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Abstract—To effectively navigate in their environments and
accurately reach their target locations, mobile robots require
a globally consistent map of the environment. The problem of
learning a map with a mobile robot has been intensively studied in
the past and is usually referred to as the simultaneous localization
and mapping (SLAM) problem. However, existing solutions to the
SLAM problem typically rely on loop-closures to obtain global
consistency and do not exploit prior information even if it is
available. In this paper, we present a novel SLAM approach
that achieves global consistency by utilizing publicly accessible
aerial photographs as prior information. Our approach inserts
correspondences found between three-dimensional laser range
scans and the aerial image as constraints into a graph-based
formulation of the SLAM problem. We evaluate our algorithm
based on large real-world datasets acquired in a mixed in- and
outdoor environment by comparing the global accuracy with
state-of-the-art SLAM approaches and GPS. The experimental
results demonstrate that the maps acquired with our method
show increased global consistency.

I. INTRODUCTION

The ability to acquire accurate models of the environment is

widely regarded as one of the fundamental preconditions for

truly autonomous robots. In the context of mobile robots, these

models typically are maps of the environment that support

different tasks including localization and path planning. The

problem of estimating a map with a mobile robot navigating

through and perceiving its environment has been studied

intensively and is usually referred to as the simultaneous

localization and mapping (SLAM) problem.

In its original formulation, SLAM does not require any

prior information about the environment and most SLAM

approaches seek to determine the most likely map and robot

trajectory given a sequence of observations without taking into

account any prior information about the environment. How-

ever, there are certain scenarios, in which one wants a robot to

autonomously arrive at a specific location described in global

terms, for example, given by a GPS coordinate. Consider,

for example, rescue or surveillance scenarios in which one

requires specific areas to be covered with high probability to

minimize the risk of potential casualties. Unfortunately, GPS

typically suffers from outages or occlusions so that a robot

only relying on GPS information might encounter substantial

positioning errors. Even sophisticated SLAM algorithms can-

not fully compensate for these errors as there still might be

lacking constraints between some observations combined with

large odometry errors that introduce a high uncertainty in the

current position of the vehicle. However, even in situations

with substantial overlaps between consecutive observations,

the matching processes might result in errors that linearly

propagate over time and lead to substantial absolute errors.

Consider, for example, a mobile robot mapping a linear

structure (such as a corridor of a building or the passage

between to parallel buildings). Typically, this corridor will

be slightly curved in the resulting map. Whereas this is not

critical in general as the computed maps are generally locally

consistent [13], they often still contain errors with respect to

the global coordinate system. Thus, when the robot has to

arrive at a position defined in global coordinates, the maps

built using a standard SLAM algorithm might be sub-optimal.

In this paper, we present an approach that overcomes

these problems by utilizing aerial photographs for calculating

global constraints within a graph-representation of the SLAM

problem. In our approach, these constraints are obtained by

matching features from 3D point clouds to aerial images.

Compared to traditional SLAM approaches, the use of a

global prior enables our technique to provide more accurate

solutions by limiting the error when visiting unknown regions.

In contrast to approaches that seek to directly localize a robot

in an outdoor environment, our approach is able to operate

reliably even when the prior is not available, for example,

because of the lack of appropriate matches. Therefore, it is

suitable for mixed indoor/outdoor operation. Figure 1 shows

a motivating example and compares the outcome of our

approach with the ones obtained by applying a state-of-the-art

SLAM algorithm and a pure localization method using aerial

images.

The approach proposed in this paper relies on the so called

graph formulation of the SLAM problem [18, 22]. Every node

of the graph represents a robot pose and an observation taken

at this pose. Edges in the graph represent relative transforma-

tions between nodes computed from overlapping observations.

Additionally, our system computes its global position for every

node employing a variant of Monte-Carlo localization (MCL)

which uses 3D laser scans as observations and aerial images

as reference maps. The use of 3D laser information allows our

system to determine the portions of the image and of the 3D

scan that can be reliably matched by detecting structures in the

3D scan which potentially correspond to intensity variations

in the aerial image.

GPS is a popular device for obtaining accurate position
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Fig. 1. Motivating example comparing standard SLAM (a), localization using aerial imagery as prior information (b), and our combined approach (c).
Note the misalignment relative to the outer wall of the building in (a). Whereas the localization applied in (b), which relies on aerial images, yields proper
alignments, it cannot provide accurate estimates inside the building. Combining the information of both algorithms yields the best result (c).

estimates. Whereas it has also been used to localize mobile

vehicles operating outdoors, the accuracy of this estimate is

usually not accurate enough to obtain a precise map. Generally,

the position estimate provided by GPS substantially decreases

when the robot moves close to buildings or in narrow streets.

Our approach to deal with this problem is to use aerial images

and to match measurements obtained by the robot to obtain

an accurate estimate of the global position.

