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Abstract— We consider policy search for reinforcement learn-
ing: learning policy parameters, for some fixed policy class, that
optimize performance of a system. In this paper, we propose
a novel policy gradient method based on an approximation we
call the Signed Derivative; the approximation is based on the
intuition that it is often very easy to guess thedirection in which
control inputs affect future state variables, even if we do not
have an accurate model of the system. The resulting algorithm
is very simple, requires no model of the environment, and we
show that it can outperform standard stochastic estimators of
the gradient; indeed we show that Signed Derivative algorithm
can in fact perform as well as the true (model-based) policy
gradient, but without knowledge of the model. We evaluate the
algorithm’s performance on both a simulated task and two real-
world tasks — driving an RC car along a specified trajectory,
and jumping onto obstacles with an quadruped robot — and in
all cases achieve good performance after very little training.

I. I NTRODUCTION

In this paper we consider policy search for reinforcement
learning. In this setting, one considers a parametrized control
policy and then, by interacting with the environment, modifies
the parameters to optimize some cost function. For example,
if our control task was to drive a car along a desired trajectory,
the cost function could penalize deviations from the trajectory,
and the control policy could determine the steering and throttle
as a simple (say, linear) function of current state features; in
this domain, the policy search task would involve learning
the coefficients on the state features to obtain a low cost (i.e.,
follow the trajectory well). We focus in particular on the policy
gradient approach, where we optimize the cost function using
gradient descent with respect to the policy parameters.

While there exist many different methods for approximating
the policy gradients, in this paper we propose a new algorithm
that makes use of what we call theSigned Derivativeapprox-
imation. This method allows us to compute an approximation
to the policy gradientwithout a model of the system. Our
algorithm is based on the following simple insight: the only
term in the policy gradient that depends on the dynamics
model is thederivativeof future state elements with respect
to the control inputs. However, while these true derivatives
are difficult to compute, we claim that often it is very easy to
estimate thesignof many of these derivatives; that is, we only
want to know the generaldirectionof how control adjustments
will affect the state. Consider again the example of the car
mentioned earlier, where for instance one of the state variables
is lateral deviation from the desired trajectory, and one ofthe
controls is the steering angle. While it may be very difficult
to know the true derivative of future lateral deviations with
respect to the steering angle, the sign of the derivative is in

fact quite obvious: turning more to the left typically results
in a lateral deviation that is also more to the left. While such
“obvious” derivative signs clearly don’t apply to all control
tasks, we demonstrate in this paper that they do apply in
many interesting domains; in such situations, we show that
we can drastically improve the performance of policy gradient
methods by using these signed derivatives. Indeed, we show
that in many cases, the Signed Derivative method not only
outperforms standard stochastic policy gradient algorithms
(such as the REINFORCE [15] family of algorithm), but
actually performs as well as the true (model-based) policy
gradient algorithm, but without any knowledge of the model,
only the ability to simulate a single trace.

The remainder of this paper is organized as follows. In
Section II we present preliminary material and describe the
general Signed Derivative algorithm more formally. In Section
III we present theoretical results. In Section IV we present
empirical results for the algorithm on a number of different
domains, both simulated and real-world. Finally, in Section V
we discuss related work, and conclude the paper in Section
VI.

II. THE SIGNED DERIVATIVE ALGORITHM

A. Preliminaries and Notation

We consider control in a Markov Decision Process (MDP),
which is a tupleM = (S,A, T,H,C), whereS is a set of
states,A is a set of actions,T is the (unknown, but temporarily
assumed to be deterministic) system dynamicsT : S×A→ S,
H is a time horizon andC is a known (one-step) cost function
C : S × A → R. Since we are concerned with general,
continuous state and action domains, we letS ⊆ R

n and
A ⊆ R

m. We can capture time-varying dynamics and costs by
including time as a state variable, though for the remainderof
this paper we will make any time dependence explicit. Finally,
although our algorithm is extendable to general cost functions,
for the sake of concreteness we will here assume a common
quadratic form of the reward function

Ct(st, ut) = (st − s⋆
t )

T Qt(st − s⋆
t ) + uT

t Rtut

where s⋆
t denotes the desired state of system at timet, and

Qt and Rt are diagonal positive semidefinite matrices that
penalize state deviation and control respectively.

