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Abstract— Multi-fingered manipulation systems are important
in the study of robotics. These are also challenging systems, in
part because of the loop closure constraints required of several
(virtual) loops each formed by two fingers and the grasped object.
Most existing work describes system configurations using joint
parameters, in which loop closure constraints are expressed by
highly nonlinear equations. Such a formulation amounts to an
implicit parametrization of the configuration space (CSpace)
as a lower-dimensional semi-algebraic subset embedded in a
higher-dimensional ambient joint parameter space. The non-zero
difference between the two dimensions is the codimension of
CSpace as seen in the given parametrization.

In this paper, we point out that, quite generally, parametriza-
tions leading to lower codimensional configuration spaces provide
multi-faceted advantages over those producing higher codimen-
sions. For two example manipulation system—a 3-fingered hand
and a planar star-manipulator with any number of fingers—
we present explicit parameterizations, which are effectively of
codimension 0. We base these parametrizations on our recently
developed construction trees of simplices (such as triangles and
tetrahedra) for multi-object systems; such a tree gives simplex-
based parametrers on CSpace , in which loop closure con-
straints become simplex formation constraints (such as triangle
inequalities and Cayley–Menger determinant constraints). Both
example systems are very difficult to deal with using joint angle
parameters. Our results here further demonstrate the generality
and effectiveness of the simplex-based approach.

I. OVERVIEW

Multi-linkage robotic systems, such as robotic hands and
legs, have great potential in diverse areas; they have been
intensively researched for several decades(see e.g. books [4],
[5], [18]–[20], [22], the recent white paper [7], and references
therein). These challenging systems are subject to complicated
constraints, among them loop closure constraints arising from
(virtual) loops formed by multiple limbs all touching one
objects. Conventional parameters for these systems are joint
parameters, in which loop closure constraints are formulated as
nonlinear equations. In such a formulation, the configuration
space (CSpace) of a system is a semi-algebraic or semi-
analytic set, generically a smooth manifold, embedded in its
ambient joint space (for an example, see the study of single-
loop systems with spherical-type joints [21], [28]). Such an
embedding gives an implicit parametrization of CSpace: by
the Implicit Function Theorem, any given configuration point
has a CSpace neighborhood on which some subset of the
ambient space parameters are coordinates for a local chart,

but to effectively find an atlas of such charts covering CSpace,
and to compute properties of these charts like their geometries
and mutual intersections, is not easy. The lack of methods to
access such local information becomes a huge hurdle in the
study of the global structure of CSpace.

The codimension of a subset in an ambient space is the
difference between its dimension and that of the ambient
space; thus, in 3-dimensional Euclidean space, a curve has
codimension 2, a surface has codimension 1, and a non-
empty open subset (such as the set of points enclosed by a
sphere) has codimension 0. By an explicit parametrization
of an open subset U of CSpace, we mean one whose chart
has codimension 0: that is, U is (explicitly) identified with an
open set in Euclidean space of the same dimension as CSpace.
An explicit atlas for CSpace is one in which all charts have
codimension 0; with an explicit atlas in hand, we do not have
to study CSpace as a lower-dimensional subspace of a higher-
dimensional space. As an example, consider the unit circle
C in the (x, y)-plane. With x and y coordinates as implicit
parameters for C, the smallest atlas comprises four charts
(semicircles). In contrast, the polar angle θ (on any interval
of length less than 2π) is an explicit parameter, and yields
an explicit atlas comprising just 2 charts. More generally, any
simple closed curve Γ has a 2-chart explicit atlas coordinatized
by arc length, but for any n > 2 there exists Γ for which any
atlas with implicit parameters x and y needs n charts.

As briefly discussed in Section II, there are many advantages
to the development and use, when possible, of parameters for
CSpace that reduce codimension (explicit parameters being
optimal). There are also advantages—which can sometimes
conflict with codimension reduction—to parameters in which
constraint formulations are particularly simple.

