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Abstract—It has long been established that simple spring-
mass models can accurately represent the dynamics of legged
locomotion. Existing work in this domain, however, almost
exclusively focuses on the idealized Spring-Loaded Inverted
Pendulum (SLIP) model and neglects passive dissipative effects
unavoidable in any physical robot or animal. In this paper, we
extend on a recently proposed analytic approximation to the
stance trajectories of a dissipative SLIP model to analyze stability
properties of a planar hopper with a single rotary actuator at
the hip. We first describe how a suitably chosen torque controller
can compensate for damping losses, maintaining the same energy
level across strides and hence reducing the return map to a
single dimension. We then identify and characterize equilibrium
points for this return map under a fixed leg placement policy and
show that “uncontrolled” asymptotic stability is feasible for this
energy-regulated system. Subsequent presentation of simulation
evidence establishes that the predictions of this approximate
model are consistent with the exact plant model. The paper
concludes with the application of our energy-regulation scheme
to the design of a task-level gait controller that uses explicit leg
placement commands in conjunction with the hip torque.

I. INTRODUCTION

Long term practical utility of mobile robots in unstructured

environments critically depends on their locomotory aptitude.

In this context, the performance of ground mobility that can

ultimately be achieved by legged platforms is superior to

any other alternative as evidenced by numerous examples in

nature as well as a number of very successful dynamically

stable autonomous legged robots that have been built to date

[10, 25, 26, 30, 37]. Unfortunately, even on flat ground, legged

morphologies do not enjoy the simplicity of models supported

by the conveniently constrained and continuous modes of

ground interaction observed in wheeled and, to some extent,

tracked vehicles. Even the most basic legged behaviors such

as walking and running require hybrid dynamic models whose

analysis and control involve difficult challenges [14, 20, 23]. In

the world of quasi-static locomotion with multi-legged robots,

one can recover some of this simplicity through active or

structural suppression of second order dynamics [39], but these

methods are not directly applicable to dynamically dexterous

modes of locomotion such as running.

One of the most significant discoveries in this context was

most likely the recognition of similar center of mass (COM)

movement patterns in running animals of widely different sizes

and morphologies [1, 6, 7, 9, 24]. This led to the development

of the simple yet accurate Spring-Loaded Inverted Pendulum

(SLIP) model to describe such behaviors [21, 34]. Significant

research effort was devoted to both the use of this model as a

basis for the design of fast and efficient legged robots [10, 19,

27, 30] as well as its analysis to reveal fundamental aspects

of associated locomotory behaviors [20]. The present paper

falls into the latter category and contributes by investigating

the previously unaddressed question of how the presence

of passive damping affects the behavioral characteristics of

running with the SLIP model.

Our treatment of this question is based on the use of

analytic approximations to the otherwise non-integrable stance

dynamics of the model. A number of such approximations

have already been proposed in the literature. In particular, [35]

uses a Hamiltonian formulation of the SLIP dynamics with an

iterative application of the mean-value theorem to obtain an

accurate return map for symmetric steps. More recently, [16]

presents an analytically simple approximation to the stance

dynamics of a conservative SLIP equipped with a linear spring.

This approach is based on a linearization of gravity around

mid-stance, similar in form to the solution proposed in [28]

but involving a much more carefully formulated derivation.

Inaccuracies of these approximations in the presence of non-

symmetric gravitational effects were partially addressed in [5]

using explicit corrections. In contrast to the lossless models

adopted in all these approaches, a new return map for the lossy

SLIP model with viscous damping in the leg was proposed in

[4], providing a basis for our present inquiry.

Despite the availability of methods to analyze stability prop-

erties of locomotory behaviors in the absence of closed-form

expressions for a Poincaré map [2, 3], a number of different

possible approaches become available once a sufficiently accu-

rate analytic return map is available. For example, [18] investi-

gates in depth stability properties of a SLIP model attached to

a rigid body by neglecting the effects of gravity, which allows

for the derivation of suitable closed-form expressions for stride

trajectories. A similar but less rigorous stability analysis was

provided in [16] with comparisons to previous numerical

results in [36] as well as biological data. In contrast to the

lack of feedback control in these characterizations, [33] studies

the stability of the SLIP model under a novel leg placement



control strategy that only relies on easily obtainable state

measurements. Another inquiry on how to achieve effective

control of the SLIP model, now extended to a spatial setting,

is provided in [8], focusing on lateral motions of the model. In

conjunction with these studies primarily focused on running

behaviors, similar analytically motivated contributions were

also made to the structurally different walking behaviors [15,

22, 40], providing evidence that the same dynamic model can

provide a unified description for both walking and running

[17].

