degrees of freedom, so we define the

dimension dim(S) of a solution sequence S = (R1, . . . , Rk)
as the dimension of the largest composite robot in the solution

sequence: dim(S) = maxRi2 S dim(Ri). An optimal solution

sequence is a solution sequence S � with minimal dimension

among all solution sequences: S � = arg minS dim(S).
Fig. 1 illustrates three example problems for 2-D circular

robots in the plane, each robot ri must find a path from

the gray start postion si to the corresponding white goal

position gi without collisions. A valid solution path for (a)

is to first move r3, then r2 and then r1 – i.e., execution

sequence S = (r3, r2, r1) solves the problem. Hence, the 6-

D configuration space of problem (a) can be decomposed into

three sequential 2-D sub-problems. For problem (b) there is no

solution by moving individual robots. But a valid solution path

could first move r3, and then move r1 and r2 simultaneously

as a composite robot in a coordinated effort to reach their

goal – i.e., execution sequence S = (r3, r1r2) solves the

problem. Hence, problem (b) can be decomposed into one

2-D sub-problem and one 4-D sub-problem. Problem (c) has

four possible execution sequences, all of which have either r4

or both r1 and r2 moving before r3.

C. Order Constraints from a Robot R
Generalizing from these examples, we can observe that valid

execution sequences depend only on the start or goal positions

of inactive robots.

Observation 4. Execution sequence S is valid if, for all

i ∈ [1, k], robot Ri ∈ S can move from its start to its goal

without collisions, even when the goal configurations of robots

in {R1, . . . , Ri� 1} and the start configurations of robots in

{Ri+1, . . . , Rk} have been added to the obstacles.

By a thought experiment, let’s develop notation for con-

straints on the ordering of robots in solution sequences for

specific trajectories before giving the formal definition. Sup-

pose a specific trajectory for (individual or composite) robot

R has a collision with the goal configuration of robot rj . We

then write R ≺ rj to indicate that R must either complete

its motion before rj begins, or R and rj will be coupled

since their active intervals overlap. Similarly, if the trajectory

collides with the start configuration of robot rk, we may write

rk ≺ R. We collect all collisions with a single trajectory into

a conjunction, then write a disjunction of the conjunctions for

all possible trajectories, and simplify the resulting expression

in disjunctive normal form (DNF), which we denote P(R).
For example, if some trajectory for R collides with no start

or goal positions, then P(R) = > (‘true’), and In general, we

need to keep only the minterms – those conjunctions that do

not contain another as a subset.

For example, in Fig. 1(c) robot r4 can reach its goal without

going through any query configurations of other robots, so

P(r4) = > (‘true’). If, due to static obstacles, some robot

has no path to the goal at all, we could write its expression

as ⊥ (‘false’). Robot r1 can either move through the goal

configuration of r3 and the start configuration of r4 to reach

its goal, or it can move through the start configuration of r2

and the goal configuration of r4. Hence:

P(r1) = (r2 ≺ r1 ∧ r1 ≺ r4) ∨ (r1 ≺ r3 ∧ r4 ≺ r1).

In Fig. 1(b), robot r2 has to move through both the start and

the goal configuration of robot r1. This gives the constraint

P(r2) = r2 ≺ r1∧r1 ≺ r2, which we may abbreviate as r1 ∼
r2. This means that r1 and r2 need to be active simultaneously,

so their motion must be planned as a composite robot r1r2,

for which P(r1r2) = (r3 ≺ r1r2).

The tilde abbreviation, and the fact that our ordering relation

is transitive, allows us to rewrite each conjunction of P(R) in

the following atomic form: we arbitrarily choose a represen-

tative r ∈ R, replace each capital R with the representative

r, and AND the expression
∧

r′2 R r ∼ r0.Thus, for Fig. 1(b),

we have the atomic form P(r1r2) = r3 ≺ r1 ∧ r1 ∼ r2.
Each conjunction has a natural interpretation as a directed

graph in which robots are vertices and directed edges indicate

≺ relations. By transitivity, any directed path from ri to rj
indicates a relation ri ≺ rj and any pair of vertices in the

same strongly connected component are related by ∼. We use

such constraint graphs in our implementation in Section IV-A.