In this paper, we present explicit parametrizations for two
example anthropomorphic linkage systems. (1) The 3-fingered
manipulation system in Fig. 1 has 14 degrees of freedom,
dropping to 11 when it grasps an object with all 3 fingers at
fixed contacts. In joint angle parameters, the 11-dimensional
configuration space of the grasping hand has codimension
3 in a 14-dimensional torus, and the 3 loop closure con-
straint equations are complicated trigonometric expressions. In
joint Cartesian coordinates, the same 11-dimensional CSpace
is realized as a codimension-22 submanifold; although the
defining equations are quadratic polynomials, the loop closure



Fig. 1. A model grasp system with 3 fingers; each has a spherical base joint,
and intermediate revolute joints with parallel axes.

constraints make the implicit parameters highly coupled and
difficult to solve. By contrast, our simplex-based parameters
for this CSpace are explicit, and the loop closure constraints
are straightforward simplex-formation constraints (triangle and
Cayley–Menger determinant inequalities). This parametriza-
tion provides a solid foundation for the study of system
configurations, and can be used to solve the global structure
of CSpace and develop efficient manipulation planning algo-
rithms. We discuss it in section III. (2) Recent papers [17],
[25] have studied motion planning for star-manipulators, a
class of planar closed-chain manipulators. In section IV we
present explicit parametrizations for all star-manipulators.

II. EXPLICIT PARAMETERS: MOTIVATIONS, PRIOR WORK

In view of complex closure constraints in the joint parame-
ters, recent results on the explicit parametrization and solved
structures of one type of systems with loops become even
more remarkable. In short, for a planar single-loop linkage
with n revolute joints (equivalently, a planar n-sided polygon),
fixed link lengths, and having 3 “long links” (a technical
condition defined in [21], [28]), it is proved [14], [21], [28]
that one set of explicit configuration parameters consists of
joint angles of n − 3 “short links”, and the configuration
space under such a parametrization comprises two disjoint
(n − 3)-dimensional tori (the two components correspond to
two possible orientations of the 3 long links—“elbow up” and
“elbow down”). The existence of two components in CSpace
reflects the fact that, while a loop without 3 long links can
be reoriented (if link crossings are allowed), one with 3 long
links cannot be. We will call this property un-reorientability.

The explicit parametrization and solved structures just
mentioned greatly facilitate computations for un-reorientable
planar loops. For example, any values for the n−3 parameter
angles will correspond to valid loop configurations. Also, a
torus can be cut open into a cube, which, being convex,
allows trivial path planning (any two points can be connected
by a line segment); it follows that given two identically
oriented configurations of an un-reorientable planar loop, it is
trivial to find a path between them (ignoring collision or any
other constraints), by computing and “linearly” interpolating
parameter angle values. (Of course, whereas two points in a
truly convex set are joined by a unique line segment, in a torus
there are many such segments; all but one cross one or more
“cuts”, and all are equally trivial to compute.)

A linear path of a un-reorientable planar loop satisfies the
loop closure constraints and stays on one of the two CSpace
tori. But it may involve link penetrations. Extensive research
by the motion planning community has made it clear that
collision-avoidance is very difficult to deal with, and that
it is very hard to find analytic descriptions of the subset
CFree of valid configurations, and its complement CObstacle ,
for general obstacles. Recent successes of randomized path
planners (see books [3], [15], [16] and references therein)
suggest that sampling-based approaches may be an important
framework in which to integrate efficient sampling methods
while also dealing with such difficult factors in configuration
space and path planning problems as high dimensionality and
complicated linkage constraints. Sampling-based approaches
can handle complicated constraints (by checking a sample
point against the constraints, rather than trying to find all
solutions to the constraints) and can be used with implicit
surfaces in ambient spaces, but sampling efficiency can be
improved by explicit parametrization (or, more generally, low
codimension). This is due to two facts: for a purely random
sampling scheme, the statistical success rate for generating
valid samples in a subset equals the volume of the valid subset
divided by the volume of the entire sample space; and, given
an acceptable error ε > 0, the volume of an ε-neighborhood
of a submanifold of codimension k > 0 tends to 0 like εk.

Thus, for example, consider the problem of generating one
collision-free loop configuration, that is, a point in CFree .
In general CFree is open in CSpace, and thus has the same
dimension as CSpace. Consequently, if we have an explicit
parametrization of CSpace, we can take any explicit chart
as a sample space, and our success rate for generating a
collision-free loop configuration in that chart will be the
volume of the part CFree in that chart divided by the volume
of the chart. If this rate is 0 for a particular chart, it means
that the chart actually misses CFree, and there may even
be an understandable structural reason why (see [13] for
examples); if this ratio is positive, valid configurations should
be found with positive probability. In contrast, if we only have
parameters for the ambient space (e.g., the joint parameter
space) and an implicit parametrization for the configurations
(as defined by the closure constraints in joint parameters), then
the sampling space is the ambient space, the configuration
space has codimension d ≥ 1, and as stated above this
means that the probability of finding any loop configuration—
let alone a collision-free configuration—by random sampling
in the ambient space approaches 0 like the dth power of
the acceptable error. By analogy with the well-known “curse
of dimensionality”, that the number of samples needed to
adequately cover a sample space increases exponentially with
the dimension of the space, we propose the name “curse of
codimensionality” for the situation just described: that, other
things being equal, the higher the codimension of a target
space in its ambient space, the more challenging it is to sample
it efficiently (the challenge increasing with the codimension).

