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Abstract— This paper proposes a robotics-inspired method
to enhance sampling of native-like protein conformations when
employing only amino-acid sequence. Computing such conforma-
tions, essential to associate structural and functional information
with gene sequences, is challenging due to the high-dimensionality
and the rugged energy surface of the protein conformational
space. The contribution of this work is a novel two-layered
method to enhance the sampling of geometrically-distinct low-
energy conformations at a coarse-grained level of detail. The
method grows a tree in conformational space reconciling two
goals: (i) guiding the tree towards lower energies and (ii) not over-
sampling geometrically-similar conformations. Discretizations of
the energy surface and a low-dimensional projection space are
employed to select more often for expansion low-energy confor-
mations in under-explored regions of the conformational space.
The tree is expanded with low-energy conformations through
a Metropolis Monte Carlo framework that uses a move set of
physical fragment con�gurations. Testing on sequences of seven
small-to-medium structurally-diverse proteins shows that the
method rapidly samples native-like conformations in a few hours
on a single CPU. Analysis shows that computed conformations
are good candidates for further detailed energetic re�nements by
larger studies in protein engineering and design.

I. I NTRODUCTION

A globular protein molecule repeatedly populates its func-
tional (native) state at room temperature after denaturation [1].
Despite this discovery in 1973 by An�nsen, the problem of
computing the conformations that comprise the protein native
state from knowledge of amino-acid sequence alone continues
to challenge structural biology [2]. Computing native confor-
mations, however, is essential in associating structural and
functional information with newly discovered gene sequences,
engineering novel proteins, predicting protein stability, and
modeling protein-ligand or protein-protein interactions[3]–[5].

Sampling native conformations is inherently dif�cult due to
the vast high-dimensional conformational space availableto a
protein chain. The high-dimensionality challenge has drawn
robotics researchers to adapt and apply algorithms that plan
motions for articulated mechanisms with many degrees of
freedom (dofs) to the study of protein conformations [6]–[11].
Though these methods often have to be adapted to deal with
hundreds of dofs in protein chains (from dozens of dofs in
articulated mechanisms), the motion-planning framework has
allowed addressing the problem of computing paths from a
given initial to a given goal protein conformation [6], [7].

The problem addressed in this work is the discovery of
native conformations from knowledge of amino-acid sequence.
No information is available on the goal conformations besides

the energy landscape view that associates native conformations
with lowest energies [12]. Energetic considerations compli-
cate the search for native conformations. Interactions among
atoms in a protein, which scale quadratically with the number
of modeled atoms, give rise to an energy surface that can
currently be probed only with empirical energy functions. A
fundamental challenge in probing the native state is ef�ciently
computing native-like conformations associated with the true
global minimum (or competing minima) in an approximated
energy surface constellated with local minima [12].

Faced with a vast space rich in local minima, some methods
narrow the search space relevant for the native state by em-
ploying additional information about this state, often obtained
from experiment [13]–[15]. Such information, however, is not
available for millions of newly discovered protein-encoding
gene sequences, nor is it easily obtained for novel sequences
proposed in silico [16]. In such cases, ab-initio methods that
employ only amino-acid sequence become very important.

In order to explore a vast conformational space, ab-initio
methods often proceed in two stages: they �rst obtain a broad
view of the conformational space, usually at a coarse-grained
level of detail, to reveal candidate conformations that then
undergo further re�nement at a second stage [3], [17]. Coarse-
grained representations of a protein chain are employed to
reduce the number of dofs (from thousands to hundreds on
small-to-medium proteins), and as a result, the dimensionality
of the ensuing conformational space. The current generation
of physically-realistic coarse-grained energy functionsallows
employing coarse-grained representations of protein chains
as a practical alternative to all-atom representations without
sacri�cing predictive power [18].

Obtaining a broad view of the conformational space is
crucial when postponing the computationally demanding all-
atom detail and energetic re�nement on coarse-grained con-
formations deemed to be native-like. Sampling a large number
of low-energy conformations often entails enhanced sampling
methods that build on Molecular Dynamics (MD) or Monte
Carlo (MC) (cf. [19]). While MD-based techniques systemat-
ically search the conformational space, MC-based techniques
often exhibit higher sampling ef�ciency [19]. Most notable
among MC-based ab-initio methods are those that employ
fragment assembly. These methods simplify the search space
by using a limited move set of physical fragment con�gura-
tions to assemble conformations [3], [14], [17].