Two properties of these constraint expressions are easy to

observe. First, by construction,

Property 5. For each atomic constraint r ≺ r0 in the constraint

expression P(R) of (composite) robot R, either r ∈ R or

r0 ∈ R.

Second, because any trajectory for a larger composite robot

includes trajectories for subsets, we can observe that the

constraints on the larger robot imply those on the smaller.

Property 6. If R0⊇ R, then P(R0) ⇒ P(R).

This means, for instance, that if a robot ri needs to move

before a robot rj , then any composite robot R involving ri
needs to move before rj . This is an important property, as it

allows us to obtain the constraints on the execution sequence

iteratively, starting with the robots of smallest dimension

(fewest degrees of freedom).



D. Constraints from an Execution Sequence

If we AND the constraints for each robot in an execution

sequence, we get the expression that must be satisfied for it to

be a solution sequence – a sequence in which each composite

robot has a valid trajectory.

Lemma 7. An execution sequence S = (R1, . . . , Rk) is a

solution sequence if and only if S satisfies the constraint

expression P(R1) ∧ · · · ∧ P(Rk).

Proof: If S satisfies P(Ri), (composite) robot Ri can reach

its goal configuration without moving through any of the

goal configurations of robots in {R1, . . . , Ri� 1}, and without

moving through any of the start configurations of robots in

{Ri+1, . . . , Rk}. At the moment of execution of Ri, all robots

in {R1, . . . , Ri� 1} reside at their goal configuration, as they

have already been executed, and all robots in {Ri+1, . . . , Rk}
reside at their start configuration, as they have not yet been

executed. Hence, Ri can validly move to its goal configuration.

If S does not satisfy P(Ri), (composite) robot Ri either has

to move through any of the goal configurations of robots in

{R1, . . . , Ri� 1}, or through any of the start configurations

of robots in {Ri+1, . . . , Rk} in order to reach its goal. As all

robots in {R1, . . . , Ri� 1} reside at their goal configuration and

all robots in {Ri+1, . . . , Rk} reside at their start configuration

at the moment of execution of Ri, it is not possible for Ri to

validly reach its goal. �

Notice that because we AND the DNF expressions for

the robots of an execution sequence, we can convert the

resulting expression back to DNF by distributing across the

new ANDs. The conjunctions of the resulting disjunction

simply take one conjunction from the DNF for each robot

in the execution sequence, so any sequence that satisfies the

expression can directly seen to satisfy the DNF expressions

for each constituent robot.

E. The CR planner for low-dimensional sub-problems

Now, let us postulate a CR planner (coupled or composite

robot planner), that given the workspace, with start and goal

configurations for robots {r1, r2, . . . , rn}, and a small subset

R of these robots, returns the DNF expression P(R) with each

clause in atomic form.

As a proof of existence, we can construct a CR planner

using as a black box any complete planner that can determine

feasibility for the composite robot R in a fixed workspace.

Simply apply the black box to at most 4n�j Rj instances, with

each other robot r0 6∈ R added as an obstacle in its start

position (r ≺ r0), its goal position (r0 ≺ r), both (>), or

neither (r ∼ r0). Each feasible path found adds a conjunction

of all its constraints to the DNF expression, which is simplified

and put in atomic form. Our actual planner, described in

Section V, will be less costly.

In the next section, we present an algorithm that efficiently

finds an optimal solution sequence S � to solve the multi-robot

planning problem. Our algorithm is able to do this by planning

Iteration 1. L = ∅, Rmin = r1, P(r1) = (r2 ≺ r1 ∧ r1 ≺ r4) ∨ (r1 ≺
r3 ∧ r4 ≺ r1).

Iteration 2. L = {r1}, Rmin = r2, P(r2) = r2 ≺ r4∨(r1 ≺ r2∧r2 ≺
r3 ∧ r4 ≺ r2).