Given that parameters corresponding to lower-codimension
parametrizations tend to provide multifaceted advantages for



configuration related problems (aiding analytical study of
global CSpace structure, facilitating sampling, etc.), finding
such parameter systems is a problem of considerable interest.
Systems without loops, like rigid bodies and open chains, have
well-known and widely used explicit parametrizations, e.g.,
various 6-DOF parameters for a 3D object or joint parameters
for an open chain. However, to the best of our knowledge,
rather few systems involving loops have been given explicit
parametrizations in prior work: (a) single-loop planar linkages
with revolute joints and 3 long links [14], [21], [28]; (b) tri-
laterable manipulators [24]; (c) flag manipulators [1], [27].

Loosely speaking, a system is “trilaterable” in the sense
of [24] if it can be decomposed into tetrahedra in such a
way that all unknown edge-lengths of the tetrahedra can
be systematically computed from known edge-lengths using
distance constraints (triangle inequalities and Cayley–Menger
constraints; see below); flag manipulators generalize trilater-
able systems. Note that the solutions in [1], [24], [27] assume
systems already given in trilaterated form, with kinematic
structures explicitly including all distance parameters needed
to determine system configurations (e.g., lengths of the legs
between base and platform of a parallel manipulator).
Our Work. We have recently developed simplex-based ap-
proaches for multibody systems that allow construction trees
of simplices (such as triangles and tetrahedra). The main repre-
senative systems used in our published papers, which describe
their explicit paramatrizations and some other issues, are these:
(a) single-loop planar linkages with revolute joints [8], [11]–
[13]; (b) single-loop spatial linkages with spherical joints [8],
[9]; (c) single-vertex rigid origami folds [10]. Along with some
simple examples, we have pointed out in these papers that
the described approaches are directly applicable to multi-loop
systems having simplicial construction trees. (Our approaches
can also easily accomodate link length constraints, which can
be used to model prismatic joints along the links, link length
tolerance and uncertainty, and so on.)

In this paper we present explicit parametrizations for ex-
amples of multi-loop linkage systems with anthropomorphic
structures, which would have been very hard to study using
the conventional joint parameters. Our first example system
comprises 3 fingers with spherical base joints, revolute in-
termediate joints, and tips that we model (when the hand
is grasping an object) as spherical joints; one motivational
problem for this system is gaited 3-fingered manipulation
(see Fig. 2). Our second example system is a general star-
manipulator (as in Fig. 6). The example systems, and their

Fig. 2.Manipulation: gaiting between two 2-finger grasps via a 3-finger grasp.

simplicial construction trees, are substantially different from
those in our earlier. Here we will focus on their explicit
simplex-based parameters. Our results further demonstrate the
versatility and effectiveness of the simplex-based approach.
Remarks. (1) We use the term “grasp” purely kinematically,
and thus ignore such important practical issues as force-closure
(see [23]). (2) Multi-limb systems using finger gaiting and
legged locomotion have been studied before, as kinematic
stratified systems [6], [29]; the main focus of that work was
control issues, and those papers describe configuration spaces
as coarse-grained stratified spaces, with each grasp mode
(having the object grasped by one particular subset of fingers)
corresponding to one conceptual, implicit stratum, embedded
(as usual) in the ambient parameter space. (3) The “reachable
distances” approach to motion planning for closed chains given
in [26] is closely related to our work on closed chains, and it
would be interesting to see how such an approach might apply
to the example systems in this paper.

III. EXAMPLE SYSTEM I: AN ANTHROPOMORPHIC HAND

Our example 3-fingered hand system as drawn in Fig. 1 is
an idealized model of the human hand shown in Fig. 2, where
we model each finger link by the line segment between its
two end points and do not consider the rotational movement
about the links. Further, we consider the fixed base joints Bi

(i = 0, 1, 2, modulo 3) to be spherical, and all other link
joints to be revolute; further, on each finger, the axes of all the
revolute joints are parallel to each other and perpendicular to
the finger plane. Of the three fingers, one (thumb) has 3 links,
and the other two have 4 links each, so in total the system
has 14 degrees of freedom. As shown in Fig. 3, we use the
following 14 inter-joint diagonals to define a tree of simplices
(triangles and tetrahedra in this case) for such a system.
• 3 diagonals between the fingertips, [A(0)A(1)],

