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Abstract—This paper proposes a robaotics-inspired method the energy landscape view that associates native confiomsat
to enhance sampling of native-like protein conformations when with lowest energies [12]. Energetic considerations compl
employing only amino-acid sequence. Computing such conforma- e the search for native conformations. Interactionsramo
tions, essential to associate structural and functional informton . . . . .
with gene sequences, is challenging due to the high-dimensionalityatoms In a protein, Wh_'Ch spale quadratically with the numbe
and the rugged energy surface of the protein conformational Of modeled atoms, give rise to an energy surface that can
space. The contribution of this work is a novel two-layered currently be probed only with empirical energy functions. A
method to enhance the sampling of geometrically-distinct low- fundamental challenge in probing the native state is ehtlie
energy conformations at a coarse-grained level of detail. The computing native-like conformations associated with the t

method grows a tree in conformational space reconciling two lobal mini fi - . imated
goals: (i) guiding the tree towards lower energies and (ii) not over- global minimum (or competing minima) in an approximate

sampling geometrically-similar conformations. Discretizations of €nergy surface constellated with local minima [12].
the energy surface and a low-dimensional projection space are Faced with a vast space rich in local minima, some methods

employed to select more often for expansion low-energy confor- narrow the search space relevant for the native state by em-
mations in under-explored regions of the conformational space. ploying additional information about this state, oftenaibed

The tree is expanded with low-energy conformations through . - . .
a Metropolis Monte Carlo framework that uses a move set of from experiment [13]-{15]. Such information, however, &t n

physical fragment con gurations. Testing on sequences of sene available for millions of newly discovered protein-enaugli
small-to-medium structurally-diverse proteins shows that the gene sequences, nor is it easily obtained for novel segeence
methoq rapidly samples n.ative-like conformations in a few hoyrs proposed in silico [16]. In such cases, ab-initio methods th
on a single CPU. Analysis shows that computed conformations employ only amino-acid sequence become very important.
are good cand[dates fqr furth.er dgtalled energetic re nements ly | der t | t f fi | b-initi
larger studies in protein engineering and design. n order 1o explore a vast coniormatonal space, ab-niio
methods often proceed in two stages: they rst obtain a broad
|. INTRODUCTION view of the conformational space, usually at a coarse-grhin

A globular protein molecule repeatedly populates its funéevel of detail, to reveal candidate conformations thamnthe
tional (native) state at room temperature after denaturdfi]. undergo further re nement at a second stage [3], [17]. Gwars
Despite this discovery in 1973 by An nsen, the problem ofrained representations of a protein chain are employed to
computing the conformations that comprise the proteinveatireduce the number of dofs (from thousands to hundreds on
state from knowledge of amino-acid sequence alone corgtinignall-to-medium proteins), and as a result, the dimenstgna
to challenge structural biology [2]. Computing native amrf of the ensuing conformational space. The current generatio
mations, however, is essential in associating structunal aof physically-realistic coarse-grained energy functiatisws
functional information with newly discovered gene sequsnc employing coarse-grained representations of proteinnshai
engineering novel proteins, predicting protein stahilijnd as a practical alternative to all-atom representation$iowit
modeling protein-ligand or protein-protein interactig8k-[5].  sacri cing predictive power [18].

Sampling native conformations is inherently dif cult dug t Obtaining a broad view of the conformational space is
the vast high-dimensional conformational space availabke crucial when postponing the computationally demanding all
protein chain. The high-dimensionality challenge has dravatom detail and energetic re nement on coarse-grained con-
robotics researchers to adapt and apply algorithms that pfarmations deemed to be native-like. Sampling a large numbe
motions for articulated mechanisms with many degrees of low-energy conformations often entails enhanced samgpli
freedom (dofs) to the study of protein conformations [6}}[1 methods that build on Molecular Dynamics (MD) or Monte
Though these methods often have to be adapted to deal withrlo (MC) (cf. [19]). While MD-based techniques systemat-
hundreds of dofs in protein chains (from dozens of dofs igally search the conformational space, MC-based teclesiqu
articulated mechanisms), the motion-planning framewak hoften exhibit higher sampling ef ciency [19]. Most notable
allowed addressing the problem of computing paths fromamong MC-based ab-initio methods are those that employ
given initial to a given goal protein conformation [6], [7]. fragment assembly. These methods simplify the search space

The problem addressed in this work is the discovery @fy using a limited move set of physical fragment con gura-
native conformations from knowledge of amino-acid seqaendions to assemble conformations [3], [14], [17].