Iteration 3. L = {r1, r2}, Rmin = r3, P(r3) = r4 ≺ r3 ∨ (r3 ≺
r4 ∧ r2 ≺ r3 ∧ r1 ≺ r3).

Iteration 4. L = {r1, r2, r3}, Rmin = r4, P(r4) = ⊤, so no change to
graphs.

The algorithm terminates. L = {r1, r2, r3, r4} and the first conjunction
in E has all of its strongly connected components in L. The solution
sequence returned is S = (r2, r1, r4, r3).

Fig. 2. An illustration of the steps of our algorithm on the problem
of Fig. 1(c). In each iteration the constraints P(R) of a new robot are
incorporated into E. We show the conjunctions in E as a set of constraint
graphs. Strongly connected components in the constraint graphs are indicated
by a gray background. Initially E = {⊤}, which corresponds to one empty
constraint graph.

only in configuration spaces whose dimension is less than or

equal to dim(S � ).

IV. INCREMENTAL DISCOVERY OF COUPLING

In this section we explain how to use the CR planner,

which produces constraints on execution sequences induced by

small subsets of robots, to find the lowest degree of coupling

that will solve the given instance of a multi-robot planning

problem. Our algorithm incrementally calls the planner on

higher and higher degree sub-problems, using the discovered

constraints to determine what robots must be coupled. First, we

describe the constraint graph, a data structure for the constraint

expressions we have collected.

A. Constraint Graphs

In our algorithm, we maintain the constraints we have

obtained so far in a constraint expression E. We represent E in

disjunctive normal form, i.e. as a disjunction E = J1∨J2∨· · ·



of conjunctions Ji. Each conjunction J can be represented by

a graph G(J), which we call a constraint graph. A constraint

graph has n nodes, one for each robot ri, and a set of directed

edges that indicate constraints on the order of execution of the

robots. That is, for each atomic constraint ri ≺ rj in J , there

is an edge from the node of ri to the node of rj in G(J) (see,

for example, Fig. 2). If J = >, the corresponding constraint

graph G(>) does not contain any edges.

If a constraint graph contains a cycle, there is a contradiction

among the constraints. This means that the involved robots

need to be coordinated as a composite robot in order to find

a solution. To be more precise, the set of nodes (robots)

in a graph is partitioned into a set of strongly connected

components. A strongly connected component is a maximal

set of nodes that are strongly connected to each other; two

nodes ri and rj are strongly connected if there is a path in

the graph both from ri to rj and from rj to ri. By definition,

each node is strongly connected to itself.

Let GSCC(J) denote the component graph of G(J), which

contains a node for each strongly connected component of

G(J) and a directed edge from node R to node R0 if there

is an edge in G(J) from any r ∈ R to any r0 ∈ R0.

Note that GSCC is a directed acyclic graph. Each node in

GSCC(J) corresponds to a (composite) robot consisting of

the robots involved in the strongly connected component.

Topologically sorting GSCC(J) gives an execution sequence

S(J) of composite robots. Trivially, the following holds:

Corollary 8. If G(J) is a constraint graph corresponding

to conjunction J , then S(J) is an execution sequence that

satisfies J .

B. Incrementally Building the Execution Sequence

To build the expression sequence for an instance of multi-

robot planning, our algorithm primarily maintains a DNF

constraint expression E in the form of constraint graphs for

its conjunctions Ji (if there are no conjunctons, E = ⊥). Our

algorithm also maintains a list L of the (composite) robots that

have been passed to the CR planner and whose constraints

P(R) have been incorporated into E.

Initially, E = {>}, as we begin with no constraints. Now,

iteratively, we select the (composite) robot Rmin that has the

smallest dimension among all (composite) robots for which

we have not yet planned in the execution sequences S(J) of

all conjunctions J ∈ E:

Rmin = argmin
R 2

⋃
J∈E

S(J)nL
dim(R).