A (time-dependent) policyπ : S × R → A is a mapping
from states and times to actions. As we are focused on the
policy-search setting in this paper, here we consider policies
parametrized by some set of parametersθ — we use the
notationu = π(s, t; θ) to denote the policyπ, parametrized



by θ, evaluated at states and timet. For example, a common
class of policies that we will consider in this paper is policies
that are linear in the state features

u = π(s; θ) = θT φ(s, t)

whereφ : S × R → R
k is a mapping from states and times

to features andθ ∈ R
m×k is a set of parameters that linearly

map these features into controls.
Given a policy, we define themulti-step costfunction (also

called the value function, or just the cost function, as opposed
to the one-step cost function defined above above) as the sum
of all one-step costs over the horizonH,

J(s0, θ) =

H∑

t=1

Ct(st, ut−1)

where ut = θT φ(st, t) and wherest+1 = T (st, ut). We
can now more formally define the policy gradient algorithm
as a gradient descent method that repeatedly updates the
parameters according to

θ ← θ − α∇θJ(s0, θ)

whereα is a step size and∇θJ(s0, θ) is the gradient of the
cost function with respect to the policy parameters. Although,
computing this gradient term can be quite complicated without
a model of the system, in the next section we describe a simple
approximation method.

B. The Signed Derivative Approximation

In this section we derive a simple approximation to the
policy gradient, using an approximation we called thesigned
derivative. We want to emphasize that the final form of the
algorithm, shown in Algorithm 1, is quite simple, even though
the derivation is somewhat involved.

To motivate the signed derivative method, we first consider
the basic question ofwhy ones needs a model of the system
to compute the policy gradient∇θJ(s, θ). We will derive this
result shortly, but it turns out that the policy gradient depends
on the model only through terms of the form

(
∂st

∂ut′

)

for t > t′. These terms are theJacobiansof future states
with respect to previous inputs. They provide the critical
motivation for the signed derivative approximation, so it is
worth looking at them more closely. These Jacobians are
matrices

(
∂st

∂u
t′

)
∈ R

n×m where thei, j element of the
(

∂st

∂u
t′

)

denotes the derivative of theith element of the statest with
respect to thejth element ofut′ , i.e.,

(
∂st

∂ut′

)

ij

≡
∂(st)i

∂(ut′)j

.

In other words( ∂st

∂u
t′

)ij indicates how theith element ofst

would change if we made a small adjustment to thej element
of the control at a previous timet′ (and assuming we are
following the policyθ).

In general, the elements of these Jacobians are quite difficult
to compute, as they depend on the true dynamics model
of the environment and the policy parametersθ. However,
the signed derivative approximation is based on the insight
that often times it is fairly easy to guess thesigns of the
dominant entries of these matrices: this only requires knowing
the generaldirectionof how previous control inputs will affect
future states. Returning to the example of driving a car, it may
be very difficult to determine the derivative of a future state
with respect to the steering wheel, but thedirection of the
gradient seems fairly obvious: turning the wheel more to the
left will likely result in future states also more to the left.

Furthermore, there is another property of these Jacobians
that allows us to come up with a reasonable approximation:
in many control settings, each state is primarily affected by
only one control input. For example, if we are driving our
car along a straight line, one state variable (for example, the
distance traveled along the line), would be primarily affected
by only one control (in this case, the gas pedal). Indeed, many
control tasks seem to be expressly designed such that this isthe
case. For example, imagine trying to drive a car where both
the steering wheel and gas pedal controlled some different
combinations of both the wheel angle and the throttle; while
such a control system is technically “equivalent” to a standard
car, it would take much more work to learn. This suggests,
at least anecdotally, that humans also exploit these orthogonal
control effects, and so we can expect many control tasks to
be designed in this way. In other words, we can expect one
element in each row of the Jacobians to be larger than the
others, corresponding to the “dominant” control element, and
these are precisely those elements where we can guess their
sign.