No information is available on the goal conformations besid Enhanced sampling on a simpli ed search space, coupled



with realistic energy functions, have allowed fragmeneass features [20]. The projection space is discretized in otder
bly methods to achieve high prediction accuracy of the matigelect for expansion low-energy conformations that fall in
state, albeit at a time cost. It takes weeks on multiple CRUsunder-explored regions of the conformational space. Adter
obtain a large number of low-energy conformations potéiptia conformation is selected for expansion, a short Metropolis
relevant for the native state. It also remains dif cult tosare MC trajectory summarized above is employed to expand the
that computed conformations are geometrically-distined atree with a new low-energy conformation. This two-layered
not representative of only a few regions of the conformationexploration, detailed in section I, is illustrated in Fif.
space [17]. Part of the dif culty lies in the inability to dee a The employment of the projection space keLTr is
few conformational (reaction) coordinates on which to de ninspired by recent sampling-based motion-planning method
distance measures. Popular measures like least Root-Metlat make use of decompositions, subdivisions, and piojest
Squared-Deviation (IRMSD) and radius of gyration (Rg) caof the con gurational space or the workspace of a robot
mask away differences among conformations [17]. to balance the exploration between coverage and progress
The contribution of this work is a novel two-layered methotbward the goal [21]-[25]. It is worth mentioning that, wénil
to enhance the sampling of geometrically-distinct lowrgge the focus of this work is on protein chains, the projections
conformations. The method uses no information about tkeeployed inFeLTr are not tied to protein conformations.
native state of a protein beyond amino-acid sequence. ESince the projections rely only on geometry, they can be
ploying a coarse-grained representation of a protein ¢hairsed for any articulated mechanism (manipulators, hunganoi
the method focuses on ef ciently obtaining diverse natike- modular robots) (see section IV for more on this point).
conformations. The goal of the method is to serve as a Itgrin  FelLTr is tested on sequences of seven proteins of different
step that, in a matter of a few hours on a single CPU, reve#sgths 20-76 amino acids) — amounting t40-152 dofs —
native-like conformations that can be further re ned thghu and native topologies ( = , ). Results show thaEeLTr
detailed studies. From now on the method is referred to abtains compact low-energy conformations on all proteins.
FelLTr for Fragnment Monte Cako Tr ee Exploration. Clustering the lowest-energy conformations reveals that t
As in fragment assemblfzeLTr assembles a conformationnative state is captured among the computed conformations.
with con gurations of short fragments compiled over a nenreThese conformations are good candidates for further re ne-
dundant database of protein structures. Employing fraggsnement with detailed all-atom energy functions. The proposed
from the database (rather than random) improves the liketih method can serve as an ef cient initial ltering step in larg
of assembling a physical conformation. A physically-retidi detailed studies focused on extracting structural andtiomal
coarse-grained energy function estimates the energy efrassproperties of uncharacterized protein sequences [17], [26
bled conformations. The fragment assembly is implemented
in a Metropolis MC framework, where the chain of a current
conformation is scanned and new fragment con gurations are
proposed to replace old ones. Replacements that meet the
Metropolis criterion are accepted, resulting in a new canfn
tion. Using a limited move set of fragment con gurations and
coarse-grained representati¢igLTr is able to rapidly obtain
low-energy native-like conformations. Most importanttize
method obtains diverse native-like conformations throagh
novel tree-based exploration of the conformational space. T
Inspired by tree-based methods in robotics motion planning : E/ :
FeLTr grows a tree in conformational space, reconciling / N
two goals: (i) expanding the tree towards conformationd wit Conf. Coordinate 1 S
Igwgr energies Whlle (i) not overs'ampllng geometnca”yl_:ig. 1. According to the landscape view of protein foldinige native state,
similar conformations. The rst goal is warranted due to th@peled N, is associated with the global minimum of a funri-lenergy

fact that the desired native-like conformations are asgedi surface [12]. The surface shown here is adapted from [12¢ pioposed
: ; ; Eel Tr method cross-sects this surface by discretizing potentiigy values
with the lowest energies in the energy surface SCUIpted by i%ﬂa— 1d grid, illustrated here with the z-axis. The axis isocaloded in a red-

amino-acid sequence. The second goal attempts to obtaify-Blue scheme to denote energy levels that reach loweralith the native

broad view of the conformational space near the native statate. The grid on the xy-plane discretizes the projectidheconformational
i ; _cimi ; space onto a few conformational coordinates. The illustnatiere shows
by not oversamplmg geomemca”y similar conformations two coordinates for visualization purposé®LTr uses three coordinates to