Next, the CR planner is invoked on Rmin; it returns the set of

constraints P(Rmin). For each conjunction J in E for which

Rmin ∈ S(J), we do the following:

� Let F = J ∧P(Rmin), and transform F into disjunctive

normal form. (Note that for each conjunction J0 in F the

following holds: J0⇒ J and J0 ⇒ P(Rmin).)
� Remove J from E and add the conjunctions of F to E

(we replace J in E by the conjunctions of F ).

The constraints of P(Rmin) have now been incorporated into

E, so we add Rmin to the set L.

This procedure repeats until either E = ∅, in which case

there is no solution to the multi-robot planning problem, or

there exists a conjunction Jsol ∈ E for which all composite

robots R ∈ S(Jsol) have been planned for and are in L. In this

case S(Jsol) is an optimal solution sequence, which we will

prove below. In Fig. 2, we show the working of our algorithm

on the example of Fig. 1(c).

C. Analysis

Here we prove that the above algorithm gives an optimal

solution sequence:

Lemma 9. In each iteration of the algorithm, the constraints

P(Rmin) of composite robot Rmin are incorporated into E.

Right after the iteration, the following holds for all conjunc-

tions J ∈ E: if Rmin ∈ S(J) then J ⇒ P(Rmin).

Proof: When we incorporate P(Rmin) into E, all J ∈ E for

which Rmin ∈ S(J) are replaced in E by F = J ∧P(Rmin).
Now, all conjunctions J0 ∈ E for which Rmin ∈ S(J0) must

be in F . Hence J0⇒ F and as a result J0⇒ P(Rmin). �

Lemma 10. In each iteration of the algorithm, the constraints

P(Rmin) of composite robot Rmin are incorporated into E.

Its dimension is greater than or equal to the dimensions of

all composite robots in L whose constraints were incorporated

before: dim(Rmin) ≥ maxR2 L dim(R).

Proof: Assume the converse is true: let R be the composite

robot whose constraints were incorporated in the previous

iteration, and let dim(Rmin) < dim(R). Let Jmin be the

conjunction in E for which Rmin ∈ S(Jmin), Then, in the

iteration R was selected, Jmin did not exist yet in E, otherwise

Rmin would have been selected (our algorithm always selects

the lowest-dimensional composite robot). This means that

right before P(R) was incorporated, there was a J ∈ E
for which R ∈ S(J) and Rmin 6∈ S(J) that was replaced

by F = J ∧ P(R) such that Jmin ∈ F . This means that

one or more edges were added to G(J) which caused the

robots in Rmin to form a strongly connected component in

G(Jmin). Hence, these edges must have been between nodes

corresponding to robots in Rmin. As these edges can only have

come from P(R), this means, by Property 5, that R∩Rmin 6=
∅. However, R forms a strongly connected component in G(J)
as R ∈ S(J), so then R ∪ Rmin must also be a strongly

connected component in G(Jmin). R ∪ Rmin and Rmin can

only be strongly connected components at the same time if

R ⊂ Rmin. However, this means that dim(R) < dim(Rmin),
so we have reached a contradiction. �

Lemma 11. After each iteration of the algorithm, the follow-

ing holds for all composite robots R ∈ L whose constraints

have been incorporated into E: for all conjunctions J ∈ E, if

R ∈ S(J) then J ⇒ P(R).

Proof: Lemma 9 proves that right after P(R) is incorporated,

that for all conjunctions J ∈ E, if R ∈ S(J) then J ⇒



P(R). Now, we show that after a next iteration in which

the constraints P(R0) of another (composite) robot R0 are

incorporated, this still holds for R. Let J be a conjunction

in E after P(R0) is incorporated for which R ∈ S(J). Now,

either J already existed after the previous iteration, in which

case J ⇒ P(R), or there existed a J0∈ E after the previous

iteration that was replaced by F = J0 ∧ P(R0) such that

J ∈ F . In the latter case, either J0 ⇒ P(R), in which case

also J ⇒ P(R), or J0 6⇒ P(R) and R 6∈ S(J0). In the latter

case, one or more edges must have been added to G(J0) by

P(R0) that caused the robots in R to form a strongly connected

component in G(J). Along similar lines as in the proof of

Lemma 10, this means that dim(R0) < dim(R). However, by

Lemma 10 this is not possible, as P(R0) was incorporated later

than P(R). The above argument can inductively be applied to

all (composite) robots R ∈ L. �

Theorem 12 (Correctness). The execution sequence S re-

turned by the above algorithm is a solution sequence.