Given this discussion, the signed derivative approximation is
quite straightforward. We approximateall the Jacobian terms
with a single matrixS ∈ R

n×m, called the signed derivative,
where entries inS correspond to the signs of the dominant
entries in the Jacobians (which, by our discussion above,
means thatS has only one non-zero entry per row). Consider
one last time the driving example, and suppose that the car
is facing primarily along thex axis. If we represent the state
of the car as its position and orientation(x, y, θ), and letu1

andu2 be the throttle and steering angle respectively. Then a
reasonable estimate for the signed derivative would be

S =




1 0
0 1
0 1


 .

For instance,S11 = 1 means that the first state variable (x) is
primarily controlled by the first control input (throttle).This
makes sense, since the car is mostly aligned with thex axis,
so throttle will primarily affect this state. Similarly,y and θ
are primarily affected by the second control (steering), which
also makes sense, because the steering wheel can cause the
car to both turn and veer to the side.

Finally recall, from the beginning of this section, that the
Jacobians were the only terms in the policy gradient that



Algorithm 1 Policy Gradient w/ Signed Derivative (PGSD)

Input:
S ∈ R

m×n: signed derivative matrix
H ∈ Z+: horizon
Qt ∈ R

n×n, Rt ∈ R
m×m: diagonal cost function matrices

α ∈ R+: learning rate
φ : R

n × R→ R
k: feature vector function

θ0 ∈ R
k×m: initial policy parameters

Repeat:
1. Execute policy forH steps to obtain

u0, s1, . . . , uH−1, uH .
2. Compute approximate gradients w.r.t. controls:

∇̃ut
J(s0,Θ)←

H∑

t′=t+1

ST Qt′(st′ − s⋆
t′) + Rtut

3. Update parameters:

θ ← θ −
α

H

H−1∑

t=0

φ(st, t)(∇̃ut
J(s0,Θ))T

required a model. Therefore, after making such the signed
derivative approximation we can now perform (approximate)
policy gradientwithout the need for any model of the system.
This is precisely the method that we show in Algorithm 1.
The precise form of the gradient updates is derived in the
next section, but the basic idea of the algorithm is simple:
we are just performing policy gradient, replacing the Jacobian
terms with the signed derivative approximationS. It may seem
surprising that the method would perform well, given that the
signed derivative is a very crude approximation to the true
Jacobians; but, we will show, from both a theoretical and
empirical perspective, that we can expect the algorithm to
perform well in many situations.

C. Formal Derivation of the Policy Gradient

Here we prove the claim made in the previous section,
that the policy gradient depends only on the dynamics model
through the Jacobian terms, and we derive the precise form of
the gradient given in Algorithm 1. The derivation is slightly
technical, but the algorithm itself can be understood just from
the discussion above.

To avoid certain dependencies, we have to initially consider
the gradient of the cost function with respect toH different
sets of policy parameters for each time,Θ = {θ0, . . . , θH−1}.
We will then take a gradient step in terms of these parameters,
projected back into the space where they are all equal. The
gradients are given by

∇θt
J(s,Θ) =

(
∂ut

∂θt

)T

∇ut
J(s,Θ)

= φ(st, t) (∇ut
J(s,Θ))

T
.

using the fact thatut = θT
t φ(st, t) and thatst doesn’t depend

on θt. Furthermore, using the definition ofJ ,

∇ut
J(s,Θ) = ∇ut

H∑

t′=1

(st′ − s⋆
t′)

T Qt′(st′ − s⋆
t′) + uT

t Rtut

=

H∑

t′=t+1

(
∂st′

∂ut

)T

Qt′(st′ − s⋆
t′) + Rtut

This gives a gradient with respect to eachθi (where, as stated,

the only model-dependent terms are the Jacobians
(

∂s
t′

∂ut

)T

).
Therefore, the gradient of the cost with respect to asingle θ
is equivalent to taking a step in the direction of all theseθi’s
then projecting onto the space whereθ0 = θ1 = . . . = θH−1.
This is accomplished by updating eachθt according to

θt ← θt −
α

H

H−1∑

t′=0

∇θ
t′
J(s,Θ),

i.e., the policy gradient with respect to a single parameterθ
is also given by

∇θJ(s, θ) =
1

H

H−1∑

t=0

∇θt
J(s,Θ).