Our contributions in the present paper have a number of

important differences from existing work. Firstly, our plant

model is dissipative, impairing the accuracy of most existing

analytic approximations and associated predictions. Secondly,

in contrast to the usual energy regulation mechanisms in the

literature through adjustments of the leg length or changing

stiffness, our model uses only a single torque actuator at

the hip relative to a virtual body with fixed orientation to

compensate for energy losses. These changes are motivated

by being much more realistic from an implementation point

of view, as evidenced by the successful use of similar actuation

mechanisms in the Scout quadrupeds [26] and the RHex hexa-

pod [30] as well as a number of other monopedal platforms

[12, 32]. Finally, our approximate solutions to the return map

also take into account the effect of gravity on the angular

momentum for steps that are non-symmetric with respect to

the gravitational vertical, increasing the practical applicability

of associated stability results.

II. THE TORQUE-ACTUATED DISSIPATIVE SLIP MODEL

A. System Dynamics and the Apex Return Map
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Fig. 1. TD-SLIP : Dissipative spring-mass hopper with rotary hip actuation

Fig. 1 illustrates the Torque-actuated Dissipative Spring-

Loaded Inverted Pendulum (TD-SLIP) plant we investigate in

this paper. It consists of a fixed orientation (2-DOF) planar

rigid body with mass m, connected to a massless, fully passive

leg with linear compliance k, rest length r0 and linear viscous

damping c, through an actuated rotary joint with torque τ .
The system alternates between stance and flight phases during

running, with the flight phase further divided into the ascent

and descent subphases. Fig. 2 illustrates the three important

events that define transitions between these phases: touchdown,

where the leg comes into contact with the ground, liftoff, where

the toe takes off from the ground and finally apex, where the

body reaches its maximum height during flight with ẏ = 0.
Another important event, not illustrated in the figure, is bottom,

corresponding to the point of maximal leg compression during

stance. Table I details the notation used throughout the paper.
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Fig. 2. A single TD-SLIP stride with definitions of transition states

TABLE I

NOTATION USED THROUGHOUT THE PAPER

System States, Event States and Control Inputs

x, y, ẋ, ẏ Cartesian body position and velocities

r, θ, ṙ, θ̇ Leg length, leg angle and velocities
τ Hip torque command during stance

ya, ẋa Apex height and velocity

θtd, ṙtd, θ̇td Touchdown leg angle, polar velocities
tb, rb, θb Bottom time, leg length and angle

tlo, rlo, θlo, ṙlo, θ̇lo Liftoff time, leg length, angle and velocities
pθ Angular momentum around the toe

Kinematic and Dynamic Parameters

m, g Body mass and gravitational acceleration
k, r0, c Leg stiffness, rest length and damping

During flight, the body obeys ballistic flight dynamics
[

ẍ
ÿ

]

=

[

0
−g

]

and the massless leg can be arbitrarily positioned. In contrast,

during stance, the toe remains stationary on the ground while

the body mass feels forces generated by both the passive

spring-damper pair and the hip torque. The stance dynamics

of the planar SLIP model in polar leg coordinates with respect

to the toe location take the form

d

dt

[

mṙ

mr2θ̇

]

=

[

mrθ̇2 −mg cos θ − k(r − r0)− cṙ
mgr sin θ + τ

]

. (1)

A very useful abstraction for the analysis and control of

cyclic TD-SLIP trajectories is provided by the apex return

map, defined as a Poincaré map from one apex point to the

next. In the following sections, we will use this map to study

stability properties of TD-SLIP, and later adopt it as a task-

level gait representation for a closed-loop running controller.

