Policy Search via the Signed Derivative

J. Zico Kolter and Andrew Y. Ng
Computer Science Department, Stanford University
{kolter,ang @cs.stanford.edu

Abstract— We consider policy search for reinforcement learn- fact quite obvious: turning more to the left typically retsul
ing: learning policy parameters, for some fixed policy class, that in a lateral deviation that is also more to the left. While such
optimize performance of a system. In this paper, we propose «qp\iq,s” derivative signs clearly don't apply to all coatr
a novel policy gradient method based on an approximation we . . .
call the Signed Derivative; the approximation is based on the tasks, _We demonstrate_ n t_h's paper_ thqt they do apply in
intuition that it is often very easy to guess thedirection in which ~Many interesting domains; in such situations, we show that
control inputs affect future state variables, even if we do not we can drastically improve the performance of policy gratlie
have an accurate model of the system. The resulting algorithm methods by using these signed derivatives. Indeed, we show
is very simple, requires no model of the environment, and we that in many cases, the Signed Derivative method not only

show that it can outperform standard stochastic estimators of toerf tandard stochasti i dient alqorith
the gradient; indeed we show that Signed Derivative algorithm outpérforms standard stochastic policy gradient alg

can in fact perform as well as thetrue (model-based) policy (such as the REINFORCE [15] family of algorithm), but
gradient, but without knowledge of the model. We evaluate the actually performs as well as the true (model-based) policy

algorithm’s performance on both a simulated task and two real- gradient algorithm, but without any knowledge of the model,
Worlq tasl_<s — driving an RC car along a specified trajectory, only the ability to simulate a single trace.
and jumping onto obstacles with an guadruped robot — and in The remainder of this paper is organized as follows. In
all cases achieve good performance after very little training. . O . o
Section Il we present preliminary material and describe the
|. INTRODUCTION general Signed Derivative algorithm more formally. In St
In this paper we consider policy search for reinforcememii we present theoretical results. In Section IV we present
learning. In this setting, one considers a parametrizedrabn empirical results for the algorithm on a number of different
policy and then, by interacting with the environment, maifi domains, both simulated and real-world. Finally, in Sectib
the parameters to optimize some cost function. For examplee discuss related work, and conclude the paper in Section
if our control task was to drive a car along a desired trajggto VI.
the cost function could penalize deviations from the tri@gg
and the control policy could determine the steering andttiero S)
as a simple (say, linear) function of current state features A Preliminaries and Notation
this domain, the policy search task would involve learning We consider control in a Markov Decision Process (MDP),
the coefficients on the state features to obtain a low cast (i.which is a tupleM = (S, A, T, H,C), where S is a set of
follow the trajectory well). We focus in particular on thelijpy ~ statesA is a set of actions]” is the (unknown, but temporarily
gradient approach, where we optimize the cost functiongusinssumed to be deterministic) system dynarfficsS x A — S,
gradient descent with respect to the policy parameters. H is a time horizon and’ is a known (one-step) cost function
While there exist many different methods for approximating’ : S x A — R. Since we are concerned with general,
the policy gradients, in this paper we propose a new algorithcontinuous state and action domains, we $etC R™ and
that makes use of what we call t&égned Derivativapprox- A C R™. We can capture time-varying dynamics and costs by
imation. This method allows us to compute an approximationcluding time as a state variable, though for the remairder
to the policy gradientwithout a model of the system. Ourthis paper we will make any time dependence explicit. Finall
algorithm is based on the following simple insight: the onlglthough our algorithm is extendable to general cost fomsti
term in the policy gradient that depends on the dynamifsr the sake of concreteness we will here assume a common
model is thederivative of future state elements with respectjuadratic form of the reward function
to the control inputs. However, while these true derivative ST . T
are difficult to compute, we claim that often it is very easy to Cilse,ur) = (st = 57)" Quelse — s7) +uy Ry
estimate thesign of many of these derivatives; that is, we onlywhere s} denotes the desired state of system at timand
want to know the generdirectionof how control adjustments @; and R; are diagonal positive semidefinite matrices that
will affect the state. Consider again the example of the cpenalize state deviation and control respectively.
mentioned earlier, where for instance one of the statebisa A (time-dependent) policyr : S x R — A is a mapping
is lateral deviation from the desired trajectory, and on¢hef from states and times to actions. As we are focused on the
controls is the steering angle. While it may be very difficulpolicy-search setting in this paper, here we consider slic
to know the true derivative of future lateral deviations wit parametrized by some set of parametérs— we use the
respect to the steering angle, the sign of the derivativan is motationu = 7 (s, ¢;0) to denote the policyr, parametrized