To achieve the rst goalFeLTr partitions energies of gescribe projected conformations, as detailed in section II
computed conformations into levels through a discretizeet o
dimensional (1d) grid. The grid is used to select conforareti  The following summary of related work further places
associated with lower energy levels more often for expamsiadhe proposed=eLTr in context. The method is detailed in
The second goal is achieved by keeping track of computsdction Il. Analysis of the conformations computed on the
conformations in a three-dimensional (3d) projection spaseven sequences chosen for testing is presented in seldtion |
using the recently proposed ultrafast shape recogniti®R)J Discussion follows in section IV.

Potential Energy
BRI




Related Work based search. The tree is expanded in conformational space

through an MC framework, keeping track of computed con-

¢ Cotmplljltatlonatl me'gwods 1s§ar<;h (ionfotr_matlonalh spacT SYSfmations in the low-dimensional projection space. MC has
ematically or at random [19]. Sys ematic searches rely ,% en used in sampling-based motion planing to escape local
MD to sample conformations by numerically solving NeWton?ninima [31] and enhance sampling for closed chains with

equations of motion. Since the solution accuracy dictates, s -
; X spherical joints [32]. The employment of the projectioncpa
small timestep (femtoseconds) between consecutive aoafor . Sh J [32] pioy prol

. . . . in FeLTr is also inspired by motion-planning methods that
tions in an MD trajectory, a broad view of the space demané‘| b y P g

. . ) gcompose, subdivide, and project a robot's con gurationa
multlplg_lo_n 9 trajec_tones. MC-bgsed searches conducielia space or workspace to balance the exploration between cov-
probabilistic walks in conformational space [19].

X erage and progress toward the goal [21]-[25].
Since both MD and MC are prone to converge to local

minima in the energy surface, many methods build on them Il. FELTR
to enhance sampling. Such methods include simulated an;
nealing, importance and umbrella sampling, replica exghan
(also known as parallel tempering), local elevation, atibn
relaxation, local energy attening, jump walking, multitan-

n the usual MC framework, the probabilistic walk in the
conformational space resumes from the last conformation
computed.FeLTr enhances this framework by conducting a
: ) . tree-based exploration of the conformational space. Givah
ical ensemble, conformational ooding, Markov state mm‘:"lonly amino-acid sequence information is available, the ofo

discrete timestep MD, and many more (cf. [19]). the tree is an extended coarse-grained conformakehTr

Some of these methods narrow the search space by empl@yy, explores the conformational space iteratively, atheac

ing Nuclear Magnetic Resonance (NMR) data such as ordgfiation selecting a conformation and then expanding itil&Vh
parameters, residual couplings, and other NMR data [13}yery expansion involves a short Metropolis MC trajectory,
[27]. Such data are often incorporated in a new term in thRe important decision about which conformation to select
energy function to construct a pseudo-energy function thaf, expansion depends on (i) the energy levels populated and

biase_s the search towards conformations that reprod.uce Methe projection space covered by computed conformation
experimental data. Other methods employ an experimengle qocode is given in Algo. 1. Sections describing the main

structure representing the native state as a semi-rigigltgen steps inFeLTr are referenced at the end of each line.

and conduct a geometrically-constrained search arounat it f

additional native-like conformations [13], [28]. Algo. 1 FeLTr : Fragnent Monte Cato Tr ee Exploration
Ab-initio methods employ only amino-acid sequence for & Input. _, amino-acid sequence

protein at hand. Some rely on sophisticated energy fungtion Output: ensemble  of conformations

to guide MD trajectories to native-like conformations [29] “Co extended coarse-grained conf from  BII-A

The most successful methods employ fragment assembly [3 © Ge explicit 1d energy grid BII-B.1

While the fragment length varies among methods, the basi& for * 2 Ge do

process is to assemble conformations with physical fragmer), “Gusk  implicit 3d geom projection grid BII-B.2

con gurations extracted from a nonredundant databaseaf pr ADDCONF(Cinit ; Ge : Gusr )

tein structures [3], [14], [17]. Deciding on a suitable fnagnt

6: while TIME AND j j do not exceed limitslo
length depends on the richness of the database to provide7_a N ]