Enhanced sampling on a simpli�ed search space, coupled



with realistic energy functions, have allowed fragment assem-
bly methods to achieve high prediction accuracy of the native
state, albeit at a time cost. It takes weeks on multiple CPUs to
obtain a large number of low-energy conformations potentially
relevant for the native state. It also remains dif�cult to ensure
that computed conformations are geometrically-distinct and
not representative of only a few regions of the conformational
space [17]. Part of the dif�culty lies in the inability to de�ne a
few conformational (reaction) coordinates on which to de�ne
distance measures. Popular measures like least Root-Mean-
Squared-Deviation (lRMSD) and radius of gyration (Rg) can
mask away differences among conformations [17].

The contribution of this work is a novel two-layered method
to enhance the sampling of geometrically-distinct low-energy
conformations. The method uses no information about the
native state of a protein beyond amino-acid sequence. Em-
ploying a coarse-grained representation of a protein chain,
the method focuses on ef�ciently obtaining diverse native-like
conformations. The goal of the method is to serve as a �ltering
step that, in a matter of a few hours on a single CPU, reveals
native-like conformations that can be further re�ned through
detailed studies. From now on the method is referred to as
FeLTr for Fragment Monte CarLo Tr ee Exploration.

As in fragment assembly,FeLTr assembles a conformation
with con�gurations of short fragments compiled over a nonre-
dundant database of protein structures. Employing fragments
from the database (rather than random) improves the likelihood
of assembling a physical conformation. A physically-realistic
coarse-grained energy function estimates the energy of assem-
bled conformations. The fragment assembly is implemented
in a Metropolis MC framework, where the chain of a current
conformation is scanned and new fragment con�gurations are
proposed to replace old ones. Replacements that meet the
Metropolis criterion are accepted, resulting in a new conforma-
tion. Using a limited move set of fragment con�gurations anda
coarse-grained representation,FeLTr is able to rapidly obtain
low-energy native-like conformations. Most importantly,the
method obtains diverse native-like conformations througha
novel tree-based exploration of the conformational space.

Inspired by tree-based methods in robotics motion planning,
FeLTr grows a tree in conformational space, reconciling
two goals: (i) expanding the tree towards conformations with
lower energies while (ii) not oversampling geometrically-
similar conformations. The �rst goal is warranted due to the
fact that the desired native-like conformations are associated
with the lowest energies in the energy surface sculpted by an
amino-acid sequence. The second goal attempts to obtain a
broad view of the conformational space near the native state
by not oversampling geometrically-similar conformations.

To achieve the �rst goal,FeLTr partitions energies of
computed conformations into levels through a discretized one-
dimensional (1d) grid. The grid is used to select conformations
associated with lower energy levels more often for expansion.
The second goal is achieved by keeping track of computed
conformations in a three-dimensional (3d) projection space
using the recently proposed ultrafast shape recognition (USR)

features [20]. The projection space is discretized in orderto
select for expansion low-energy conformations that fall in
under-explored regions of the conformational space. Aftera
conformation is selected for expansion, a short Metropolis
MC trajectory summarized above is employed to expand the
tree with a new low-energy conformation. This two-layered
exploration, detailed in section II, is illustrated in Fig.1.

The employment of the projection space inFeLTr is
inspired by recent sampling-based motion-planning methods
that make use of decompositions, subdivisions, and projections
of the con�gurational space or the workspace of a robot
to balance the exploration between coverage and progress
toward the goal [21]–[25]. It is worth mentioning that, while
the focus of this work is on protein chains, the projections
employed inFeLTr are not tied to protein conformations.
Since the projections rely only on geometry, they can be
used for any articulated mechanism (manipulators, humanoid,
modular robots) (see section IV for more on this point).

FeLTr is tested on sequences of seven proteins of different
lengths (20-76 amino acids) – amounting to40-152 dofs –
and native topologies (� , �=� , � ). Results show thatFeLTr
obtains compact low-energy conformations on all proteins.
Clustering the lowest-energy conformations reveals that the
native state is captured among the computed conformations.
These conformations are good candidates for further re�ne-
ment with detailed all-atom energy functions. The proposed
method can serve as an ef�cient initial �ltering step in larger
detailed studies focused on extracting structural and functional
properties of uncharacterized protein sequences [17], [26].