[A(1) A(2)], [A(2)A(0)]
• 3 diagonals between the finger tips and bases, [A(i) B(i)],

i = 0, . . . , 2
• 3 diagonals for decomposing the (virtual) parallel 3-

platform formed by {A(i), B(i), i = 0, . . . , 2} into three
tetrahedra (as shown in the top row of Fig. 3, [A(1) B(0)],
[A(2) B(0)], [A(20B(1)]

• 5 diagonals for decomposing each virtual finger loop
(closed by the base-to-tip diagonal) into a tree of triangle,
such as those shown at the bottom row of Fig. 3 for trees
of triangles anchored at the tip joints—a planar n-gon has
n− 3 diagonals for a triangle tree (for more details, see
[8], [11]); in total, the three fingers have 5 such diagonals,
one for the thumb, and two each for the other two fingers.

A. Simplex-Based Parameters

The simplices in Fig. 3 form the major part (with a
subtlety and some additional simplices to be discussed in
subsection III-C) of a simplicial construction tree of this
system, that is, a tree of simplices satisfying the following
three conditions. (1) Each link in the linkage system is an edge
of at least one simplex in the tree. (2) The set of joints of the



linkage system equals the set of all vertices of all simplices
in the tree. (3) The configurations of the linkage system can
be constructed from the shapes of the simplices and relative
configurations of simplices adjacent in the tree.

These three properties enable us to construct configurations
using the simplex assembly process. To see this, note that
placing a simplex in an ambient space is equivalent to deter-
mining the coordinates of its vertices. Now, given the shapes
and relative configurations of the simplices, we construct
the corresponding configuration of the system recursively as
follows. (I) Fix the initial tetrahedron (along with the fixed
base joints) in place. (II) While there is an edge in the tree
such that one simplex has already been placed in space but the
other simplex has not yet been placed, then use the relative
configuration between the two to place the other one. When
this simplex assembly process terminates, the configuration
has been constructed.

Our simplex based parameters for the system comprise

• shape parameters (for the shapes of the simplices):
lengths of the diagonals

• orientation parameters (for the relative configurations of
adjacent simplices).

There are generally two types of orientation parameters—
either a continuous angle (a dihedral angle), e.g., for two
spatial simplices sharing one edge, or a discrete (essentially
binary-valued) orientation sign, e.g., for two planar triangles
sharing an edge or two spatial tetrahedra sharing a face.

These binary orientations of these simplices are not extrinsic
orientations relating the simplices to external objects (e.g.,
fixed reference frames). Rather, the orientation of a simplex as
used here is an intrinsic property of the relative distributions of
the simplex vertices among themselves. For a planar triangle,
its orientations (denoted by “+” and “−” here as in our earlier
papers) indicate whether the vertices of the triangle form a
counterclockwise or clockwise cycle when traversed in some
specified order. The tetrahedron orientation signs are likewise

Fig. 3. Major part of a simplicial construction tree for the system in Fig. 1.

defined. As an example, Fig. 4 shows two configurations and
one tetrahedral tree of a triangular prism, i.e.a three-legged
parallel platform with spherical joints at both ends of the legs.
In the figure, the fixed links and diagonals are drawn in black
and in gray respectively. The pictured configurations differ
only in the opposite orientations of Tet(3). For more about
orientation parameters, see [8], [12].

These simplex-based parameters can be used to parametrize
the example hand system, either open or grasping, in a unified
way. When the hand grasps an object with all three fingers at
fixed contact points on the objects, we model the grasp by
fixed link lengths of the diagonal among the tips. Then the
system loses 3 DOF but can still be explicitly parametrized
by the simplex-based parameters, by eliminating from the
parameter set the now fixed lengths of the diagonals between
the fingertips, [A(0) A(1)], [A(0) A(2)], [A(1) A(2)]. (When
only two fingers grasp an object, the explicit parametrization
set is obtained by eliminating just one diagonal length.)

Also note that the simplex assembly process as described
earlier can be considered as an algorithm for the forward
kinematics for determining the joint positions and thus sys-
tem configurations from the simplex-based parameters. The
inverse kinematics problem, when considered for some fixed
fingertip positions or desired inter-fingertip distances (such as
those arising from grasping an object at fixed contacts), is
roughly equivalent to finding the valid parameter values of the
system CSpace, in other words, the CSpace as parametrized
by the simplex-based parameters, which is the main topic of
this paper and will be discussed next.