As stated, the only terms that depend on the model in this sum
are the Jacobians. This derivation should make it apparent that
Algorithm 1 is simply approximating the policy gradient by
substituting the signed derivative for all the Jacobian terms.

III. T HEORETICAL RESULTS

Given that the signed derivative is admittedly a rather
crude approximation to the true Jacobians, there remains some
question as to why we might expect such an approach to work.
While the ultimate test of the algorithm’s usefulness is, of
course, its empirical performance, the results we present here
can give insight and intuition into why we obtain the positive
results shown in latter sections. We first describe the basic
intuition behind the analysis.

There are many possible sources of error for any policy
gradient algorithm, but here we analyze the two types of
error introduced by the signed gradient approximation itself.
First, the signed gradient allows only one control variable
to influence a given state variable; even if a state element
is primarily affected by one control, there most likely exist
smaller influences from the other controls as well. Second,
the signed gradient makes no attempt to capture the relative
magnitudes (or the magnitudes of any kind) of the entries in
the Jacobian. Formally, these approximations are represented
as

∂st

∂ut′
= D(S + Et,t′) (1)

for the signed derivativeS and matricesEt,t′ ∈ R
m×n and

positive diagonalD ∈ R
n×n. TheD matrix scales the entries

in the signed derivative, accounting for the second type of
error mentioned above. As we will see more formally below,
this type of error isn’t overly costly, since it has the effect
of simple scaling the entries of the cost functions. Especially



in the extreme case where policy gradient finds a solution
that obtains near-zero cost, the actual entries ofQt become
unimportant.

The Et,t′ terms capture other errors: they add arbitrary
constants to the entries in the signed derivative, accounting
for the effects of additional control inputs on the states and
for time-dependent variation in the relative scaling of the
Jacobian. In the worst case, there is little that can be done
about such errors: if the entries ofEt,t′ are large, then the
gradient approximation using the signed derivative can be very
far from the true gradient. However, there is a great deal
of reason to believe that, in many situationsEt,t′ won’t be
too large: time-varying scaling should be relatively smallover
short horizons, and from the discussion in the previous section,
we expect cross-terms in the Jacobian to be relatively small
in magnitude. And as formalized below, if theEt,t′ are small,
then we expect the signed derivative to perform well.

Theorem 1:Using the notation from (1), suppose
‖Et,t′‖2 ≤ ǫ for all t, t′.1 Define the modified cost function
Q̃t = DQt. Then, given additional technical assumptions
(described fully in the appendix), PGSD will converge with
probability one to some solutioñθ that is “close” to a local
minimum of the cost functionJQ̃(θ), the cost function that
usesQ̃t (but the sameRt) as the cost matrices:

‖∇θJQ̃(θ̃)‖ ≤ O(ǫ).

Furthermore, if performing gradient descent with respect to the
true gradient (of the actual cost function) results inη-optimal
policy parameters — i.e.,JQ(θ⋆) ≤ η — then PGSD also
obtains an orderη-optimal solution2

JQ(θ̃) ≤ κ(D)η + O(ǫ).

Proof: (sketch) The full proof is given in the appendix3,
but we provide a very brief sketch. The proof proceeds in three
steps. First, we show that the gradient approximated using the
signed derivative is equivalent to the true gradient using the
Q̃ costs, plus a bounded error term

∇̃θJQ(θ) = ∇θJQ̃(θ) + Ẽ

for ‖Ẽ‖ ≤ O(ǫ). Second, we show that following this
approximate gradient using a stochastic gradient method will
converge, with probability one, to a point that is close to
a minimum of JQ̃(θ). Finally, we show that given suitable
assumptions about the region of convergence, a policy that is
close to locally optimal forJQ̃(θ) will also be close to locally
optimal for JQ(θ).