. . ) SELECTENERGYLEVEL(GEg) BIl-B.1
comprehensive picture of fragment con gurations. The entr . cell SELECTGEOMCELL(':Gysg cells) BII-B.2
diversity of the Protein Data Bank (PDB) supports a minimumg. ~ ~ SELECTCONF(cell:confs) BII-B.2
length of three amino acids [17]. 100 Cpew MC_EXPANDCONK(C) BI-C

While a limited move set of fragment con gurations speeds;. Crew 6 NIL then BMC succeeded
up an MC-based exploration, there is no guarantee thaf. ADDCONF(Crew Ge ; Gusr)
assembled conformations are distinct or capture the natiye. [f Chewd Badd conf to ensemble

state. A large number of low-energy coarse-grained conf%—'

) . . DDCONF(C; Gg; G
mations are often computed to increase the probability tr@&ddc to(apprltz)pri;tSeR()anergy level iGg

a few are sufciently close to the native state that theyl, E(C) COARSEGRAINEDENERGY(C) BII-C.2
will reach this state upon detailed energetic re nemenis [3 . - ; ; '
. ) . 2: level in Gg whereE (C) falls into
[17]. Since these re nements, often in all-atom detail, are,. . .onfs “:confs[f Cg
computationally expensive, they can be conducted only %nadd C to appropriate cell in geom grid associated with
few conformations. Hence, it is important that the explorat
. X ) .4: P(C) USRGEoMPROJC) Bll-B.2
reveal diverse coarse-grained conformations near theenati L .
. . ! ! 5. cell  cellin :Gysg whereP(C) falls into
state. It is currently dif cult to nd reaction coordinatesn . _
: . . . 6: if cell= NIL then Bcell had not yet been created
which to measure diversity [30]. Popular but lacking measur o cell  new geom proiection cell
like IRMSD and Rg are not integrated in the exploration but G 'cellsg "Gp J'cells[f cell
largely con ned to analysis over computed conformatiorig [1 ~JUSR - _JUsRe 9
9: cell.confs  cell:confs[f Cg

FelLTr integrates coordinates proposed in [20] in its tree-




A. Coarse-grained Representation of a Protein Chain Conformations in an energy level are partitioned in cells

Only backbone heavy atoms and side-ch@n atoms O©f the projection space to employ coverage in this space as
are explicitly represented. Employing the idealized getoyne & S€cond criterion for selection. An implicit 3d griGysr ,
model, which xes bond lengths and angles to idealize§ @ssociated with each energy level (Algo.1:3-4), based on
(native) values, positions of backbone atoms are computgdiniform discretization of the projection coordinates.eTh
from ;  angles. These angles are setl@0 ; 120 in an Selection is then biased towards cells with fewer confoionat
extended conformation (Algo. 1:1). Positions®@f atoms are through the weight functiod:0=[(1:0 + nsel) nconfs} where
determined from the computed backbone as in [33]. nsel records how often a cell is selected, ancbnfs is the

number of conformations that project to the cell (Algo. 1:8)

B. Selection: Combination of Energy Layers and Lowsimilar selection schemes have been advocated in motion-
dimensional Geometric Projections planning literature as a way to increase geometric coverage

1) Energy Layers:A 1d grid, Gg (Algo. 1:2), is de ned during exploration [21], [24]. Once a cell is chosen, thauatt
on the segmeniEmin ; 0]. Emin refers to the lowest expectedconformation selected for expansion is obtained at random
energy on computed conformations (set t@00 kcal/mol over those in the cell (Algo. 1:9), since conformations ig th
on the tested proteins), arl refers to the highest energy.same cell have similar energies (withif ).
Since the Metropolis MC expansion quickly obtains negative ) ) .
energy conformations (and conformations with nonnegatife EXPansion: Metropolis MC with Fragment Assembly
energies are not relevant because they are highly infedsibl ~ After a conformation is selected for expansion, its chain of
is not necessary to maintain a grid over nonnegative ergergid amino acids is scanned, de nirig-2 consecutive fragments
Energy levels are generated eveBy units. E is set to a of three amino acids referred to as trimers. A conformateam c
small value 2 kcal/mol), so that the average enery,q (') now be updated by replacing con gurations of its trimers. A
over conformations populating a speci ¢ energy levél Gg  trimer con guration consists o6 , angles de ned over
captures well the distribution of energies’in its backbone. The expansion procedure (Algo. 1:10) iterate