Il. THE SIGNED DERIVATIVE ALGORITHM

by 60, evaluated at state and timet. For example, a common In general, the elements of these Jacobians are quite difficu
class of policies that we will consider in this paper is p@léc to compute, as they depend on the true dynamics model
that are linear in the state features of the environment and the policy parameté.sHowever,
T the signed derivative approximation is based on the insight
u=m(s;0) =0"¢(s,1) that often times it is fairly easy to guess tisigns of the
where¢ : S x R — R* is a mapping from states and timeglominant entries of these matrices: this only requires kngw
to features and € R™** is a set of parameters that linearlythe generatiirection of how previous control inputs will affect
map these features into controls. future states. Returning to the example of driving a car,aym
Given a policy, we define thenulti-step cosfunction (also be very difficult to determine the derivative of a future stat
called the value function, or just the cost function, as ggab With respect to the steering wheel, but tHeection of the
to the one-step cost function defined above above) as the sgiiadient seems fairly obvious: turning the wheel more to the

of all one-step costs over the horizdh, left will likely result in future states also more to the left
" Furthermore, there is another property of these Jacobians
J(s0,0) = th(staut—l) fchat allows us to come up with a rea_sona_ble _apprommatlon:
P in many control settings, each state is primarily affectgd b

- only one control input. For example, if we are driving our
where u; = 6% ¢(s;,t) and wheres; 1 = T(sy,ur). We car a10ng a straight line, one state variable (for example, t
can now more formally define the policy gradient algorithmisiance traveled along the line), would be primarily et

as a gradient descent method that repeatedly updates §)&niy one control (in this case, the gas pedal). Indeedyman

parameters according to control tasks seem to be expressly designed such that this is
0 — 0 —aVeJ(so,0) case. For example, imagine trying to drive a car where both
the steering wheel and gas pedal controlled some different
wherea is a step size an®¥yJ(so,0) is the gradient of the combinations of both the wheel angle and the throttle; while
cost function with respect to the policy parameters. Aliinu sych a control system is technically “equivalent” to a stadd
computing this gradient term can be quite complicated withocar, it would take much more work to learn. This suggests,
a model of the system, in the next section we describe a simplgeast anecdotally, that humans also exploit these oothalg
approximation method. control effects, and so we can expect many control tasks to
be designed in this way. In other words, we can expect one
. element in each row of the Jacobians to be larger than the
Ip this SQCtIOI’] we derive a s_|mpl_e apprOX|mat|o_n to th8thers, corresponding to the “dominant” control element a
polllcy Qfad'e”t' using an appro.><|mat|on we c;alled thgned these are precisely those elements where we can guess their
derivative We want to emphasize that the final form of th%ign.
algorithm, shown in Algorithm 1, is quite simple, even thbug Given this discussion, the signed derivative approxinmaigo

the denva_mon IS somewhat m_vol_/ed_ ! . .quite straightforward. We approxima#dl the Jacobian terms
To motivate the signed derivative method, we first con&dwith a single matrixs € R™*™ called the signed derivative

the basic question.oj/hy ones needs a modgl of the Sy_SterU/here entries inS correspond to the signs of the dominant
to compute the policy gradiefoJ(s, 6). We will derive this entries in the Jacobians (which, by our discussion above,

result shortly, but it turns out that the policy gradient eegs . < thats has only one non-zero entry per row). Consider

on the model only through terms of the form one last time the driving example, and suppose that the car
(08y) is facing primarily along ther axis. If we represent the state

B. The Signed Derivative Approximation

Ouy of the car as its position and orientatidn, y, 8), and letu;
andus be the throttle and steering angle respectively. Then a

for ¢ > t’. These terms are thdacobiansof future states . : o
: . . . " rleasonable estimate for the signed derivative would be
with respect to previous inputs. They provide the critica

motivation for the signed derivative approximation, sost i 10
worth looking at them more closely. These Jacobians are S=10 1
matrices gjt/} € R"*™ where the, j element of th gjf/z 0 1
denotes the .erivative of thith glement of the state; with For instanceS;; = 1 means that the first state variable) {s
respect to thejth element ofuy, i.e., primarily controlled by the first control input (throttleYhis
Dsy A(st)s makes sense, since the car is mostly aligned withatlais,
(8%, >” = Aup); so throttle will primarily affect this state. Similarly and

are primarily affected by the second control (steering)iolvh
In other Words(gj:/):j indicates how theth element ofs; also makes sense, because the steering wheel can cause the
would change if we made a small adjustment to thedement car to both turn and veer to the side.
of the control at a previous timé& (and assuming we are Finally recall, from the beginning of this section, that the
following the policy 6). Jacobians were the only terms in the policy gradient that