IV. EXPERIMENTAL RESULTS

A. Simulated Two-Link Arm

While we will present experiments on real systems shortly,
we begin by presenting an evaluation of our proposed method

1The ‖ · ‖2 norm of a matrix is equivalent to its maximum singular value.
2
κ(·) denotes the condition number of a matrix.

3Additional material, including the full appendix with this proof, is available
at http://cs.stanford.edu/ ∼kolter/rss09sd .
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Fig. 1. Two-link pendulum trajectory following task.

on a simulated two-link arm, in order to rigorously com-
pare to previous policy gradient approaches, and to pro-
vide a readily available implementation of our approach.
Code for the all the results in this section is available at
http://cs.stanford.edu/˜kolter/rss09sd . We
emphasize that the purpose of this section is to specifically
compare PGSD with other policy gradient approaches. The
control task itself is fairly straightforward, and many other
approaches such as adaptive control or iterative learning con-
trol could also be applied, though this is beyond the scope of
this paper; we will discuss these related works more in Section
V.

The two-link pendulum is a well-known control task in
robotics and control. The system, shown in Figure 1 consists
of two planar links; the state consists of the joint angles
and velocities of both joints and the control specifies a
torque at each of the joints. The equations of motion can be
easily derived from Lagrangian dynamics, and we introduce
stochasticity to the system by adding Gaussian noise to the
torques before integrating the equations of motion. The task
we consider here, also shown in the figure, is to move the
end effector along some desired trajectory. When the model
of the system is known, it is fairly easy to apply classical
control methodologies such as inverse dynamics or LQR to
find an optimal controller, but of course we don’t provide this
model to PGSD or other comparable algorithms. We feel that
this is a particularly demonstrative example for the Signed
Derivative algorithm, since it is well-known that thereare
cross terms that cause all joints to be affected by all the control
inputs — for instance, a common (more challenging) task is to
swing the pendulum upright and balance by applying torques
only to the elbow — yet we claim that the Signed Derivative
approximation is still reasonable, since joints areprimarily
affected by their own control.

The cost function for this domain penalizes deviations from
the desired joint angles (we first computed the trajectory in
joint space), and we use a time horizon ofH = 5. Note that
this doesn’t mean that the controller only needs to follow the
trajectory for 5 steps, but rather that at each time the controller
should ideally act optimally with respect to a receding horizon
of H = 5; since the cost function itself “guides” the arm
along the trajectory, such a horizon is suitable. We use a linear
control policyut = θT φ(st, t) whereφ contains 1) deviations
from desired joint angles, 2) deviations from desired joint
velocities, 3) desired joint accelerations, and 4)sin(2πt/ttotal)
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Fig. 2. (top) Trajectory from initial PD controller. (bottom) Trajectories from
controller learned using PGSD.
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Fig. 3. (top) Trajectory from initial PD controller. (bottom) Trajectories from
controller learned using PGSD.

wherettotal is total time for the complete trajectory (this last
term was added to account for a visible periodic pattern in
the controls). This leads to s total of 14 parameters for the
policy. For algorithms that require a stochastic policy, we
added Gaussian noise to the parameters:ut = (θ+ǫt)

T φ(st, t),
(ǫt)ij ∼ N (0, σ).