This discretization is used to bias the selection towardé-2 times, at each iteration choosing a trimer at random
conformations in the lower energy levels. The weight fumeti over the chain. Upon choosing a trimer, a database of trimer
w(’) associated with an energy level 2 Gg is set to con gurations, whose construction is detailed in sectie@.I1,
W() = Eag(") Eawg()+ , where =1:0=2% ensures that is then queried with the amino-acid sequence of the trimer.
conformations with higher energies have a nonzero proibabil Of all con gurations available for the trimer in the databas
of selggtion. An energy levelis then selected with probability one obtained at random is proposed to replace the con gura-
W)= e, w('9 (Algo. 1:7). This quadratic weight func- tion in the current conformation. The reason for the random
tion biases the selection towards conformations with loweather than consecutive iteration over the trimers in archai
energies while allowing for some variation. Allowing highe is that an iterative scanning of the chain may result in local
energy conformations to be selected provide Tr with minima; that is, con gurations are proposed but not acabpte
the ability to jump over barriers in the energy surface. ThEhe decision on whether to accept a trimer con guration
Metropolis MC expansion also allows jumping over barriers(Algo. 1:11) is done under the Metropolis criterion, witteth

2) Low-dimensional Geometric ProjectionsConforma- coarse-grained energy function de ned in section II-C.2.
tions in a chosen energy level are then projected onto al) Database of Fragment Con gurationsA PDB subset
low-dimensional space. Borrowing from the USR featuresf nonredundant protein structures (as of November 2008) is
proposed in [20], three projection coordinates are de negktracted through the PISCES server [34] to contain prstein
on each computed conformation: the mean atomic distartbet have 40% sequence similarity, 2:5 A resolution and

L4 from the centroid (ctd), the mean atomic distandg R-factor 0:2. Proteins studied in this work are removed from
from the atom farthest from the centroid (fct), and the medhe database. Th#% similarity cutoff ensures that topologies
atomic distance §; from the atom farthest from fct (ftf). The that are over-populated by similar protein sequences in the
ctd, fct, and ftf atoms capture well-separated extremes ofP®DB are not over-represented in the database. Ar@&;080
conformation. So, the distribution of atomic distancestrfro obtained protein chains are split into all possible ovepiag
each extreme point (approximated with the rst moment) igimers. The database maintains a list of con gurationsysop
likely to yield new geometric information on a conformationlated by each trimer over all extracted chains - a total ofenor

The three projection coordinates capture overall topalogihan ten million con gurations. No less than 10 con gurat®
differences among conformations. As discussed in section lare populated for any trimer of each tested sequence.
the coordinates are not specic to protein conformations bu 2) Coarse-grained Energy FunctionThe function that
can be applied to any articulated mechanism. The coordinaévaluates the energy of a coarse-grained conformation, re-
allow introducing a second layer of discretizationHeLTr . cently proposed in [17], is a linear combination of non-
The reason for the second layer is that conformations wiliical terms (local terms are excluded since conformations
similar energies may be geometrically different (a notioare assembled with physical trimer con gurationd): =
captured by entropy in statistical mechanics), BetTr aims E|ennard  Jones + EH Bond + Econtact * Eburiat + Ewater +
to compute geometrically-distinct low-energy conforroa. Egrg. The Eiennard  Jones t€rm is implemented after th&2-6



Lennard-Jones potential in AMBERS9 [35], with a modi cationFeLTr against a Metropolis MC simulation, show thaLTr
that allows a soft penetration of van der Waals spheramnsistently obtains lower energies than the MC simulation
The Ex Bona term allows formation of local and non-local The low-energy conformations obtained WelLTr are
hydrogen bonds. The termBcontact , Eburial » @nd Evater ,  analyzed not only for the presence of native-like confor-
implemented as in [29], allow formation of non-local cortigac mations, but also for their geometric diversity. The result
a hydrophobic core, and water-mediated interactions. presented below show th&eLTr populates diverse energy
The Erg term in this work penalizes a conformation byminima signi cantly better than the MC simulation. While
(Rg Rgppg )? if the conformation'sRg value is above the native state is usually present among the highest-ptgalil
the Rgppg Value predicted for a chain of same length fronminima, other obtained minima contain compact low-energy
proteins in the PDB. The predicted value ts well to the lineonformations that differ on content of secondary struetur
2:83 N 034 [14], which is used to computBgppg for each segments or overall 3d arrangement of these segments.
sequence oN amino acids. TheEry term penalizes non-
compact conformations, since native-like conformations aA. Chosen Systems