The approach proposed in this paper works as follows: we

apply a variant of Monte Carlo localization [3] to localize

a robot by matching 3D range scans to aerial images of the

environment. To achieve this, our approach selects the portions

of the scan and of the image which can be reliably matched.

These correspondences are added as constraints in a graph-

based formulation of the SLAM problem. Note that our system

preserves the flexibility of traditional SLAM approaches and

can also be used in absence of the prior information. However,

when the prior is available our system provides highly accurate

solutions also in pathological datasets (i.e., when no loop

closures take place). We validate the results with a large-scale

dataset acquired in a mixed in- and outdoor environment. We

furthermore compare our method with state-of-the-art SLAM

approaches and with GPS.

This paper is organized as follows. After discussing related

work, we will give an overview over our system followed

by a detailed description of the individual components in

Section III. We then will present experiments designed to

evaluate the quality of the resulting maps obtained with our

algorithm in Section IV. In this section, we furthermore

compare our approach with a state-of-the-art SLAM system

that does not use any prior information.

II. RELATED WORK

SLAM techniques for mobile robots can be classified ac-

cording to the underlying estimation technique. The most pop-

ular approaches are extended Kalman filters (EKFs) [16, 23],

sparse extended information filters [7, 26], particle filters [19],

and least square error minimization approaches [18, 9, 12].

The effectiveness of the EKF approaches comes from the fact

that they estimate a fully correlated posterior about landmark

maps and robot poses [16, 23]. Their weakness lies in the

strong assumptions that have to be made upon both, the robot

motion model and the sensor noise. If these assumptions are

violated, the filter is likely to diverge [14, 27].

An alternative approach designed to find maximum likeli-

hood maps is the application of least square error minimiza-

tion. The idea is to compute a network of relations given

the sequence of sensor readings. These relations represent

the spatial constraints between the poses of the robot. In

this paper, we also follow this approach. Lu and Milios [18]

first applied this technique in robotics to address the SLAM

problem by optimizing the whole network at once. Gutmann

and Konolige [12] proposed an effective way for constructing

such a network and for detecting loop closures while running

an incremental estimation algorithm.

All the SLAM methods discussed above do not take into

account any prior knowledge about the environment. On the

other hand, several authors addressed the problem of utilizing

prior knowledge to localize a robot outdoors. For example,

Korah and Rasmussen [15] used image processing techniques

to extract roads on aerial images. This information is then

applied to improve the quality of GPS paths using a particle

filter by calculating the particle weight according to its position

relative to the streets. Leung et al. [17] presented a particle

filter system performing localization on aerial photographs

by matching images taken from the ground by a monocular

vision system. Correspondences between aerial images and

ground images have been detected by matching line features.

These have been generated from aerial images by a Canny

edge detector and Progressive Probabilistic Hough Transform

(PPHT). A vanishing point analysis for estimating building

wall orientations was used on the monocular vision. In contrast

to laser-based approaches, their method maximally achieved an

average positioning accuracy within several meters. Ding et

al. [4] use vanishing point analysis to extract 2D corners from

aerial images and inertial tracking data, and they also extract



2D corners from LiDAR generated depth maps. The extracted

corners from LiDAR are matched with those from the aerial

image in a multi-stage process. Corresponding matches are

used to gain a fine estimation of the camera pose that is

used to texture the LiDAR models with the aerial images.

Chen and Wang [2] use an energy minimization technique

to merge prior information from aerial images and mapping.

Mapping is performed by constructing sub-maps consisting of

3D point clouds, that are constrained by relations. Using a

Canny edge detector, they compute a vector field from the

image that models force towards the detected edges. The sum

of the forces applied to each point is used as an energy

measure in the minimization process, when placing a sub-

map into vector field of the image. Dogruer et al. [5] utilized

soft computing techniques for segmenting aerial images into

different regions, such as buildings, roads, and forests. They

applied MCL on the segmented maps. However, compared to

the approach presented in this paper, their technique strongly

depends on the color distribution of the aerial images since

different objects on these images might share similar color

characteristics.

Früh and Zakhor [10] introduced the idea of generating edge

images out of aerial photographs for 2D laser-based localiza-

tion. As they stated in their paper, localization errors might

occur if rooftops seen on the aerial image significantly differ

from the building footprint observed by the 2D scanner. The

method proposed in this paper computes a 2D structure from

a 3D scan, which is more likely to match with the features

extracted from the aerial image. This leads to an improved

robustness in finding location correspondences. Additionally,

our system is not limited to operate in areas where the prior is

available. In this cases, our algorithm operates without relevant

performance loss compared to SLAM approaches which do not

utilize any prior. This allows our system to operate in mixed

indoor/outdoor scenarios.