B. Simplex Formation Constraints
In our new simplex-based parameters, the formulations of

loop closure constraints are fundamentally different from the
conventional ones for joint parameters or Cartesian coordi-
nates. The key point is that

each loop can be formed if and only if all the
simplices in its part of the construction tree can be
successfully formed.

Therefore, we formulate the loop closure constraints as sim-
plex formation constraints, such as triangle inequalities for
triangles and Cayley-Menger determinant constraints [2] for
general simplices in Euclidean space. Further, these constraints
are in shape parameters only, since only the shape parameters,
along with fixed link lengths, determine the existences and
shapes of simplices. Orientation parameters are independent
of the loop closure constraints.

Fig. 4. A triangular prismoid: two configurations (at both ends) and a
construction tree of 3 tetrahedra, with Tet(2) adjacent to the other two
(because it has common triangular faces with the other two). The two
configurations differ only in the orientation of Tet(3).



Below we recite the well-known simplex formation con-
straints on the side lengths of triangles and tetrahedra in
Euclidean space, which are the only simplices used in the
example systems in this paper. Denote the vertices of a triangle
by P (i), i = 1, 2, 3. Their interpoint distances must satisfy the
following triangle inequalities.

d(1, 2)− d(2, 3)− d(3, 1) ≤ 0
d(2, 3)− d(3, 1)− d(1, 2) ≤ 0 (1)
d(3, 1)− d(1, 2)− d(2, 3) ≤ 0

Equivalently, we can require non-negativity of the following
Cayley-Menger determinant, which is proportional to the area
of the triangle.

2(
−1
2

)3

∣∣∣∣∣∣∣∣

0 1 1 1
1 0 D(1, 2) D(1, 3)
1 D(2, 1) 0 D(2, 3)
1 D(3, 1) D(3, 2) 0

∣∣∣∣∣∣∣∣
≥ 0 (2)

(Here D(i, k) = d2(i, k) is the squared distance between
ex points P (i) and P (k).) Similarly, for a tetrahedron with
vertices P (i),i = 1, . . . , 4 and squared side lengths D(i, j)
(0 ≤ i, j ≤ 3), existence is equivalent to the CMD constraint

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 D(0, 1) D(0, 2) D(0, 3)
1 D(1, 0) 0 D(1, 2) D(2, 3)
1 D(2, 0) D(2, 1) 0 D(2, 3)
1 D(3, 0) D(3, 1) D(3, 2) 0

∣∣∣∣∣∣∣∣∣∣

≥ 0. (3)

In both (2) and (3), equality is equivalent to singularity of
the corresponding simplex (collinearity of the vertices of a
triangle, coplanarity of the vertices of a tetrahedron).

C. An Example Simplicial Construction Tree

For the simplices drawn in Fig. 3 for the three-fingered
grasping system in Fig. 1, the main idea is to use the base-to-
tip diagonals [A(i)B(i)] and inter-tip diagonals [A(i) A(i+1],
together with the links [B(i)B(i+1)] between the fixed bases,
to form a virtual triangular prism. Then define three more
diagonals, such as [A(1) B(0)], [A(2)B(0)], and [A(2) B(1)]
(see Fig. 3) to form a construction tree of three tetrahedra for
the prism, in a way similar to Fig. 4. (Clearly other choices
of three diagonals could be made, resulting in different trees.)

Now for each finger, its base-to-tip diagonal forms a virtual
loop with its links. Because all the internal joints are modeled
to be revolute, with the rotational axes parallel to each other
and perpendicular to the finger plane, this finger loop can be
considered to be a loop with revolute joints contained in a
plane (that rotates with the base spherical joint); and we have
studied construction trees for planar loops with revolute joints
in our previous papers, to which we refer the reader for further
details ( [11], [12] deal only with the loop closure constraint,
[13] extends our study to self-collision avoidance). Briefly, a
planar loop with n revolute joints has a triangle construction
tree with n− 3 diagonals and n− 2 triangles (for n > 3 this
tree is not unique; in Fig. 3 we have used the construction tree

Fig. 5. A construction tree for the example 3-fingered manipulation system
(the triangle trees for finger loops are not given in detail).

of triangles anchored at the tip joints, mostly for simplicity of
the figures—other trees certainly could be used instead).