Fig. 1. According to the landscape view of protein folding, the native state,
labeled N, is associated with the global minimum of a funnel-like energy
surface [12]. The surface shown here is adapted from [12]. The proposed
FeLTr method cross-sects this surface by discretizing potential energy values
in a 1d grid, illustrated here with the z-axis. The axis is color-coded in a red-
to-blue scheme to denote energy levels that reach lower values with the native
state. The grid on the xy-plane discretizes the projection of the conformational
space onto a few conformational coordinates. The illustration here shows
two coordinates for visualization purposes.FeLTr uses three coordinates to
describe projected conformations, as detailed in section II.

The following summary of related work further places
the proposedFeLTr in context. The method is detailed in
section II. Analysis of the conformations computed on the
seven sequences chosen for testing is presented in section III.
Discussion follows in section IV.



Related Work

Computational methods search conformational space sys-
tematically or at random [19]. Systematic searches rely on
MD to sample conformations by numerically solving Newton's
equations of motion. Since the solution accuracy dictates a
small timestep (femtoseconds) between consecutive conforma-
tions in an MD trajectory, a broad view of the space demands
multiple long trajectories. MC-based searches conduct biased
probabilistic walks in conformational space [19].

Since both MD and MC are prone to converge to local
minima in the energy surface, many methods build on them
to enhance sampling. Such methods include simulated an-
nealing, importance and umbrella sampling, replica exchange
(also known as parallel tempering), local elevation, activation
relaxation, local energy �attening, jump walking, multicanon-
ical ensemble, conformational �ooding, Markov state models,
discrete timestep MD, and many more (cf. [19]).

Some of these methods narrow the search space by employ-
ing Nuclear Magnetic Resonance (NMR) data such as order
parameters, residual couplings, and other NMR data [15],
[27]. Such data are often incorporated in a new term in the
energy function to construct a pseudo-energy function that
biases the search towards conformations that reproduce the
experimental data. Other methods employ an experimental
structure representing the native state as a semi-rigid template
and conduct a geometrically-constrained search around it for
additional native-like conformations [13], [28].

Ab-initio methods employ only amino-acid sequence for a
protein at hand. Some rely on sophisticated energy functions
to guide MD trajectories to native-like conformations [29].
The most successful methods employ fragment assembly [3].
While the fragment length varies among methods, the basic
process is to assemble conformations with physical fragment
con�gurations extracted from a nonredundant database of pro-
tein structures [3], [14], [17]. Deciding on a suitable fragment
length depends on the richness of the database to provide a
comprehensive picture of fragment con�gurations. The current
diversity of the Protein Data Bank (PDB) supports a minimum
length of three amino acids [17].

While a limited move set of fragment con�gurations speeds
up an MC-based exploration, there is no guarantee that
assembled conformations are distinct or capture the native
state. A large number of low-energy coarse-grained confor-
mations are often computed to increase the probability that
a few are suf�ciently close to the native state that they
will reach this state upon detailed energetic re�nements [3],
[17]. Since these re�nements, often in all-atom detail, are
computationally expensive, they can be conducted only on
few conformations. Hence, it is important that the exploration
reveal diverse coarse-grained conformations near the native
state. It is currently dif�cult to �nd reaction coordinateson
which to measure diversity [30]. Popular but lacking measures
like lRMSD and Rg are not integrated in the exploration but
largely con�ned to analysis over computed conformations [17].

FeLTr integrates coordinates proposed in [20] in its tree-

based search. The tree is expanded in conformational space
through an MC framework, keeping track of computed con-
formations in the low-dimensional projection space. MC has
been used in sampling-based motion planing to escape local
minima [31] and enhance sampling for closed chains with
spherical joints [32]. The employment of the projection space
in FeLTr is also inspired by motion-planning methods that
decompose, subdivide, and project a robot's con�gurational
space or workspace to balance the exploration between cov-
erage and progress toward the goal [21]–[25].

II. FELTR

In the usual MC framework, the probabilistic walk in the
conformational space resumes from the last conformation
computed.FeLTr enhances this framework by conducting a
tree-based exploration of the conformational space. Giventhat
only amino-acid sequence information is available, the root of
the tree is an extended coarse-grained conformation.FeLTr
then explores the conformational space iteratively, at each
iteration selecting a conformation and then expanding it. While
every expansion involves a short Metropolis MC trajectory,
the important decision about which conformation to select
for expansion depends on (i) the energy levels populated and
(ii) the projection space covered by computed conformations.
Pseudocode is given in Algo. 1. Sections describing the main
steps inFeLTr are referenced at the end of each line.