Sofman et al. [24] introduced an online learning system

predicting terrain travel costs for unmanned ground vehicles

(UGVs) on a large scale. They extracted features from locally

observed 3D point clouds and generalized them on overhead

data such as aerial photographs, allowing the UGVs to nav-

igate on less obstructed paths. Montemerlo and Thrun [20]

presented an approach similar to the one presented in this

paper. The major difference to our technique is that they used

GPS to obtain the prior. Due to the increased noise which

affects the GPS measurements this prior can result in larger

estimation errors.

III. GRAPH-SLAM WITH PRIOR INFORMATION FROM

AERIAL IMAGES

Our system relies on a graph-based formulation of the

SLAM problem. It operates on a sequence of 3D scans and

odometry measurements. Every node of the graph represents

a position of the robot at which a sensor measurement was

acquired. Every edge stands for a constraint between the

two poses of the robot. In addition to direct links between

consecutive poses, it can integrate prior information (when

Fig. 2. The graph representation used by our approach. In contrast to
the standard approach, we additionally integrate global constraints (shown
in yellow / light gray) given by the prior information.

available) which in our case is given in form of an aerial

image.

This prior information is introduced to the graph-SLAM

framework as global constraints on the nodes of the graph,

as shown in Figure 2. These global constraints are absolute

locations obtained by Monte Carlo localization [3] on a map

computed from the aerial images. These images are captured

from a viewpoint significantly different from the one of the

robot. However, by using 3D-scans we can extract the 2D

information which is more likely to be consistent with the

one visible in the reference map. In this way, we can prevent

the system from introducing inconsistent prior information. To

initialize the particle filter, we draw the particle positions from

a Gaussian distribution, where the mean was determined by

GPS. We use 1,000 particles to approximate the posterior.

In the following we explain how we adapted MCL to operate

on aerial images and how to select the points in the 3D scans

to be considered in the observation model. Subsequently we

describe our graph-SLAM framework.

A. Monte Carlo Localization

To estimate the pose x of the robot in its environment, we

consider probabilistic localization, which follows the recursive

Bayesian filtering scheme. The key idea of this approach is

to maintain a probability density p(xt j z1:t ; u0:t−1) of the

location xt of the robot at time t given all observations z1:t and

all control inputs u0:t−1. This posterior is updated as follows:

p(xt j z1:t ; u0:t−1) = (1)

� � p(zt j xt ) �
Z

p(xt j ut−1; xt−1) � p(xt−1) dxt−1:

Here, � is a normalization constant which ensures that p(xt j
z1:t ; u0:t−1) sums up to one over all xt . The terms to be de-

scribed in Eqn. (1) are the prediction model p(xt j ut−1; xt−1)
and the sensor model p(zt j xt ). One contribution of this paper

is an appropriate computation of the sensor model in the case

that a robot equipped with a 3D range sensor operates in a

map generated from a birds-eye view.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known





Fig. 6. Comparison of our system to a standard SLAM approach in a complex indoor/outdoor scenario. The center image shows the trajectory estimated by
the SLAM approach (bright/yellow) and the trajectory generated by our approach (dark/red) overlaid on the Google Earth image used as prior. On the left
and right side, detailed views of the areas marked in the center image are shown, each including the trajectory and map. The upper images show the results
of the standard SLAM approach; detail A on the left and B on the right. The lower images show the results of our system (A on the left side and B on the
right). It is clearly visible, that, in contrast to the SLAM algorithm without prior information, the map generated by our approach is accurately aligned with
the aerial image.

Fig. 8. The six points (corners on the buildings) we used for evaluation are
marked as crosses on the map.

information) we calculated the maximum likelihood map by

processing the acquired data of each run.

For each of the five data sets we evaluated the global

consistency of the maps by manually measuring the distances

between six easily distinguishable points on the campus. We

compared these distances to the corresponding distances in the

maps (see Figure 8). We computed the average error in the

distance between these points. The result of this comparison

is summarized in Figure 9. As ground-truth data we used the

so-called Automatisierte Liegenschaftskarte which is provided

by the German land registry office. It contains the outer walls

of all buildings where the coordinates are stored in a Gauss-

Krüger reference frame.
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Fig. 9. Error bars (α = 0.05) for the estimated distances between the six
points used for evaluation of the map consistency.

Compared to SLAM without prior information, our ap-

proach has a smaller error and it does not require frequent loop

closures to limit the error of the estimate. Note that using our

approach loop closures are not required to obtain a globally

consistent map. Additionally, the standard deviation of the

estimated distances is substantially smaller than the standard

deviation obtained with a graph-SLAM approach that does

not utilize prior information. Our approach is able to robustly

estimate a globally consistent map on each data set.

C. Experiment 3 - Local Alignment Errors

Ideally, the result of a SLAM algorithm should perfectly

correspond to the ground truth. For example, the straight wall

of a building should lead to a straight structure in the resulting