Algorlthm 1 Policy Gradient w/ Slgned Derivative (PGSD) on 6,. Furthermore, using the definition of,

Input: H
S e Rmx™: s_lgned derivative matrix Vu,J(5,0) = V., (sp — s:) T Qu (spr — s3) + ul Ryuy
H € Z,: horizon =1
Q: € R™*" R, € R™*™: diagonal cost function matrices H P T
o € R, : learning rate = Z (St/) Qv (sy — 83) + Rywy
¢ : R" x R — R¥: feature vector function t'=t+1 Out
Exm. jniti i
0o € R™™ initial policy parameters This gives a gradient with respect to eahwhere, as stated,
Repeat: : . the only model-dependent terms are the Jacob(a%i‘&’)T)
1. Execute policy forH steps to obtain . . o
Yo, 51 w1 Therefore, the gradient of the cost with respect tsirggle 6
2. Compute approximate gradients W.rt. controls: is equglenF to taking a step in the direction of all théss
then projecting onto the space wheéke=60, = ... = 0g_;.
@ J (50,0 Z STQu (s — s5) + Ry This is accomplished by updating eaghaccording to
t'=t+1 a H-1
3. Update parameters' b —0— g ,Z:O Vo, J(s,0),
0—0—— Z B(5t,)(Vu, I (50,0))7 i.e., the policy gradient with respect to a single paraméter

is also given by

V@J S, 9 Z Vet s, @
required a model. Therefore, after making such the signed
derivative approximation we can now perform (approximates stated, the only terms that depend on the model in this sum
policy gradientwithoutthe need for any model of the systemare the Jacobians. This derivation should make it appahait t
This is precisely the method that we show in Algorithm 1Algorithm 1 is simply approximating the policy gradient by
The precise form of the gradient updates is derived in thsibstituting the signed derivative for all the Jacobiamter
next section, but the basic idea of the algorithm is simple:
we are just performing policy gradient, replacing the Jéaob
terms with the signed derivative approximatignit may seem Given that the signed derivative is admittedly a rather
surprising that the method would perform well, given thag thcrude approximation to the true Jacobians, there remaime so
signed derivative is a very crude approximation to the truguestion as to why we might expect such an approach to work.
Jacobians; but, we will show, from both a theoretical and/hile the ultimate test of the algorithm’s usefulness is, of
empirical perspective, that we can expect the algorithm egurse, its empirical performance, the results we preseré h

IIl. THEORETICAL RESULTS

perform well in many situations. can give insight and intuition into why we obtain the positiv
results shown in latter sections. We first describe the basic
C. Formal Derivation of the Policy Gradient intuition behind the analysis.

There are many possible sources of error for any policy
Here we prove the claim made in the previous sectiogradient algorithm, but here we analyze the two types of
that the policy gradient depends only on the dynamics mod&tor introduced by the signed gradient approximationlfitse
through the Jacobian terms, and we derive the precise formmfst, the signed gradient allows only one control variable
the gradient given in Algorithm 1. The derivation is slightl to influence a given state variable; even if a state element
technical, but the algorithm itself can be understood justf s primarily affected by one control, there most likely exist
the discussion above. smaller influences from the other controls as well. Second,
To avoid certain dependencies, we have to initially considghe signed gradient makes no attempt to capture the relative
the gradient of the cost function with respect b different magnitudes (or the magnitudes of any kind) of the entries in

sets of policy parameters for each tint®= {6y, ...,0n_1}. the Jacobian. Formally, these approximations are reptesen
We will then take a gradient step in terms of these parametess
projected back into the space where they are all equal. The st =D(S+ Epy) 1)
gradients are given by Quys ’
T for the signed derivative5 and matricest, » € R™*™ and
Vo, J(s,0) = <a“t) Vo, J(s,0) positive diagonalD € R™*". The D matrix scales the entries
) 00, ‘ in the signed derivative, accounting for the second type of
= ¢(s4,t) (Vu, J(s,0)7 . error mentioned above. As we will see more formally below,

this type of error isn't overly costly, since it has the effec
using the fact that, = 67 ¢(s;,t) and thats, doesn’t depend of simple scaling the entries of the cost functions. Espigcia

in the extreme case where policy gradient finds a solution
that obtains near-zero cost, the actual entrief)pfbecome
unimportant.