Algo. 1 FeLTr : Fragment Monte CarLo Tr ee Exploration
Input: � , amino-acid sequence
Output: ensemble
 � of conformations

1: Cinit  extended coarse-grained conf from� BII-A
2: GE  explicit 1d energy grid BII-B.1
3: for ` 2 GE do
4: `:GUSR  implicit 3d geom projection grid BII-B.2
5: ADDCONF(Cinit ; GE ; GUSR )
6: while TIME AND j
 � j do not exceed limitsdo
7: `  SELECTENERGYLEVEL(GE ) BII-B.1
8: cell  SELECTGEOMCELL(`:GUSR :cells) BII-B.2
9: C  SELECTCONF(cell:confs) BII-B.2

10: Cnew  MC EXPANDCONF(C) BII-C
11: if Cnew 6= NIL then BMC succeeded
12: ADDCONF(Cnew ; GE ; GUSR )
13: 
 �  
 � [ f Cnew g Badd conf to ensemble
ADDCONF(C; GE ; GUSR )
Badd C to appropriate energy level inGE

1: E(C)  COARSEGRAINEDENERGY(C) BII-C.2
2: `  level in GE whereE(C) falls into
3: `:confs `:confs[ f Cg

Badd C to appropriate cell in geom grid associated with`
4: P(C)  USRGEOMPROJ(C) BII-B.2
5: cell  cell in `:GUSR whereP(C) falls into
6: if cell = NIL then Bcell had not yet been created
7: cell  new geom projection cell
8: `:GUSR :cells  `:GUSR :cells[ f cellg
9: cell:confs cell:confs[ f Cg



A. Coarse-grained Representation of a Protein Chain

Only backbone heavy atoms and side-chainC� atoms
are explicitly represented. Employing the idealized geometry
model, which �xes bond lengths and angles to idealized
(native) values, positions of backbone atoms are computed
from �;  angles. These angles are set to120� ; � 120� in an
extended conformation (Algo. 1:1). Positions ofC� atoms are
determined from the computed backbone as in [33].

B. Selection: Combination of Energy Layers and Low-
dimensional Geometric Projections

1) Energy Layers:A 1d grid, GE (Algo. 1:2), is de�ned
on the segment[Emin ; 0]. Emin refers to the lowest expected
energy on computed conformations (set to� 200 kcal/mol
on the tested proteins), and0 refers to the highest energy.
Since the Metropolis MC expansion quickly obtains negative-
energy conformations (and conformations with nonnegative
energies are not relevant because they are highly infeasible), it
is not necessary to maintain a grid over nonnegative energies.
Energy levels are generated every�E units. �E is set to a
small value (2 kcal/mol), so that the average energyEavg (`)
over conformations populating a speci�c energy level` 2 GE

captures well the distribution of energies in`.
This discretization is used to bias the selection towards

conformations in the lower energy levels. The weight function
w(`) associated with an energy level` 2 GE is set to
w(`) = Eavg (`) � Eavg (`) + � , where� = 1:0=222 ensures that
conformations with higher energies have a nonzero probability
of selection. An energy level` is then selected with probability
w(`)=

P
` 02 GE

w(`0) (Algo. 1:7). This quadratic weight func-
tion biases the selection towards conformations with lower
energies while allowing for some variation. Allowing higher-
energy conformations to be selected providesFeLTr with
the ability to jump over barriers in the energy surface. The
Metropolis MC expansion also allows jumping over barriers.

2) Low-dimensional Geometric Projections:Conforma-
tions in a chosen energy level are then projected onto a
low-dimensional space. Borrowing from the USR features
proposed in [20], three projection coordinates are de�ned
on each computed conformation: the mean atomic distance
� 1

ctd from the centroid (ctd), the mean atomic distance� 1
fct

from the atom farthest from the centroid (fct), and the mean
atomic distance� 1

ftf from the atom farthest from fct (ftf). The
ctd, fct, and ftf atoms capture well-separated extremes of a
conformation. So, the distribution of atomic distances from
each extreme point (approximated with the �rst moment) is
likely to yield new geometric information on a conformation.

The three projection coordinates capture overall topologic
differences among conformations. As discussed in section IV,
the coordinates are not speci�c to protein conformations but
can be applied to any articulated mechanism. The coordinates
allow introducing a second layer of discretization inFeLTr .
The reason for the second layer is that conformations with
similar energies may be geometrically different (a notion
captured by entropy in statistical mechanics), andFeLTr aims
to compute geometrically-distinct low-energy conformations.