Figure 4 compares the performance versus time of PGSD,
and a well-known policy gradient RL algorithm, the REIN-
FORCE algorithm.4 All free parameters of the learning algo-
rithms (gradient step sizes, policy noise, number of episodes)
were hand-optimized to give that fastest convergence that
didn’t cause any divergence issues. As the figure shows, PGSD
drastically outperform the other methods, converging much
faster to a low-cost policy. This improvement is especially
notable given that the REINFORCE algorithm is actually
given an advantage: since the task we’re considering is not
episodic (at least not at the time-scale of the horizon), episodic
algorithms don’t immediately apply, and so we instead allow
the algorithm the ability to reset to previous states observed
along the trajectory. The REINFORCE without resets in the
fiture does not have such an advantage, but also performs much
worse. Figures 3 and 2 show the resulting controller learned

4We intentionally scaled the parameters of this control task to be the same
order of magnitude, so more advanced techniques such as natural gradients[6,
11] didn’t improve performance significantly. In preliminary experiments we
also evaluated a variety of finite difference and weight perturbation methods,
but didn’t notice a substantial improvement over REINFORCE for this task.
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by the PGSD algorithm after 2000 time steps (4 times through
the trajectory), along with the trajectory achieved by the initial
PD controller (used to initialize all the learning algorithms).

We also compare, in Figure 5, the performance of the
PGSD algorithm, policy gradient using the true gradient from
the model, and an optimal LQR controller. Not surprisingly,
the LQR controller performs best: this controller is built by
linearizing around the (known) dynamics at each operating
point, then computing a series of non-stationary policies for
each point (in total, the LQR controller has 9000 parameters).
However, using only 14 parameters, the true policy gradient
and PGSD algorithm are able to obtain a controller that per-
forms relatively close to this full LQR controller. Furthermore,
the most important result is that the learning curve for PGSD
is virtually indistinguishablefrom the true policy gradient
learning curve; despite the rather crude approximation made
by the signed derivative, this resulting algorithm performs just
as wellon this task, and requires no model of the system (and
therefore also less computation time, since there is no need
for time-consuming finite difference computations).

B. Autonomous RC Driving

In this section we apply the PGSD algorithm to the task
of learning to drive an autonomous RC car along a desired



Fig. 6. RC car used for the driving experiments.
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Fig. 7. Desired trajectory for the autonomous RC driving experiments, with
trajectory for initial PD controller

trajectory. Figure 6 shows the car, a Tamiya TRF415, which
is about 40cm long and 20cm wide. A pattern of LED lights
is attached to the car, and tracked by an external PhaseSpace
motion capture system for pose estimation. All processing is
done on a workstation PC, with controls transmitted to the car
at 50hz.

The simplest representation of the car’s state is as six
dimensional vector representing the 2D positionx, y, the
orientationθ, and the time derivativeṡx, ẏ, θ̇. However, a more
natural representation for the signed derivative approachis
to represent the car’s state relative to some desired trajectory
— here the trajectory is specified as a continuous spline that
gives the desired state as a function of time. In this alternate
representation, the state consists of the longitudinal, lateral,
and angular deviation (and their derivatives) from the desired
trajectory. The control is two dimensional, consisting of a
commanded throttle and steering angle.

We use the same form of linear controller as in the previous
sections, but whereφ(s, t) now contains 1) the full state
(represented as the deviation terms), 3) the desired velocities,
relative to the car frame, 3) the deviations for a target state
0.5 seconds and 4) a constant term. Some of theθ parameters
are forced to be zero (so that, for instance, the throttle doesn’t
depend on the lateral deviation), for a total of 16 parameters
in the policy. The cost function penalizes the longitudinal,
lateral, and angular deviation, any control outside a specified
valid range, and control that changes more that some amount
between two time steps (to minimize oscillations). We used a
time horizon ofH = 25.
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Fig. 8. Desired trajectory for the autonomous RC driving experiments,
with typical trajectory learned using PGSD after approximately 20 seconds
of learning.
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Figures 8 and 7 show the control task we consider: driving
the car in an irregular figure-eight pattern at varying speeds
(2.0 m/s along the larger loop, 1.5 m/s along the smaller loop).
The figure also shows the trajectory followed by an initial PD
controller: while the PD controller follows the overall pattern
of the trajectory, it clearly does not perform very well. Figure
9 shows the learning curve of the PGSD algorithm. As the
figure shows, PGSD is able to very quickly — within an
average of 20 seconds, about 3 times around the trajectory
— obtain a policy that performs far better than the initial PD
controller. We show a typical trajectory from one of these
learned controllers in Figure 8. The learned policies do not
perform flawlessly — the car still sometimes veers off the
desired path — but we feel this is largely due to the limited
policy class itself; to perform better, one might need more
complex, time-varying policies, to capture the fact that the car
needs to behave differently at different points along the path.
Nonetheless, PGSD converges to a very reasonable policy —
in fact, better than any we were able to hand tune in the same
policy class — in just 20 seconds of learning.