The E;+ terms capture other errors: they add arbitrary
constants to the entries in the signed derivative, accognti
for the effects of additional control inputs on the stated an
for time-dependent variation in the relative scaling of the
Jacobian. In the worst case, there is little that can be done T
about such errors: if the entries @, , are large, then the Fig. 1. Two-link pendulum trajectory following task.
gradient approximation using the signed derivative candrg v
far from the true gradient. However, there is a great deal
of reason to believe that, in many situatiois,, won't be ©n @ simulated two-link arm, in order to rigorously com-
too large: time-varying scaling should be relatively snoader Pare to previous policy gradient approaches, and to pro-
short horizons, and from the discussion in the previous@ect vide a readily available implementation of our approach.
we expect cross-terms in the Jacobian to be re|ative|y Smgﬂ)de for the all the results in this section is available at
in magnitude. And as formalized below, if th ., are small, http://cs.stanford.edu/"kolter/rss09sd . We
then we expect the signed derivative to perform well. emphasize that the purpose of this section is to specifically

Theorem 1:Using the notation from (1), supposecompare PGSD with other policy gradient approaches. The
| Epyr|l2 < e for all t, ¢! Define the modified cost function control task itself is fairly straightforward, and many eth
Qt = DQ,. Then, given additional technical assumptiongpproaches such as adaptive control or iterative learnimg c
(described fully in the appendix), PGSD will converge witfirol could also be applied, though this is beyond the scope of
probability one to some solutioé that is “close” to a local this paper; we will discuss these related works more in 8acti

minimum of the cost function/;(6), the cost function that V.

usesQ, (but the sameR;) as the cost matrices: The two-link pendulum is a well-known control task in
. robotics and control. The system, shown in Figure 1 consists
Vo5 (0)]] < O(e). of two planar links; the state consists of the joint angles

Furthermore, if performing gradient descent with respe¢he 29 veIocmesh O]I Eoth'Jomt_srhand the cont;ol specmess
true gradient (of the actual cost function) resultsjioptimal tordue at each of the joints. The equations of motion can be

policy parameters — i.e.Jo(0*) < n — then PGSD also easily derived from Lagrangian dynamics, and we introduce
obtains an orden-optim'aI. s%lutioﬁ_ stochasticity to the system by adding Gaussian noise to the

~ torques before integrating the equations of motion. Thé& tas
Jo(0) < k(D)n+ O(e). we consider here, also shown in the figure, is to move the
end effector along some desired trajectory. When the model
of the system is known, it is fairly easy to apply classical
Rontrol methodologies such as inverse dynamics or LQR to
ind an optimal controller, but of course we don’t providesthi
model to PGSD or other comparable algorithms. We feel that
this is a particularly demonstrative example for the Signed
%GJQ(H) = VGJQ(Q) +E Derivative algorithm, since it is well-known that thesre
_ cross terms that cause all joints to be affected by all thérobn
for [[E]] < O(e). Second, we show that following thisinputs — for instance, a common (more challenging) task is to
approximate gradient using a stochastic gradient methdid v§wing the pendulum upright and balance by applying torques
converge, with probability one, to a point that is close tenly to the elbow — yet we claim that the Signed Derivative
a minimum of J5(¢). Finally, we show that given suitableapproximation is still reasonable, since joints amemarily
assumptions about the region of convergence, a policy thataffected by their own control.
close to locally optimal for/;(f) will also be close to locally The cost function for this domain penalizes deviations from
optimal for Jo (6). B the desired joint angles (we first computed the trajectory in
IV. EXPERIMENTAL RESULTS joint space), and we use a time horizon f= 5. Note that
)) this doesn’t mean that the controller only needs to folloe th
A. Simulated Two-Link Arm trajectory for 5 steps, but rather that at each time the ctiatr
While we will present experiments on real systems shortlghould ideally act optimally with respect to a receding honi
we begin by presenting an evaluation of our proposed methetl I = 5; since the cost function itself “guides” the arm
along the trajectory, such a horizon is suitable. We useeatin
k() denotes the condition number of a matrix. control pqlicyu't - 9T¢(St’ t) Where.d) c;ontains 1) de\{iatiop;
3Additional material, including the full appendix with thisgof, is available from desired joint angles, 2) deviations from desired joint
at http://cs.stanford.edu/ ~Kolter/rss09sd) velocities, 3) desired joint accelerations, andi) 27t /tiotal)