compact and with a well-packed hydrophobic core. Moreover, The seven proteins chosen to tEsLTr , listed in Table I1I-
Rgppg and theRg value qf an extendeq cpnformation aréy include tryptophan cage (Trp-cage), Pinl Trp-Trp ww do-
used to de ne the boundaries of the projection space.  main (wwD), villin headpiece (hp36), engrailed homeodamai
3) Metropolis Criterion: After replacing a trimer con gu- (eHD), bacterial ribosomal protein (L20), immunoglobulin
ration in a selected conformation, the resulting energyéd-e binding domain of streptococcal protein G (GB1), and cal-
uated_with the ab_O\_/e energy function. The proposed replaggndin Dex. These proteins are chosen because they vary in
ment is accepted if it results in a lower energy (Algo. 1:10-1 gjze (number of amino acids) and ultimately number of dofs,
Otherwise, it is accepted with probabiliy =, where E  pative fold (3d global arrangement of local secondary stmec
is the difference in energy after the replacement, anid a segments), and are actively studied both in silico and in the

temperature scaling factor. In this work,is chosen to allow \yet |ap due to the importance of their biological functions.
an energy increase dfo kcal/mol with probability0:1 so the

tree is expanded with conformations that cross energyeyarri [ protei] Trp-cage _wwD hp36 eHD L[20 GB1 Calbindbig
Fold =

D. Analysis of Computed Conformations Size | 20 26 3 54 60 60 76
Dofs | 40 52 72 108 120 120 152

As shown in Algo. 1, conformations computed BeLTr

are gathered in the ensemble . The distribution of energies o )
of conformations in  is analyzed to obtain the average FELTT is implemented in C++, run on an Intel Core2 Duo
energyEi and standard deviatiorE . Let denote the Machine with 4GB RAM and 2.66GHz CPU, and allowed

subensemble of conformations with energies no higher thighcompute no more thal0, 000 conformations in no more
FEEi E. is clustered with a simple leader-like a|g0_than3 hours. Limiting the number of conf_ormatlons ensures
rithm [36], using a conservative cluster radius2® A. The that the exploration tree and ensemble tin memory. On
lowest-energy conformations of each cluster are offered §{all proteins like Trp-cage, wwD, and hp36, this number of
FeLTr as candidates for further detailed re nement. Theonformations is reached 0 minutes,1 hour, and2 hours,
results below show that this analysis reveals distincttehss "€SPectively. (Time grows quadratically with chain lengtre
of native-like conformations that capture the native state 0 the Lennard-Jones energy term; e.g., compus0g000
The purpose of the analysis is to reveal possibly mof@nformations takes 36 hours on200 amino-acid chains.)

than one energy minimum. Since exact quantum mechan
calculations cannot be afforded on long chains, empiric
energy functions are used instead. These functions (like th The ef ciency of FeLTr is estimated in comparison with
one employed in this work) need to rank lower in energy thoseMetropolis MC simulation that is limited by the same time
computed conformations that are more native-like. The &dweand number of conformations likeeLTr . To keep all other
energy value reported, however, may not correspond to tbenditions similar, the MC simulation also employs the same

grsAnaIyzing the Ef ciency ofFeLTr

most native-like conformation. fragment assembly to compute conformations in its trajec-
tory and the same coarse-grained representation and energy
Il. EXPERIMENTS AND RESULTS function to calculate the energy of a computed conformation

Since the conformational space available to a protein chaihis comparison allows to directly probe the effect of the
is high-dimensional, the ability of a method to reproducBelLTr tree-based exploration guided by the novel two-layer
conformations that populate the protein native state piexvi discretization in sampling native-like conformations.
an important benchmark [26FeLTr is applied to seven Fig. 2(al) plots energies versus Rg values of computed
structurally-diverse protein sequences of varying lesgthconformations. Signi cantly lower energies are obtaineithw
Comparing computed conformations with experimentally=eLTr (shown in red) than the MC simulation (shown in
available native structures of each protein revealsBeafTr  light purple). This result, also revealed when plotting en-
captures the native state. The results below, which bendhmargies versus IRMSDs of computed conformations from an



ous trajectories. The trajectories are initiated from eddht
carefully selected conformations in a simulated annealing
framework [17]. This exploration, while offering a broacewi
of the conformational space near the native state, reqlies
weeks of computation 0680 CPUs [17]. The selection of con-
formations from which to initiate MC trajectories is seasdly
integrated inFeLTr through the tree-based exploration.
Native structures of many of the proteins presented here
have been computed by detailed MD simulations that employ
discrete timesteps [26]. Running times of such simulations
while resulting in high-quality native-like conformatisnare
limited by the dynamics of the proteins considered. While
fast folders require ns-long MD simulations, slow folderaym
require longer than s-long simulations (more than one week
on one CPU). Other work that computes coarse-grained Rative
like conformations with MC trajectories (of similar length
50; 000 consecutive conformations) employs long angle-
based (rather than sequence-based) fragments [14].
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C. Extracting Native-like Conformations witreLTr