To keep the figure simple and use it to reflect main ideas
in our approach, we do not reflect in Fig. 3 one subtlety
existing in the simplicial construction for the hand system
drawn in Fig. 1, namely, how to determine the finger planes.
Note that each finger shares its base-to-tip diagonal with an
appropriate tetrahedron and is adjacent to the tetrahedron in
the construction tree. Suppose that in the simplex assembly
process, we place the tetrahedra first. Then to put down the
triangles for the finger loops, we need to be able to determine
the orientations of the finger planes. These orientations will
largely depend on the particular realizations (actuations) of
the spherical joints. In our preliminary study, we have found
that we can build upon the diagonals and the construction
trees in Fig. 1 to accommodate various possible realizations
of the spherical joints, sometimes by introducing additional
diagonals. These new diagonals increase the codimension of
the corresponding configuration spaces in their new ambient
spaces; but their codimensions are still generally smaller than
they would be in joint angles space. We will leave these issues
to a future paper. Here we’d like to introduce an extra degree
of freedom for each finger, which is to allow each finger plane
to rotate freely about its end-to- tip diagonal.

Note that, with our human fingers, when we keep the base
and tip of a finger fixed in space, we can still bend (rotate)
the finger plane a little bit around the base-to-tip diagonal,
probably allowed by the tendons in the hand. While the models
of these behaviors and their engineering implications need
more careful examination, here we will use this model to
demonstrate the applicability of the simplex-based approach
to highly complex manipulation type systems. We also note
that such a model can still be uesful for applications in areas
such as computer animation, where actuations and engineering
feasibilities are not as critical as for physical systems.

For this extra degree of freedom for each finger, we use
a dihedral angle between the plane of the finger with one
triangular face of its adjacent tetrahedron. The overall system
now has 17 degrees of freedom; its simplicial construction tree
is indicated in Fig. 5. The simplex-based parameters are

• shape parameters (for the shapes of the simplices):
lengths of the 14 diagonals, and

• orientation parameters (for the relative configurations
of adjacent simplices): the 3 dihedral angles and 11
essentially binary orientations of the simplices.



D. Configuration Space Parametrizations

The simplex tree shown schematically in Fig. 5 has 3
tetrahedra, and 8 triangles for the finger loops (not explicitly
shown in the tree) of the hand system in Fig. 1. (As mentioned
earlier, this system has other trees, but this one will do to
explain our approach.) Each simplex imposes some inequality
constraints on the shape parameters involved in it. Taken
together, all these simplex formulation constraints define the
set of feasible shape parameters, which we call DStretch .
For this system, squared diagonal lengths can serve well as
shape parameters, partly because both triangle and tetrahe-
dron constraints can be formulated in them as the Cayley-
Menger determinant constraints (2)(3). But it is also fine to
use a combination of squared diagonal lengths (for those
involved in tetrahedra) and direct diagonal lengths(for those
only involved in triangles). More generally, it is possible to use
non-degenerate (diffeomorphic) functions to map the diagonal-
length-based shape parameters to other parameters.

Of the 14 diagonals listed at the beginning of section III,
some will have fixed lengths for some grasp configurations.
For example, when the hand grasps an object with all three fin-
gers at fixed contact points on the objects, the three diagonals
[A(0) A(1)], [A(0) A(2)], [A(1) A(2)] between the fingertips
will have fixed lengths and should be eliminated from the
shape parameter set for the system configurations in this
grasp mode. Similarly, for all configurations with two fingers
grasping an object at fixed contacts, the diagonal between the
corresponding two fingers has a fixed length and is no longer
needed for the shape parameterization. Similarly, if we are
interested in fixing the base-to-end distance of some finger,
we can use that distance for the relevant diagonal and exclude
the diagonal from the shape parameter set.

In summary, the set of 14 diagonals and its appropriate
subsets provide explicit parametrizations of the shapes of
simplices in the construction tree. These shape parameters
are subject to simplex formation constraints, as well as fixed
length constraints for suitable formulation of grasping modes.

As mentioned above, the loop closure constraints impose
no constraints on the set of feasible orientation parameters,
which we call DFlip. For the hand system and its simplicial
tree in Fig. 5, DFlip = (S1)3 × {+,−}11, where the three-
dimensional torus (S1)3 reckons dihedral angles and {+,−}11
intrinsic simplex orientations. Note that if we want to fix
the value of one dihedral angle or the orientation sign of
one simplex, we can take out its corresponding orientation
parameter from the set of system orienation parameters. Also
note that the joint limits existing in human hands (for most of
us) generally allow each finger to bend only toward the palm,
with its fully extended configuration as one extreme feasible
configuration. If we impose similar joint angle constraints on
a robotic hands, and use anchored triangles in the construction
tree (as in our example), then we need consider just one orien-
tation for each triangle, so that the triangle-related orientation
signs drop out of DFlip. As will become clear soon, a smaller
set of orientation parameters will substantially simplify the

overall structure of CSpace (by reducing the number of copies
of DStretch in CSpace).