Conformations in an energy level are partitioned in cells
of the projection space to employ coverage in this space as
a second criterion for selection. An implicit 3d grid,GUSR ,
is associated with each energy level (Algo.1:3-4), based on
a uniform discretization of the projection coordinates. The
selection is then biased towards cells with fewer conformations
through the weight function1:0=[(1:0 + nsel) � nconfs], where
nsel records how often a cell is selected, andnconfs is the
number of conformations that project to the cell (Algo. 1:8).
Similar selection schemes have been advocated in motion-
planning literature as a way to increase geometric coverage
during exploration [21], [24]. Once a cell is chosen, the actual
conformation selected for expansion is obtained at random
over those in the cell (Algo. 1:9), since conformations in the
same cell have similar energies (within�E ).

C. Expansion: Metropolis MC with Fragment Assembly

After a conformation is selected for expansion, its chain of
N amino acids is scanned, de�ningN -2 consecutive fragments
of three amino acids referred to as trimers. A conformation can
now be updated by replacing con�gurations of its trimers. A
trimer con�guration consists of6 � ,  angles de�ned over
its backbone. The expansion procedure (Algo. 1:10) iterates
N -2 times, at each iteration choosing a trimer at random
over the chain. Upon choosing a trimer, a database of trimer
con�gurations, whose construction is detailed in section II-C.1,
is then queried with the amino-acid sequence of the trimer.

Of all con�gurations available for the trimer in the database,
one obtained at random is proposed to replace the con�gura-
tion in the current conformation. The reason for the random
rather than consecutive iteration over the trimers in a chain
is that an iterative scanning of the chain may result in local
minima; that is, con�gurations are proposed but not accepted.
The decision on whether to accept a trimer con�guration
(Algo. 1:11) is done under the Metropolis criterion, with the
coarse-grained energy function de�ned in section II-C.2.

1) Database of Fragment Con�gurations:A PDB subset
of nonredundant protein structures (as of November 2008) is
extracted through the PISCES server [34] to contain proteins
that have� 40% sequence similarity,� 2:5 	A resolution and
R-factor� 0:2. Proteins studied in this work are removed from
the database. The40%similarity cutoff ensures that topologies
that are over-populated by similar protein sequences in the
PDB are not over-represented in the database. Around6; 000
obtained protein chains are split into all possible overlapping
trimers. The database maintains a list of con�gurations popu-
lated by each trimer over all extracted chains - a total of more
than ten million con�gurations. No less than 10 con�gurations
are populated for any trimer of each tested sequence.

2) Coarse-grained Energy Function:The function that
evaluates the energy of a coarse-grained conformation, re-
cently proposed in [17], is a linear combination of non-
local terms (local terms are excluded since conformations
are assembled with physical trimer con�gurations):E =
ELennard � Jones + EH� Bond + Econtact + Eburial + Ewater +
ERg . The ELennard � Jones term is implemented after the12-6



Lennard-Jones potential in AMBER9 [35], with a modi�cation
that allows a soft penetration of van der Waals spheres.
The EH� Bond term allows formation of local and non-local
hydrogen bonds. The termsEcontact , Eburial , and Ewater ,
implemented as in [29], allow formation of non-local contacts,
a hydrophobic core, and water-mediated interactions.

The ERg term in this work penalizes a conformation by
(Rg � RgPDB )2 if the conformation'sRg value is above
the RgPDB value predicted for a chain of same length from
proteins in the PDB. The predicted value �ts well to the line
2:83 � N 0:34 [14], which is used to computeRgPDB for each
sequence ofN amino acids. TheERg term penalizes non-
compact conformations, since native-like conformations are
compact and with a well-packed hydrophobic core. Moreover,
RgPDB and theRg value of an extended conformation are
used to de�ne the boundaries of the projection space.

3) Metropolis Criterion: After replacing a trimer con�gu-
ration in a selected conformation, the resulting energy is eval-
uated with the above energy function. The proposed replace-
ment is accepted if it results in a lower energy (Algo. 1:10-11).
Otherwise, it is accepted with probabilitye� � � � E , where� E
is the difference in energy after the replacement, and� is a
temperature scaling factor. In this work,� is chosen to allow
an energy increase of10 kcal/mol with probability0:1 so the
tree is expanded with conformations that cross energy barriers.