Proof: Let Jsol be the conjunction whose execution sequence

S(Jsol) = (R1, . . . , Rk) is returned by the algorithm. Then,

all composite robots Ri ∈ S(Jmin) are also in L. By Lemma

11, Jsol ⇒ P(R1) ∧ · · · ∧ P(Rk). Hence, by Corollary 8 and

Lemma 7, S(Jmin) is a solution sequence. �

Theorem 13 (Optimality). The execution sequence S returned

by the above algorithm is an optimal solution sequence.

Proof: Sketch: Consider any other solution path π0, and its

execution sequence S0 that comes from the equivalence classes

of the coupled relation defined in Section III. This execution

sequence satisfies the contraints induced by its robots, so the

only way it could not have been discovered is for a different

sequence of composite robots to be formed. Since the degree

grows monotonically, and at all times the robot of lowest

dimesion/degree is added to the plan, the execution sequence

that is found by the algorithm cannot have larger degree. �

Corollary 14 (Efficiency). The dimension of the highest-

dimensional configuration space our algorithm plans in is

equal to the dimension of the highest-dimensional (composite)

robot in an optimal solution sequence.

V. IMPLEMENTATION AND OPTIMIZATION

In this section we describe some details of the implementa-

tion of our algorithm. We first describe how we maintain the

set of constraints E in our main algorithm. We then describe

how we implemented the CR planner that gives the constraints

P(R) for a given composite robot R.

A. Main Algorithm

The implementation of our algorithm largely follows the

algorithm as we have described in Section IV-B. We maintain

the logical expression E in disjunctive normal form J1 ∨J2 ∨
· · · as a set of constraint graphs {G(J1), G(J2), . . .}. Each

graph G(J) is stored as an n × n boolean matrix, where

a 1 at position (i, j) corresponds to an edge between ri
and rj in G(J). A boolean matrix can efficiently be stored

in memory, as each of its entries only require one bit. An

operation J ∧ J0 of conjunctions J and J0 can efficiently be

performed by computing the bitwise-or of its corresponding

boolean matrices. Also, checking whether J ⇒ J0 is easy;

it is the case when the bitwise-or of the boolean matrices of

G(J) and G(J0) is equal to the boolean matrix of G(J).
All graphs G(J) are stored in transitively closed form.

The transitive closure of a boolean matrix can efficiently be

computed using the Floyd-Warshall algorithm [6]. Given a

boolean matrix of a transitively closed graph G(J), it is easy

to infer the strongly connected components of G(J).

B. Composite Robot Planner

The constraints P(R) for a (composite) robot R are ob-

tained by path planning between the start configuration of

R and the goal configuration of R in its configuration space

C(R), and by considering through which query configurations

of other robots R need to move. For our implementation, we

sacrifice some completeness for practicality, by discretizing

the configuration space C(R) into a roadmap RM(R). Our

discretization is similar to the one used for the planner

presented in [26]. We sketch our implementation here.

Prior to running our algorithm, we construct for each indi-

vidual robot ri a roadmap RM(ri) that covers its configuration

space C(ri) well. Let us assume that the start configuration si
and the goal configuration gi of robot ri are present as vertices

in RM(ri). Further, each vertex and each edge in RM(ri)
should be collision-free with respect to the static obstacles in

the workspace. The roadmaps RM(ri) can be constructed by,

for instance, a Probabilistic Roadmap Planner [9]. They are

reused any time a call to the CR planner is made.