Singular configurations play an important role in con-
structing the overall configuration spaces. Their shape and
orientation parametrization need careful treatments. Refer to
papers [9], [11], [12] for our approaches to similar issues for
loops with spherical type joints. Here, by labeling singular
simplices—like a tetrahedron (resp., triangle) with 4 (resp., 3)
coplanar (resp., collinear) vertices—with both + and −, we
obtain (roughly) an identification of the configuration space
with DStretch[T]×DFlip. In other words, using the simplicial
construction tree in Fig. 5, the configuration space of the hand
system in Fig. 1 consists of 211 copies of DStretch × (S1)3.
The overall parametrization and stratified structures of the
CSpace here is very similar to that for a planar loop with n
revolute joints described in [11], [12], but with some important
technical differences, such as more complicated constraints on
DStretch and more complex gluing of different strata. Further,
the overall structures of the configuration spaces will depend
on the identification (gluing) of different strata along proper
singular subsets; and the identification of the hand system will
be more complicated than that of a planar polygon. We will
address these topics in future papers. Here we summarize the
main parametrization results whose proofs we have sketched
in this section.
Theorem 1. Consider the 3-fingered hand system in Fig. 1
and its simplicial construction tree in Fig. 5. Then:

(A) The configurations of the system are described by
simplex-based parameters.

(B) The system configuration space CSpace is essentially
the product of DStretch and DFlip, where (1) DStretch com-
prises shape parameters satisfying explicit, simply evaluated
constraints (triangle or Cayley–Menger determinant inequal-
ities, and range inequalities) required for successful simplex
formation, and is a convex body in squared diagonal lengths,
while (2) DFlip comprises relative orientation parameters, and
is independent of loop closure constraints. ¤

IV. EXAMPLE SYSTEM II: STAR MANIPULATOR

Our second example system is the general star-manipulator,
as defined in [17], [25]. Such a manipulator is formed by
joining k planar chains with revolute joints to a common point
(like the thorax of an insect) and then fixing the base of each
chain to the ground (an example is shown, in heavy black
lines, in the leftmost subfigure of Fig. 6). The result is a
planar linkage system with multiple loops (for k ≥ 3). The
designers of these manipulators call the chains “legs”. We will
call them “fingers” for the sole purpose of using the same hand
terminology for the example systems in this paper.

We assume that each finger has at least 2 joints so as to give
a nontrivial reachable workspace for the thorax A. Consider
the thorax A to be the tip of all the fingers. Its position is
determined by the finger link lengths and joint angles. For a
manipulator with k fingers, the condition that all k fingertips
meet at one common point in the plane imposes 2(k − 1)
constraints on the joint angles. So if we use joint angles as



the parameters for the study of a star-shaped manipulator with
k fingers, the configuration space is an semi-analytic set of
codimension 2(k − 1) in the ambient joint angle space.

Alternatively, if we know the position of the thorax A,
we can define an auxiliary link between A and each base
B(i) (drawn as dashed lines in Fig. 6). Each such auxiliary
link forms a (virtual) loop with the original links of the
corresponding finger, and the loop is a planar loop with
revolute joints, whose configurations can be studied via its
construction trees of triangles (for instance, anchored triangles
as shown in Fig. 3). See [8], [11]–[13] for more details.

The position of A is parametrized by its Cartesian coordi-
nates (Ax, Ay), and its range (the workspace of A) is easily
found. Specifically, the reachable workspace of the fingertip
of the open chain with revolute joints and fixed base B(i)
is generally an annulus (exceptionally, a disk) with center at
B(i), having inner and outer radii that are easily computed
from the finger link lengths. Such an annulus workspace
corresponds to the minimum and maximum bounds on the
distance between the finger tip and the base.

(min-radius-i)2 ≤ iD(A,B(i)) ≤ (max-radius-i)2 (4)

When the fingers are assembled to form the star-manipulator,
the workspace of A is the intersection of these annuli given
by inequalities (4), i = 0, . . . , k − 1. The explicitness (and
comparative simplicity) of this workspace, along with some
critical insights and novel ideas, was used in [17], [25] to
develop a smart polynomial time algorithm for a complete path
planner (ignoring all constraints other than loop closure) for
these manipulators; the algorithm uses Cartesian coordinates
on the workspace, and joint angle parameters for the figners.