D. Analysis of Computed Conformations

As shown in Algo. 1, conformations computed byFeLTr
are gathered in the ensemble
 � . The distribution of energies
of conformations in
 � is analyzed to obtain the average
energyhE i and standard deviation�E . Let 
 �

� denote the
subensemble of conformations with energies no higher than
hE i � �E . 
 �

� is clustered with a simple leader-like algo-
rithm [36], using a conservative cluster radius of2:0 	A. The
lowest-energy conformations of each cluster are offered by
FeLTr as candidates for further detailed re�nement. The
results below show that this analysis reveals distinct clusters
of native-like conformations that capture the native state.

The purpose of the analysis is to reveal possibly more
than one energy minimum. Since exact quantum mechanics
calculations cannot be afforded on long chains, empirical
energy functions are used instead. These functions (like the
one employed in this work) need to rank lower in energy those
computed conformations that are more native-like. The lowest
energy value reported, however, may not correspond to the
most native-like conformation.

III. E XPERIMENTS AND RESULTS

Since the conformational space available to a protein chain
is high-dimensional, the ability of a method to reproduce
conformations that populate the protein native state provides
an important benchmark [26].FeLTr is applied to seven
structurally-diverse protein sequences of varying lengths.
Comparing computed conformations with experimentally-
available native structures of each protein reveals thatFeLTr
captures the native state. The results below, which benchmark

FeLTr against a Metropolis MC simulation, show thatFeLTr
consistently obtains lower energies than the MC simulation.

The low-energy conformations obtained byFeLTr are
analyzed not only for the presence of native-like confor-
mations, but also for their geometric diversity. The results
presented below show thatFeLTr populates diverse energy
minima signi�cantly better than the MC simulation. While
the native state is usually present among the highest-populated
minima, other obtained minima contain compact low-energy
conformations that differ on content of secondary structure
segments or overall 3d arrangement of these segments.

A. Chosen Systems

The seven proteins chosen to testFeLTr , listed in Table III-
A, include tryptophan cage (Trp-cage), Pin1 Trp-Trp ww do-
main (wwD), villin headpiece (hp36), engrailed homeodomain
(eHD), bacterial ribosomal protein (L20), immunoglobulin
binding domain of streptococcal protein G (GB1), and cal-
bindin D9k . These proteins are chosen because they vary in
size (number of amino acids) and ultimately number of dofs,
native fold (3d global arrangement of local secondary structure
segments), and are actively studied both in silico and in the
wet lab due to the importance of their biological functions.

Protein Trp-cage wwD hp36 eHD L20 GB1 CalbindinD9k
Fold � � � � � �=� �
Size 20 26 36 54 60 60 76
Dofs 40 52 72 108 120 120 152

FeLTr is implemented in C++, run on an Intel Core2 Duo
machine with 4GB RAM and 2.66GHz CPU, and allowed
to compute no more than50; 000 conformations in no more
than 3 hours. Limiting the number of conformations ensures
that the exploration tree and ensemble
 � �t in memory. On
small proteins like Trp-cage, wwD, and hp36, this number of
conformations is reached in40 minutes,1 hour, and2 hours,
respectively. (Time grows quadratically with chain lengthdue
to the Lennard-Jones energy term; e.g., computing50; 000
conformations takes� 36 hours on200 amino-acid chains.)

B. Analyzing the Ef�ciency ofFeLTr

The ef�ciency of FeLTr is estimated in comparison with
a Metropolis MC simulation that is limited by the same time
and number of conformations likeFeLTr . To keep all other
conditions similar, the MC simulation also employs the same
fragment assembly to compute conformations in its trajec-
tory and the same coarse-grained representation and energy
function to calculate the energy of a computed conformation.
This comparison allows to directly probe the effect of the
FeLTr tree-based exploration guided by the novel two-layer
discretization in sampling native-like conformations.