Proof: (sketch) The full proof is given in the appenélix
but we provide a very brief sketch. The proof proceeds inghr
steps. First, we show that the gradient approximated usiag
signed derivative is equivalent to the true gradient usimg t
Q costs, plus a bounded error term

1The|| - ||2 norm of a matrix is equivalent to its maximum singular value

0.16

15f 7 ‘ _‘_Desired Position PGSD
Initial PD Controller 0.14 | Episodic REINFORCE (w/ resets) i
16 i ' Non-episodic REINFORCE——
0.12 1
05 01]
> B
0r 8 0.08
05 0.06 1
0.04 |
-1+
1 1 1 1 - 1 002 | e
-1 -0.5 0 0.5 1
B e e S e S e
« 0 ‘ ‘ ; ‘
0 2000 4000 6000 8000 10000

Fig. 2. (top) Trajectory from initial PD controller. (botty) Trajectories from)
controller learned using PGSD. Timestep

Fig. 4. Average cost versus time for different policy gradierethods. Costs
are averaged over 20 runs, and shown with 95% confidencevaigernBest

viewed in color).

15[‘ " Desired Position
PGSD Policy
1r 1 0.1 ‘ ; ‘
True Gradient (from model}——
05| | Optimal LQR controller
0.08 PGSD — |
>
0 L
0.06 -
0.5+ ?
[e]
o
at i 0.04
-1 -0.5 0 0.5 1
X 0.02 +
Fig. 3. (top) Trajectory from initial PD controller. (bott) Trajectories from
controller learned using PGSD. 0 ‘ ‘ ‘ ‘
0 400 800 1200 1600 2000
Timestep

wheret..1 is total time for the complete trajectory (this lasfi9- 5. Average cost versus time for PGSD versus model-_baserdmt
. L Costs are averaged over 20 runs, and shown with 95% confidetereals.
term was added to account for a visible periodic pattern In

the controls). This leads to s total of 14 parameters for the

policy. For algorithms that require a stochastic policy, W8y the PGSD algorithm after 2000 time steps (4 times through
added Gaussian noise to the parameters: (6+¢:)"¢(st.t), the trajectory), along with the trajectory achieved by thitial
(et)ij ~ N(0,0). PD controller (used to initialize all the learning algorit).
Figure 4 compares the performance versus time of PGSDy\e also compare, in Figure 5, the performance of the
and a well-known policy gradient RL algorithm, the REINpGSD algorithm, policy gradient using the true gradientrfro
FORCE algorithnt. All free parameters of the learing algo-the model, and an optimal LQR controller. Not surprisingly,
rithms (gradient step sizes, policy noise, number of e@sdd the LQR controller performs best: this controller is builf b
were hand-optimized to give that fastest convergence thgfearizing around the (known) dynamics at each operating
didn’t cause any divergence issues. As the figure shows, PGgéint, then computing a series of non-stationary policies f
drastically outperform the other methods, converging mu@hch point (in total, the LQR controller has 9000 paramters
faster to a low-cost policy. This improvement is especiallyjowever, using only 14 parameters, the true policy gradient
notable given that the REINFORCE algorithm is actuallynd PGSD algorithm are able to obtain a controller that per-
given an advantage: since the task we're considering is fgfms relatively close to this full LQR controller. Furtimeore,
episodic (at least not at the time-scale of the horizons@ht the most important result is that the learning curve for PGSD
algorithms don’t immediately apply, and so we instead alloy virtually indistinguishablefrom the true policy gradient
the algorithm the ability to reset to previous states obs®rviearning curve; despite the rather crude approximationenad
along the trajectory. The REINFORCE without resets in thgy the signed derivative, this resulting algorithm perfsijomst
fiture does not have such an advantage, but also performs mgefvellon this task, and requires no model of the system (and
worse. Figures 3 and 2 show the resulting controller learnggerefore also less computation time, since there is no need

for time-consuming finite difference computations).
“4We intentionally scaled the parameters of this control taske the same o
order of magnitude, so more advanced techniques such asIrgiadéents[s, B. Autonomous RC Driving
11] didn’t improve performance significantly. In preliminaryperiments we . . .
also evaluated a variety of finite difference and weightyréation methods, In th'§ Secm)n_ we apply the PGSD algorithm to the te_‘Sk
but didn't notice a substantial improvement over REINFORCElis task. Of learning to drive an autonomous RC car along a desired