The goal of FeLTr is not to obtain single structures with
high accuracy but to compute coarse-grained native-like co
formations whose accuracy can be later improved through fur
TR ther re nements. Determining what make&elL Tr -computed
@) conformation native-like depends only on energetic caersid
Fig. 2.  Plots superimpose Trp-cage MC-computed data in ligitplp ations. Th'eI’EI E cutoff de nes a subensemble of
over FeLTr -computed data in red. (al) Energies of conformations afeonformations that can be considered for further re nement
plotted vs. Rg values. The horizontal line marks the enargattoff. The Employing other measures such as Rg or IRMSD from the

three vertical lines show different Rg thresholds. (HE9LTr -computed  native structures employs information that is not avadabl
conformations that meet the energetic criterion are cludtdrewest-energy

conformations of ve main clusters (red) are superimposed dernative 11OM Knowledge of amino-acid sequence only. Focusing on
structure (transparent blue). (c1) Energies are plottetRiMSDs from native. reduces the number of conformations by more tGafa

(d1) For conformations that meet the energet_ic criterion, 82 from native Fig. 2(al) shows that conformations with energies no higher
are plotted vs. Rg values. (el) For conformations that maprtee szll of the . . . . .
projection space as the native, energies are plotted vsSBMrom native. thanhEi E have diverse Rg values. The vertical lines in
Fig. 2(al) mark three Rg threshold®g,, - the Rg value of an
extended conformatiorRgepg - the Rg value predicted for
experimentally-available native structure (Fig. 2(cl) Top- a chain of same length from the PDB, aRd,,, - a smaller
cage and 3(b2-7) for the other proteins), is not surprisinBg value proposed in [14] for more compact conformations.
FeLTr guides the tree towards lower energies, whereas tBpeci cally, Rg,,, = 2:5 N34 whereN is the number of
MC simulation resumes from the last conformation generateamino acids in a protein sequence. The three vertical lines
The MC simulation employed for comparison is a powerfighow that (i) almost all computed conformations are more
probabilistic walk that uses fragment assembly to makeelargompact than an extended conformation; (ii) the number of
hops in conformational space; that is, the IRMSD betweawonformations proposed for re nement can be further reduce
two consecutive conformations can be signi cant. Figs.12(c (down to 0:25 ) by discarding those with Rg Rgppg ;
and 3(b2-7) show that the MC simulation comes close (and (iii) the method obtains more compact conformations tha
IRMSD) to the native structure of most tested protelsl(Tr  rewarded by the coarse-grained energy function.
comes closer in Figs 2(cl) and 3(b3, b6)). Howewsl Tr Clustering  allows offering only the lowest-energy con-
populates more energy minima, revealed when plotting enésrmations of the top-populated clusters for further rement.
gies of computed conformations versus their Rg values amtlese conformations are superimposed in opaque red over the
versus IRMSDs from the native structure. This indicates theansparent blue native structure of each considerediprete
geometric projection layer helps to explore different @vnf see Fig. 2(b1) and 3(a2-7). The native structures are autain
mational topologies with which to populate low energy level from the PDB: PDB id 112y for Trp-cage, li6c for wwD, 1vii
It is worth noting that, though Rg and IRMSD are not generé&br hp36, 1enh for eHD, 1gyz for L20, 1gbl for GB1, 4icb for
conformational coordinates, they are useful to visualide Zalbindin. With the exception of GB1, the native structwse i
projections of the probed energy surface. captured among the top clusters. As Fig. 2(b1) shows, the top
The inability of an MC trajectory to populate diverse energiwo clusters are very similar to the Trp-cage native stmgctu
minima is addressed in recent work by executing numgi2-3 A IRMSD), with some variability in the loop. Plotting
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Rg values of conformations in versus their IRMSDs from
the native in Fig. 2(d1) shows a well-separated cluster of
conformations. The cluster is arou2d A in IRMSD from

the native and around an Rg value®5 A, which is similar

to the Rg value 06:93 A of the native structure.