The (composite) roadmap RM(R) of a composite robot

R = {r1, . . . , rk} is defined as follows. There is a vertex

(x1, . . . , xk) in RM(R) if for all i ∈ [1, k] xi is a node

in RM(ri), and for all i, j ∈ [1, k] (with i 6= j) robots ri
and rj configured at their vertices xi and xj , respectively,

do not collide. There is an edge in RM(R) between vertices

(x1, . . . , xk) and (y1, . . . , yk) if for exactly one i ∈ [1, k]
xi 6= yi and xi is connected to yi by an edge in RM(ri) that

is not blocked by any robot rj ∈ R (with i 6= j) configured at

xj . This composite roadmap is not explicitly constructed, but

explored implicitly while planning.

Now, to infer the constraints P(R) for a (composite) robot

R, we plan in its (composite) roadmap RM(R) using an al-

gorithm very similar to Dijkstra’s algorithm. However, instead

of computing distances from the start configuration for each

vertex, we compute a constraint expression P(x) for each

vertex x. The logical implication “⇒” takes the role of “≥”.

The algorithm is given in Algorithm 1.

Note that unlike Dijkstra’s algorithm, this algorithm can

visit vertices multiple times. In the worst case, this algorithm

has a running time exponential in the total number of robots n,

as the definition of P(R) in Section III-E suggests. However,

in line 16 of Algorithm 1 many paths are pruned from further

exploration, which makes the algorithm tractable for most

practical cases. The planner is sped up by ordering the vertices





α = n α = 2 α = 3 α = 4
n time n time n time n time

5 1.39 20 0.30 27 18.8 20 41.7
6 44.0 22 0.69 30 38.8 24 167
7 n/a 24 2.15 33 75.6 28 542

26 7.69 36 146 32 1254
28 42.4 39 287 36 3356
30 261 42 672 40 7244

Fig. 4. Performance results on scenario (b). Running times are in seconds.

indicate that (for constant degree of coupling) the running

time increases polynomially with the number of robots for

experiments with up to approximately 30 robots. There is a

small exponential component (due to combinatorics), which

starts to dominate the running time for 30 or more robots.

Nontheless, these results show that our approach is able to

solve problems which could not be solved by either fully

coupled planners or decoupled planners.

VII. CONCLUSION

In this paper, we have presented a novel algorithm for path

planning for multiple robots. We have introduced a measure

of “coupledness” of multi-robot planning problem instances,

and we have proven that our algorithm computes the optimal

solution sequence that has the minimal degree of coupling.

Using our implementation, we were able to solve complicated

problems, ranging from problems with a relatively few robots

and high degree of coupling to problems with many robots

and a low degree of coupling.

The quality of our solutions, usually defined in terms of

arrival times of the robots [12], is not optimal as the computed

robot plans are executed sequentially. An idea to improve this

is to use a traditional prioritized planner in a post-processing

step, and have it plan trajectories for the (composite) robots

in order of the solution sequence our algorithm computes.

Another idea for future work is to exploit parallelism

to increase the performance of our algorithm. Our current

algorithm is iterative, but it seems possible that planning for

different (composite) robots can be carried out in parallel.

A limitation of our current approach is that it computes a

sequence of complete robot plans only (i.e. plans that go from

start to goal). This causes more coupling than what would

seem necessary for some problem instances. For example if

three robots block the centers of a long hall that a fourth

robot is trying to traverse, then all four would be coupled even

though the three could each move out of the way in turn. Even

though the three have no direct coupling, the are coupled by

transitive closure through the fourth. If we add intermediate

goals for the fourth, however, and use our ordering constraints

to specify that these intermediate configurations must be

visited in order, then it is easy to reduce the degree of coupling.

Thus, the selection and placement of intermediate goals seems

a fruitful topic for further study.

REFERENCES

[1] R. Alami, F. Robert, F. Ingrand, S. Suzuki. Multi-robot coopera-
tion through incremental plan-merging. Proc. IEEE Int. Conference on

Robotics and Automation, pp. 2573–2579, 1995.

[2] B. Aronov, M. de Berg, F. van der Stappen, P. Švestka, J. Vleugels. Mo-
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