" Desired Position-
PGSD Policy

Fig. 6. RC car used for the driving experiments. X

Fig. 8. Desired trajectory for the autonomous RC driving ekpents,
with typical trajectory learned using PGSD after approxiehat?0 seconds

" Desired Position- of learning.
Initial PD Controller
15t
1L 05 ‘ ‘
PGSD ——
0.5
> 0.4+
0 L
o5l 5 03
S
il 02}
2 15 -1 05 0 05 1 15 2
8 01f
Fig. 7. Desired trajectory for the autonomous RC driving eipents, with '
trajectory for initial PD controller

0

0 10 20 30 40 50 60

. . h . . Time (seconds)

FraJeCtory' Figure 6 shows the C":_lr’ a Tamiya TRF415, \.Nh'%g. 9. Average cost versus time for the PGSD algorithm on tBecRr task.
is about 40cm long and 20cm wide. A pattern of LED lightSosts are averaged over 10 runs, and shown with 95% confideteseals.

is attached to the car, and tracked by an external PhaseSpace
motion capture system for pose estimation. All processfng i
done on a workstation PC, with controls transmitted to thre ca Figures 8 and 7 show the control task we consider: driving
at 50hz. the car in an irregular figure-eight pattern at varying sgeed
The simplest representation of the car's state is as €0 m/s along the larger loop, 1.5 m/s along the smaller)loop
dimensional vector representing the 2D positiony, the The figure also shows the trajectory followed by an initial PD
orientationd, and the time derivatives, 77, §. However, a more controller: while the PD controller follows the overall pain
natural representation for the signed derivative approiach of the trajectory, it clearly does not perform very well. &ig
to represent the car’s state relative to some desired tomjec 9 shows the learning curve of the PGSD algorithm. As the
— here the trajectory is specified as a continuous spline tHigure shows, PGSD is able to very quickly — within an
gives the desired state as a function of time. In this alternaaverage of 20 seconds, about 3 times around the trajectory
representation, the state consists of the longitudinaérdd — obtain a policy that performs far better than the initial PD
and angular deviation (and their derivatives) from the ibeki controller. We show a typical trajectory from one of these
trajectory. The control is two dimensional, consisting of &arned controllers in Figure 8. The learned policies do not
commanded throttle and steering angle. perform flawlessly — the car still sometimes veers off the
We use the same form of linear controller as in the previowesired path — but we feel this is largely due to the limited
sections, but wheres(s,t) now contains 1) the full state policy class itself; to perform better, one might need more
(represented as the deviation terms), 3) the desired Vigleci complex, time-varying policies, to capture the fact that tlar
relative to the car frame, 3) the deviations for a targetestaneeds to behave differently at different points along thin.pa
0.5 seconds and 4) a constant term. Some ofitharameters Nonetheless, PGSD converges to a very reasonable policy —
are forced to be zero (so that, for instance, the throttlesdoe in fact, better than any we were able to hand tune in the same
depend on the lateral deviation), for a total of 16 paransetgpolicy class — in just 20 seconds of learning.
in the policy. The cost function penalizes the longitudinal) i
lateral, and angular deviation, any control outside a sjgeci - LitfleDog Jumping
valid range, and control that changes more that some amounin this section we present results on applying PGSD to
between two time steps (to minimize oscillations). We usedtle task of “jumping” the front legs of a quadruped robot to
time horizon of H = 25. quickly climb up large steps. The “LittleDog” robot that we

Fig. 12. A properly executed jump.

Although full state space for the LittleDog is 36 dimensibna
(12 joints and twelve joint velocities plus a 6D pose and
6D pose velocities), we don't need to take into account
the complete state. Rather, the only state element that is
particularly crucial for the jumping maneuver is the pitch o
the body: if the pitch is too small, the dog won't clear thepste
but if it is too large, the dog will flip backward. Thereforégt
cost function can depend only on the pitch of the dog. The
control is a number that indicates how far back to shift the
weight before pushing forward; we determine the control as
a linear function of three features: 1) the current shift fudé t
center of mass, 2) the forward velocity of the dog and 3) a
constant term.

There is one straightforward generalization of the PGSD
e%Iqorithm, as presented so far, that we make for this task.