D. The Projection Space Layer Helps Obtain Geometrically-  hp36 (a2) (b2) (c2)
distinct Conformations

Conformations that map to the same cell in the 3d grid
over the projection space can still be signi cantly diffetgin
terms of IRMSD) from one another. Fig. 2(el), which plots
energies versus IRSMDs from the native structure, shows tha
FeLTr obtains lower energies even for conformations that wwD (a3) (b3) (c3)
map to the same cell as the native structure. In additiosethe
conformations have diverse IRMSDs, uptadA.

Projection coordinates capture overall topology, with ne
structural details handled by the energy function. For gdam
the GB1 conformation representative of the top clustergutsj
to the same cell as the native structure. The native topdkgy
captured, but the -sheets are not fully formed. Sincesheets
arise from non-local interactions, they cannot be captured
at the fragment level but through an energy function. Im-
provements in energy functions to capture non-local bac&bo
pairings are the subject of much research [3], [26].

eHD (a4) (b4) (c4)

IV. DISCUSSION

o . L20 (a5) (b5) (c5)
The coarse graining ifreLTr is based on the backbone- 2% e

based theory of protein folding [37]. Other work that alsc!:
employs coarse graining shows that geometry presculpts 1% %5
protein energy surface [38]FeLTr leverages the role of
geometry in shaping the protein energy surface by employil
both geometry and energy to guide its tree-based exploratic y
Since time grows quadratically with the number of atoms GBL1 (a6
(due to the Lennard-Jones term), coarse graining (whick&;
reduces the number of atoms) and the focus on computin
diverse low-energy conformations makeLTr particularly , -
effective to handle high-dof chains. Coarser protein repnéa-
tions likeC traces may extend applicability to longer chains. ‘g
Coarse graining can also bene t methods that search higr

(E)=cE

T i 1 TR
9 10 1112 13 14 15 7 8 138 14 15

CRE TR
LRgSBD * LRMSD (A)

g : : : o
dimensional spaces of articulated robots. The importarice C Calbindin Doy (a7)

coarse graining is indeed starting to emerge in samplirsgdha
motion planmng',T()gether with work in [_21]’ which Showgc:riterion are clustered. The lowest-energy conformatidris@most populated
bene ts in using different layers of granularity (from geetric  clusters are superimposed in opaque red over the nativetisieudrawn in

to kinematic to dynamic)FeLTr also supports the use oftransparent blue. Energies of conformations are plottethes. IRMSDs from

7 8 9 10 11 12 7 8 9 10 1|A12 13 14
LRMSDb(7p\) LRMSD (&)

ig. 3. (a2-7)FelLTr -computed conformations that meet the energetic

. . . . the native structure in red fdfeLTr -computed conformations in (b2-7) and
reduced models to address high dimensionality. light purple for MC-computed conformations in (c2-7).

The projection coordinates employed here are not proposed
as general reaction coordinates on which to project theggner
surface. Finding such coordinates remains the subject of
much research in computational biology [30]. Rather, the&SLX [21], PDST [24] and [39] that rely on low-dimensional
coordinates are a rst attempt towards integrating a ptajac Projections can potentially bene t from using USR projecis
space in the exploration of conformational space. Direstiot0 effectively explore high-dimensional spaces.
for future research include the design of novel projectiang FeLTr also offers an interesting insight on how to generate
parallel implementations to further enhance the explomati valid samples for articulated mechanisms. For instancegesi
Since the USR projections rely only on geometry, they arandom sampling of dofs in manipulation planning often
not tied to protein chains but can apply to any articulate@sults in self-colliding con gurations, the equivaleriteofrag-
mechanism. In particular, sampling-based motion planiile¥s ment database can be employed to extract good con gurations



for different fragments. Work in [40] has also proposed thas]
usage of chain fragments in sampling valid con gurations.
The Rgppg employed to obtain compact conformationélg]
does not capture proteins with diverse functional states. D
ferent values of Rg thresholds, obtained from experiment B!
de ned systematically over a range as in [17], can be empmloye
in future work to extend applications on such proteins. [21]
FeLTr makes a rst step towards rapidly computing coarse-
grained native-like conformations from sequence. Analyspy
shows the native structure is among computed conformations
The lowest-energy conformations are good candidates
further re nement in all-atom detail in order to associat
structural and functional information with novel sequence [24]
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