Fig. 2(a1) plots energies versus Rg values of computed
conformations. Signi�cantly lower energies are obtained with
FeLTr (shown in red) than the MC simulation (shown in
light purple). This result, also revealed when plotting en-
ergies versus lRMSDs of computed conformations from an



Trp-cage (a1) (b1)

(c1) (d1)

(e1)

Fig. 2. Plots superimpose Trp-cage MC-computed data in light purple
over FeLTr -computed data in red. (a1) Energies of conformations are
plotted vs. Rg values. The horizontal line marks the energetic cutoff. The
three vertical lines show different Rg thresholds. (b1)FeLTr -computed
conformations that meet the energetic criterion are clustered. Lowest-energy
conformations of �ve main clusters (red) are superimposed overthe native
structure (transparent blue). (c1) Energies are plotted vs. lRMSDs from native.
(d1) For conformations that meet the energetic criterion, lRMSDs from native
are plotted vs. Rg values. (e1) For conformations that map to same cell of the
projection space as the native, energies are plotted vs. lRMSDs from native.

experimentally-available native structure (Fig. 2(c1) for Trp-
cage and 3(b2-7) for the other proteins), is not surprising.
FeLTr guides the tree towards lower energies, whereas the
MC simulation resumes from the last conformation generated.

The MC simulation employed for comparison is a powerful
probabilistic walk that uses fragment assembly to make large
hops in conformational space; that is, the lRMSD between
two consecutive conformations can be signi�cant. Figs. 2(c1)
and 3(b2-7) show that the MC simulation comes close (in
lRMSD) to the native structure of most tested proteins (FeLTr
comes closer in Figs 2(c1) and 3(b3, b6)). However,FeLTr
populates more energy minima, revealed when plotting ener-
gies of computed conformations versus their Rg values and
versus lRMSDs from the native structure. This indicates the
geometric projection layer helps to explore different confor-
mational topologies with which to populate low energy levels.
It is worth noting that, though Rg and lRMSD are not general
conformational coordinates, they are useful to visualize 2d
projections of the probed energy surface.

The inability of an MC trajectory to populate diverse energy
minima is addressed in recent work by executing numer-

ous trajectories. The trajectories are initiated from different
carefully selected conformations in a simulated annealing
framework [17]. This exploration, while offering a broad view
of the conformational space near the native state, requires1-3
weeks of computation on50 CPUs [17]. The selection of con-
formations from which to initiate MC trajectories is seamlessly
integrated inFeLTr through the tree-based exploration.

Native structures of many of the proteins presented here
have been computed by detailed MD simulations that employ
discrete timesteps [26]. Running times of such simulations,
while resulting in high-quality native-like conformations, are
limited by the dynamics of the proteins considered. While
fast folders require ns-long MD simulations, slow folders may
require longer than� s-long simulations (more than one week
on one CPU). Other work that computes coarse-grained native-
like conformations with MC trajectories (of similar length,
� 50; 000 consecutive conformations) employs long angle-
based (rather than sequence-based) fragments [14].

C. Extracting Native-like Conformations withFeLTr

The goal ofFeLTr is not to obtain single structures with
high accuracy but to compute coarse-grained native-like con-
formations whose accuracy can be later improved through fur-
ther re�nements. Determining what makes aFeLTr -computed
conformation native-like depends only on energetic consider-
ations. ThehE i � �E cutoff de�nes a subensemble
 �

� of
conformations that can be considered for further re�nement.
Employing other measures such as Rg or lRMSD from the
native structures employs information that is not available
from knowledge of amino-acid sequence only. Focusing on

 �

� reduces the number of conformations by more than50%.
Fig. 2(a1) shows that conformations with energies no higher

thanhE i � �E have diverse Rg values. The vertical lines in
Fig. 2(a1) mark three Rg thresholds:Rgrel - the Rg value of an
extended conformation,RgPDB - the Rg value predicted for
a chain of same length from the PDB, andRgcon - a smaller
Rg value proposed in [14] for more compact conformations.
Speci�cally, Rgcon = 2 :5 � N 0:34, whereN is the number of
amino acids in a protein sequence. The three vertical lines
show that (i) almost all computed conformations are more
compact than an extended conformation; (ii) the number of
conformations proposed for re�nement can be further reduced
(down to 0:25j
 � j) by discarding those with Rg> RgPDB ;
and (iii) the method obtains more compact conformations than
rewarded by the coarse-grained energy function.

Clustering
 �
� allows offering only the lowest-energy con-

formations of the top-populated clusters for further re�nement.
These conformations are superimposed in opaque red over the
transparent blue native structure of each considered protein -
see Fig. 2(b1) and 3(a2-7). The native structures are obtained
from the PDB: PDB id 1l2y for Trp-cage, 1i6c for wwD, 1vii
for hp36, 1enh for eHD, 1gyz for L20, 1gb1 for GB1, 4icb for
calbindin. With the exception of GB1, the native structure is
captured among the top clusters. As Fig. 2(b1) shows, the top
two clusters are very similar to the Trp-cage native structure
(2-3 	A lRMSD), with some variability in the loop. Plotting



Rg values of conformations in
 �
� versus their lRMSDs from

the native in Fig. 2(d1) shows a well-separated cluster of
conformations. The cluster is around2:0 	A in lRMSD from
the native and around an Rg value of6:5 	A, which is similar
to the Rg value of6:93 	A of the native structure.