Fig. 11. The desired task for the LittleDog: climb over thraegke steps.

use for this task, shown in Figure 10, is designed and built houah th * function d d I the bitch of th
Boston Dynamics, Inc. The task we are concerned with her (?[ugt . 3_;_05 it Lthklon i[])en“ stpn ylnon_t he pitc ng €
shown in Figure 11: we want to quickly climb up three step§9 O, 1t 1S dimcult to know the “optimal™ pitch — uniike

whose height is approximately equal to the robot's grour%?’ious tasks where the optimal state value was clearly

clearance. Because the steps are so large, the most effic f rt'ﬁd' ths'tead, the regdgy obshe r;/ﬁblihquagtlty Li ?t'g.‘gly
motion to climb up is to jump the two front legs on a step\f\: € tir tejumpfﬁuccze € ,9rrhw e; er i € rodof'el tﬁ an
then pull the rest of the body up. clear the step or flipped over. Therefore, if we define the one-

. step cost as thé, error between the pitch and optimal pitch,

Howc_e\{er, jumping the front,legs on the LittleDog robot Shen the gradient is just the sign of the direction we should
not a trivial task. The LittleDog’s legs are not powerful egb move our control in. Whenil = 1, the PGSD update then
to force its body off the ground, so the only means ofjumpin%kes on a very simble form: T

is to lean the body backwards until the virtually all the mass

rests on the hind legs, then quickly raise the front legs and 0 — ag(s) robot didn't clear step
push forward before the robot falls over. Figure 12 shows a O—q 0 jump SL_Jcceeded
properly executed front leg jump. However, if the weight is 0+ ag(s) robot flipped backwards

not shifted properly, the robot will either plant it's feeitd Despite the simplicity of this update rule, it works well in
the step, or flip over backward. It's very difficult to correctpractice. We evaluated this PGSD variant on the LittleDog
such failures, because usually by the time it is apparent thghot, attempting to climb the three steps as shown in Figure
the robot has failed to jump properly, the robot does not haua. After 28 failures (either flipping backwards or failing
the power to correct itself. Therefore, jumping is a “oné€-of to clear the step), the robot successfully jumped all three
maneuver: we guess an amount to shift backward, then appt¥ps for the first time. After 59 failures, the learning mss

an open-loop sequence of joint commands, hoping to jurfigd converged on a stable controller: the robot succeeded in
successfully. The situation is made complicated because #limbing all three steps for 13 out of the next 20 trials. Tisis
“correct"amount to shift the weight depends, for example, ctar better than any policy we had been able to code by fiand.
the state of the robot, namely the current position of the CO video of the learning process on the dog is available at the
relative to the back feet, and the forward velocity of theabb website mentioned previously.

Because we want a policy that can jump regardless of the

initial conditions, we applied the PGSD algorithm to learn a5WhiIe it is possible to increase the reliability of the systeynadding extra
' steps to ensure that the robot always enters a similar coafigarbefore each

jumping policy that predicts the correct amount to shiftegiv jump, in these experiments we wanted to test precisely how avetintroller
features of the current state. could perform under many different circumstances.

V. RELATED WORK derives completely from the Reinforcement Learning sgttih
) _) _) long time horizons and general cost functions, plus the &ign
As mentioned in the introduction, there is a great deal @feriyative approximation of the model derivatives. detives.
work on policy gradient methods for reinforcement |eam'”93enerally speaking however, PGSD could be viewed some-

If a model of the system is known, then we can compute thea; a5 an instance of MRAC or ILC, with a very particular
gradient using simple finite difference methods — this holdg,m for the update rule.

even in stochastic domains if we are allowed to fix the random
seeds which lead to this stochasticity, an approach known as VI. CONCLUSION

the PEGASUS algorithm [10]. These model-based methodsin this paper, we proposed the Signed Derivative method, a
have been applied to many robotics domains. However, suglethod for approximating policy gradients, using the ihsig

a model might not always be available, or might be difficult tehat often times it is very easy to guess the direction in
learn from data. Additionally, as we have shown, our PGS@hich control inputs will affect future states. We show that
method can sometimes perform as well as the model-bashi$ algorithm, Policy Gradient with the Signed Derivative
methods without any model other than the signed derivatiyeGSD) can perform very well compared to stochastic gradien
approximation. estimators, and in fact can perfos wellas the true gradient,

In situations where we have no model, we can still applven though it has no knowledge of the true environment's
finite difference methods or weight perturbation, so long asodel. We further evaluated our algorithm on two real-world
the step sizes are large enough to overcome noise. Suchcantrol tasks — driving an RC car and jumping with a
approach was successfully applied to the task of learninggaadruped robot — and demonstrated very good performance
quadruped trotting gait in [8]. Recently, [13] investigdtthe on both domains. While we stress that the PGSD approach
effect of sampling distributions on the signal-to-noisgéa@f is not suitable for all situations (for instance, if the effe of
these and similar gradient updates. controls on the system is entirely unknown), we feel that in