C. LittleDog Jumping

In this section we present results on applying PGSD to
the task of “jumping” the front legs of a quadruped robot to
quickly climb up large steps. The “LittleDog” robot that we



Fig. 10. The LittleDog robot.

Fig. 11. The desired task for the LittleDog: climb over three large steps.

use for this task, shown in Figure 10, is designed and built by
Boston Dynamics, Inc. The task we are concerned with here is
shown in Figure 11: we want to quickly climb up three steps,
whose height is approximately equal to the robot’s ground
clearance. Because the steps are so large, the most efficient
motion to climb up is to jump the two front legs on a step,
then pull the rest of the body up.

However, jumping the front legs on the LittleDog robot is
not a trivial task. The LittleDog’s legs are not powerful enough
to force its body off the ground, so the only means of jumping
is to lean the body backwards until the virtually all the mass
rests on the hind legs, then quickly raise the front legs and
push forward before the robot falls over. Figure 12 shows a
properly executed front leg jump. However, if the weight is
not shifted properly, the robot will either plant it’s feet into
the step, or flip over backward. It’s very difficult to correct
such failures, because usually by the time it is apparent that
the robot has failed to jump properly, the robot does not have
the power to correct itself. Therefore, jumping is a “one-off”
maneuver: we guess an amount to shift backward, then apply
an open-loop sequence of joint commands, hoping to jump
successfully. The situation is made complicated because the
“correct”amount to shift the weight depends, for example, on
the state of the robot, namely the current position of the COG
relative to the back feet, and the forward velocity of the robot.
Because we want a policy that can jump regardless of the
initial conditions, we applied the PGSD algorithm to learn a
jumping policy that predicts the correct amount to shift given
features of the current state.

Fig. 12. A properly executed jump.

Although full state space for the LittleDog is 36 dimensional
(12 joints and twelve joint velocities plus a 6D pose and
6D pose velocities), we don’t need to take into account
the complete state. Rather, the only state element that is
particularly crucial for the jumping maneuver is the pitch of
the body: if the pitch is too small, the dog won’t clear the step,
but if it is too large, the dog will flip backward. Therefore, the
cost function can depend only on the pitch of the dog. The
control is a number that indicates how far back to shift the
weight before pushing forward; we determine the control as
a linear function of three features: 1) the current shift of the
center of mass, 2) the forward velocity of the dog and 3) a
constant term.

There is one straightforward generalization of the PGSD
algorithm, as presented so far, that we make for this task.
Although the cost function depends only on the pitch of the
robot, it is difficult to know the “optimal” pitch — unlike
previous tasks where the optimal state value was clearly
defined. Instead, the readily observable quantity is simply
whether the jump succeeded, or whether the robot either didn’t
clear the step or flipped over. Therefore, if we define the one-
step cost as theℓ1 error between the pitch and optimal pitch,
then the gradient is just the sign of the direction we should
move our control in. WhenH = 1, the PGSD update then
takes on a very simple form:

θ ←





θ − αφ(s) robot didn’t clear step
θ jump succeeded
θ + αφ(s) robot flipped backwards

Despite the simplicity of this update rule, it works well in
practice. We evaluated this PGSD variant on the LittleDog
robot, attempting to climb the three steps as shown in Figure
11. After 28 failures (either flipping backwards or failing
to clear the step), the robot successfully jumped all three
steps for the first time. After 59 failures, the learning process
had converged on a stable controller: the robot succeeded in
climbing all three steps for 13 out of the next 20 trials. Thisis
far better than any policy we had been able to code by hand.5

A video of the learning process on the dog is available at the
website mentioned previously.