D. The Projection Space Layer Helps Obtain Geometrically-
distinct Conformations

Conformations that map to the same cell in the 3d grid
over the projection space can still be signi�cantly different (in
terms of lRMSD) from one another. Fig. 2(e1), which plots
energies versus lRSMDs from the native structure, shows that
FeLTr obtains lower energies even for conformations that
map to the same cell as the native structure. In addition, these
conformations have diverse lRMSDs, up to7 	A.

Projection coordinates capture overall topology, with �ne
structural details handled by the energy function. For example,
the GB1 conformation representative of the top cluster projects
to the same cell as the native structure. The native topologyis
captured, but the� -sheets are not fully formed. Since� -sheets
arise from non-local interactions, they cannot be captured
at the fragment level but through an energy function. Im-
provements in energy functions to capture non-local backbone
pairings are the subject of much research [3], [26].

IV. D ISCUSSION

The coarse graining inFeLTr is based on the backbone-
based theory of protein folding [37]. Other work that also
employs coarse graining shows that geometry presculpts the
protein energy surface [38].FeLTr leverages the role of
geometry in shaping the protein energy surface by employing
both geometry and energy to guide its tree-based exploration.

Since time grows quadratically with the number of atoms
(due to the Lennard-Jones term), coarse graining (which
reduces the number of atoms) and the focus on computing
diverse low-energy conformations makeFeLTr particularly
effective to handle high-dof chains. Coarser protein representa-
tions likeC� traces may extend applicability to longer chains.

Coarse graining can also bene�t methods that search high-
dimensional spaces of articulated robots. The importance of
coarse graining is indeed starting to emerge in sampling-based
motion planning. Together with work in [21], which shows
bene�ts in using different layers of granularity (from geometric
to kinematic to dynamic),FeLTr also supports the use of
reduced models to address high dimensionality.

The projection coordinates employed here are not proposed
as general reaction coordinates on which to project the energy
surface. Finding such coordinates remains the subject of
much research in computational biology [30]. Rather, these
coordinates are a �rst attempt towards integrating a projection
space in the exploration of conformational space. Directions
for future research include the design of novel projectionsand
parallel implementations to further enhance the exploration.

Since the USR projections rely only on geometry, they are
not tied to protein chains but can apply to any articulated
mechanism. In particular, sampling-based motion plannerslike

hp36 (a2) (b2) (c2)

wwD (a3) (b3) (c3)

eHD (a4) (b4) (c4)

L20 (a5) (b5) (c5)

GB1 (a6) (b6) (c6)

CalbindinD9k (a7) (b7) (c7)

Fig. 3. (a2-7) FeLTr -computed conformations that meet the energetic
criterion are clustered. The lowest-energy conformations of the most populated
clusters are superimposed in opaque red over the native structure drawn in
transparent blue. Energies of conformations are plotted vs.their lRMSDs from
the native structure in red forFeLTr -computed conformations in (b2-7) and
light purple for MC-computed conformations in (c2-7).

DSLX [21], PDST [24] and [39] that rely on low-dimensional
projections can potentially bene�t from using USR projections
to effectively explore high-dimensional spaces.

FeLTr also offers an interesting insight on how to generate
valid samples for articulated mechanisms. For instance, since
random sampling of dofs in manipulation planning often
results in self-colliding con�gurations, the equivalent of a frag-
ment database can be employed to extract good con�gurations



for different fragments. Work in [40] has also proposed the
usage of chain fragments in sampling valid con�gurations.

The RgPDB employed to obtain compact conformations
does not capture proteins with diverse functional states. Dif-
ferent values of Rg thresholds, obtained from experiment or
de�ned systematically over a range as in [17], can be employed
in future work to extend applications on such proteins.

FeLTr makes a �rst step towards rapidly computing coarse-
grained native-like conformations from sequence. Analysis
shows the native structure is among computed conformations.
The lowest-energy conformations are good candidates for
further re�nement in all-atom detail in order to associate
structural and functional information with novel sequences.
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