A related but different approach uses a likelihood ratimany situations the approach applies quite easily, andsoffe
trick to obtain an estimate of the gradient using a numbgery substantial performance benefits.
of episodes run under the system and policy of interest: the
REINFORCE [15] algorithm was the first of such methods, _ o
but many extensions and generalization have been proposid Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Usingiaccurate

. - models in reinforcement learning. roceedings of the International
[4, 5, 11, 7]. There has also been work on estimating and copference on Machine Learning00s.
using the natural gradient, a gradient that is invariant t@] Karl Johan Astrom and Bjorn WittenmarkAdaptive Contral Prentice
reparameterizations of the policy [6, 3, 12]. However, most_ Hall, 1994. _ _ _

f these algorithms require runnina multiple episodes ieor] J. An_drew Bagnell and qeﬂ Sch_nelder. Covariant pollley[sh.‘InPro-
Y - g q) g p p_ ceedings of the International Joint Conference on Artifibielligence
to obtain a reasonable estimate of the gradient (or natural 2003.
gradient), which is difficult for non-episodic tasks such ad4] Jonathan Baxter and Peter L. Bartlett. Infinite-horizgnadient-based

’ . . policy search.Journal of Artificial Intelligence Researghi5:319-350,
those we consider. In these domains, PGSD has the strong 5q7

advantage of only requiring a single episode to obtain afs] Evan Greensmith, Peter L. Bartlett, and Jonathan Baxteariance
estimate of the gradient. reduction techniques for gradient estimates in reinforceénhesrning.

. . Journal of Machine Learning Research:1471-1530, 2004.
Our work also shares a strong connection to [1]. ThiSe] sham Kakade. A natural policy gradient. Neural Information

paper proposes a method for using inaccurate simulation Processing Systems 12001.

i ; i ion imoli [7] Jens Kober and Jap Peters. Po_licy search for motor priesiiiv robotics.
models by using only the local gradient informatio plied In Neural Information Processing Systems 2009,

by these moglels. This is quite similar in Sp_ifit to our ap;_mtma [8] Nate Kohl and Peter Stone. Machine learning for fast quaedal
except we discard any need for even an inaccurate simulator, locomotion. InProceedings of the AAApages 611-616, July 2004.

; - ; - -] Kevin L. Moore. lterative learning control: an exposifooverview.
and .enCOde all nece.ssa.ry information dlreCtIy In the. 3'9”9@ Applied and Computational Controls, Signal Processingl &ircuits,
gradient: the approximation may be rougher, but unlike this 1(1).151-214, 1990.

past approach PGSD does not require performing any lo¢#l] Andrew Y. Ng and Michael Jordan. Pegasus: A policy searethod

i i ; for large mdps and pomdps. IRroceedings of the Conference on
pOIIF:y search in a simulator. . Uncertainty in Artificial Intelligence2000.

Finally, we want to note the connection between the gir1] Jan Peters and Stefan Schaal. Policy gradient methadshotics. In

gorithm we propose here and the field of adaptive control ;(r)%%eedings of the IEEE Conference on Intelligent Robdfigstems
[14’ 2_] — n partICUIar the SUthpICS_ of Model Referenc?lZ] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. &leator-critic.
Adaptive Control (MRAC) and Self-Tuning Regulators — and ~ |n Proceedings of the European Conference on Machine Learaies.
Iterative Learning Control (ILC) [9]. The general philogop [13] John W. Roberts and Russ Tedrake. Signal-to-noise @talysis of

: Paas . policy gradient algorithms. IMNeural Information Processing Systems
of these approaches is similar to PGSD: they use an error 21 2000,

signal (i.e., between the actual and desired state) tottyireqi4] Shankar Sastry and Marc Bodsohdaptive Control: Stability, Conver-
adapt the parameters. However, typical formulations of MIRA gence, and RobustnesBrentice-Hall, 1994.

. : 15] Ronald J. Williams. Simple statistical gradient-folliog algorithms for
Or, ILC use hand crafted.update 'r.ules to qulfy the cqntrpllé connectionist reinforcement learningMachine Learning 8:229-256,
with the focus on analyzing stability properties of the téag 1992,

controllers. In contrast, PGSD uses a general update rate th

REFERENCES