5While it is possible to increase the reliability of the systemby adding extra
steps to ensure that the robot always enters a similar configuration before each
jump, in these experiments we wanted to test precisely how wella controller
could perform under many different circumstances.



V. RELATED WORK

As mentioned in the introduction, there is a great deal of
work on policy gradient methods for reinforcement learning.
If a model of the system is known, then we can compute the
gradient using simple finite difference methods — this holds
even in stochastic domains if we are allowed to fix the random
seeds which lead to this stochasticity, an approach known as
the PEGASUS algorithm [10]. These model-based methods
have been applied to many robotics domains. However, such
a model might not always be available, or might be difficult to
learn from data. Additionally, as we have shown, our PGSD
method can sometimes perform as well as the model-based
methods without any model other than the signed derivative
approximation.

In situations where we have no model, we can still apply
finite difference methods or weight perturbation, so long as
the step sizes are large enough to overcome noise. Such an
approach was successfully applied to the task of learning a
quadruped trotting gait in [8]. Recently, [13] investigated the
effect of sampling distributions on the signal-to-noise ratio of
these and similar gradient updates.

A related but different approach uses a likelihood ratio
trick to obtain an estimate of the gradient using a number
of episodes run under the system and policy of interest: the
REINFORCE [15] algorithm was the first of such methods,
but many extensions and generalization have been proposed
[4, 5, 11, 7]. There has also been work on estimating and
using the natural gradient, a gradient that is invariant to
reparameterizations of the policy [6, 3, 12]. However, most
of these algorithms require running multiple episodes in order
to obtain a reasonable estimate of the gradient (or natural
gradient), which is difficult for non-episodic tasks such as
those we consider. In these domains, PGSD has the strong
advantage of only requiring a single episode to obtain an
estimate of the gradient.

Our work also shares a strong connection to [1]. This
paper proposes a method for using inaccurate simulation
models by using only the local gradient information implied
by these models. This is quite similar in spirit to our approach,
except we discard any need for even an inaccurate simulator,
and encode all necessary information directly in the signed
gradient: the approximation may be rougher, but unlike this
past approach PGSD does not require performing any local
policy search in a simulator.

Finally, we want to note the connection between the al-
gorithm we propose here and the field of adaptive control
[14, 2] — in particular the subtopics of Model Reference
Adaptive Control (MRAC) and Self-Tuning Regulators — and
Iterative Learning Control (ILC) [9]. The general philosophy
of these approaches is similar to PGSD: they use an error
signal (i.e., between the actual and desired state) to directly
adapt the parameters. However, typical formulations of MRAC
or ILC use hand-crafted update rules to modify the controller,
with the focus on analyzing stability properties of the resulting
controllers. In contrast, PGSD uses a general update rule that

derives completely from the Reinforcement Learning setting of
long time horizons and general cost functions, plus the Signed
Derivative approximation of the model derivatives. derivatives.
Generally speaking however, PGSD could be viewed some-
what as an instance of MRAC or ILC, with a very particular
form for the update rule.

VI. CONCLUSION

In this paper, we proposed the Signed Derivative method, a
method for approximating policy gradients, using the insight
that often times it is very easy to guess the direction in
which control inputs will affect future states. We show that
this algorithm, Policy Gradient with the Signed Derivative
(PGSD) can perform very well compared to stochastic gradient
estimators, and in fact can performas wellas the true gradient,
even though it has no knowledge of the true environment’s
model. We further evaluated our algorithm on two real-world
control tasks — driving an RC car and jumping with a
quadruped robot — and demonstrated very good performance
on both domains. While we stress that the PGSD approach
is not suitable for all situations (for instance, if the effects of
controls on the system is entirely unknown), we feel that in
many situations the approach applies quite easily, and offers
very substantial performance benefits.
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