Here we focus on parametrization rather than motion plan-
ning, using generalized simplex-based parameters for a star-
manipulator, as follows:
• Cartesian coordinates for the thorax A: (Ax, Ay);
• shape parameters for the triangles in the construction trees

of the finger loops: lengths of the diagonals; and
• orientation parameters for the triangles in the construction

trees of the finger loops: essentially binary variables for
the intrinsic triangle orientations.

In these parameters, the system constraints are the radius con-
straints (4) (on (Ax, Ay)), and triangle formation constraints
(parametrized by (Ax, Ay)) on triangle shape parameters.
There are no constraints on the orientation parameters.

Our general methods can be used to show that this
parametrization has the following properties.
Theorem 2 Consider a star-shaped manipulator and its gener-
alized simplex-based parameters. Then:

(A) The configurations of the system are described by the
generalized simplex-based parameters.

(B) The system configuration space CSpace essentially the
product of DStretch and DFlip, where (1) DStretch , the set
of feasible length parameters, comprises the Cartesian coor-
dinates of the thorax and triangle shape parameters satisfying
explicit, simply evaluated constraints (the radii, and triangle or

Cayley–Menger determinant inequalities) required for reach-
able thorax positions and successful simplex formation, while
(2) DFlip comprises triangle orientation parameters, and is
independent of loop closure constraints. ¤

Again CSpace, as parametrized by the generalized simplex-
based parameters, consists of copies of DStretch . Fig. 6 shows
a schematic figure of DStretch for a 3-DOF star-manipulator.
The 3-jointed finger has one diagonal, which has an interval of
feasible values for each thorax position; the 4 jointed finger has
2 diagonals, with a convex polygonal region of feasible values.
So DStretch is a family of 3-dimensional prisms parametrized
by the points of the reachable workspace WS(A) of A.

The similarity in the parametrization and structures of the
configuration space of these two example systems are common
for linkage systems allowing simplicial construction trees.
The example systems and their simplicial construction trees
presented here are substantially different from those in our
earlier papers [8]–[13], and the encouraging results to these
challenging multi-loop systems here further demonstrate the
versatility of the simplex-based approach.

Many important linkage systems (e.g., general 6R manip-
ulators and many multivertex origamis) can be shown not to
allow simplicial construction trees. Nonetheless, using meth-
ods related to simplicial construction trees, we have derived
some interesting results for several such systems; for example,
we can recover the number of inverse kinematics solutions for
6R manipulators in a natural way. Here we have no space for
further details, which will appear in later papers.

V. SUMMARY

Linkage systems such as multi-fingered hands and multi-
legged mobile systems are important in the study of robotics.
They are also very challenging – in part because that the limbs
form loops when their tips contact some common objects such
as an grasped object for a hand or a common ground for
legs. Conventionally the configurations of these systems are
described in joint parameters, and the corresponding configu-
ration spaces are lower-dimensional semi-algebraic subsets (as
defined by loop closure constraints) embedded in joint param-
eter space. Such an implicit parametrization, coupled with
complex nonlinear formulation of the loop closure constraints,
poses challenges for diverse problems such as computing
CSpace structures and using sampling for motion planning.

In contrast, explicit parametrization, where the cardinal-
ity of the set of parameters is equal to the dimension of
the configuration space under study, offers advantages over
implicit parametrization, especially when the constraints on
the explicit parameters have nice properties. In this paper,
we present explicit parametrization for two example anthropo-
morphic manipulation systems. Our parametrization are based
on our recently developed simplicial construction trees for
multi-object systems; and the constraints on the simplex-
based parameters are mainly simplex formation constraints
(such as triangle inequalities and Cayley-Menger determinant
constraints). The model systems here are difficult to deal with
using the joint angle parameters; and our results here, along



Fig. 6. Schematic view of DStretch of a star-manipulator.

with those in our earlier papers [8]–[13], demonstrate the
generality and effectiveness of the simplex-based approach.

Not every linkage system has a simplicial construction tree.
But in our preliminary study of other linkages, joint types and
system constraints, we have found that many kinematic struc-
tures can accommodate triangle or tetrahedral decompositions,
sometimes by first ignoring some constraints in the systems.
Such structures often lead to parametrizations of configuration
spaces with lower codimensions than those parametrized by
joint parameters. In ongoing research, we are generalizing our
simplex-based approach, and developing algorithms to identify
and create systems with simplicial construction trees.
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