The apex return map can be formulated as P := Pa◦Ps◦Pd

by composing three individual submaps Pd, Ps, Pa for the

descent, stance and ascent phases, respectively. The descent

and ascent maps are trivial and are given by

Pd :

[

ṙtd
r0θ̇td

]

= R(π/2− θtd)

[

−ẋa
√

2g(ya − r0 cos θtd)

]

(2)

Pa :

[

ya
ẋa

]

=

[

rlo cos θlo + ẏ2

lo/(2g)
ẋlo

]

(3)



where ẋlo and ẏlo are liftoff velocities in Cartesian coordinates
and R denotes the standard 2D rotation matrix. Unfortunately,

the dynamics of (1) are not integrable in closed form. Conse-

quently, we will use an analytical approximation for the stance

map, which we describe in the next section.

B. An Approximate Stance Map for the Unforced TD-SLIP

A new analytical approximation to the dynamics of a

dissipative SLIP model was proposed in [4]. However, this

method assumes the presence of radial leg actuation, either in

the form of a controllable leg stiffness, or the regulation of

touchdown and liftoff leg lengths. In this section, we briefly

review their method and extend it to support the hip torque

actuation of our model.

The approximation proposed in [4], which, in turn, is based

on the methods described in [16], relies on two key assump-

tions: 1). The angular travel throughout stance is relatively

small and remains close to the vertical, allowing linearization

of the gravitational potential in the Lagrangian with subse-

quent conservation of the angular momentum pθ := mr2θ̇
and 2). the radial compression is small with r0 − r ≪ r0,
allowing a truncated Taylor expansion of related terms.

As described in [4], under these conditions and assuming,

for now, that τ = 0, the radial component of (1) reduces to

r̈ + (c/m)ṙ + (ω2

0
+ 3ω2)r = −g + r0ω

2

0
+ 4r0ω

2 , (4)

where we define ω0 :=
√

k/m and ω := pθ/(mr2
0
). Solutions

to this simple second-order ODE can be found as

r(t) = e−ζω̂0t(A cos(ωdt) +B sin(ωdt)) + F/ω̂2

0
, (5)

where we have ω̂0 :=
√

ω2

0
+ 3ω2, ζ := c/(2mω̂0), ωd :=

ω̂0

√

1− ζ2, F := −g+r0ω
2

0
+4r0ω

2 and A and B determined

by touchdown states as

A := r0 − F/ω̂2

0
,

B := (ṙtd + ζω̂0A)/ωd .

Simple differentiation and further simplification yields radial

TD-SLIP trajectories as

r(t) = M e−ζω̂0t cos(ωdt+ φ) + F/ω̂2

0
, (6)

ṙ(t) = −Mω̂0 e
−ζω̂0t cos(ωdt+ φ+ φ2) , (7)

with M , φ and φ2 determined through trigonometric identities.

At this point, the angular trajectories can be determined using

the constant angular momentum. An additional linearization

of the term 1/r2 leads to an analytical solution for the rate of

change of the leg angle as

θ̇(t) = 3ω − 2ωF/(r0ω̂
2

0
)− (8)

2ωMe−ζω̂0t cos(ωdt+ φ)/r0 ,

integrated to yield the angular trajectory

θ(t) = θtd +X t+ (9)

Y (e−ζω̂0t cos(ωdt+ φ+ φ3)− cos(φ+ φ3)).

with X , Y and φ3 computed accordingly as in [4].

The final step in completing the stance map requires finding

the time of liftoff. Only one of the two liftoff conditions

described in [4] is applicable in the context of the present

paper since we do not allow control of the liftoff leg length.

Consequently, the liftoff time is solely determined by the

solution to the equation k(r0 − r(tlo)) − c ṙ(tlo) = 0, for
which a sufficiently accurate analytical approximation can

be found by approximating the exponential coefficient in the

radial solution of (6) by its value at a specific instant during

decompression. In particular, noting that the compression and

decompression times are roughly equal, we use e−ζω̂0t ≈
e−ζω̂02tb , where tb denotes the bottom time, easily found by

solving (7). Under this assumption, we have

tlo ≈ (2π − arccos(k(r0 − F/ω̂2

0
)/(MMe−ζω̂0γtb))

− φ− φ4)/ωd , (10)

which yields the stance map as

Ps :









rlo
θlo
ṙlo
θ̇lo









=









r(tlo)
θ(tlo)
ṙ(tlo)

θ̇(tlo)









. (11)

where the right hand side is a function of touchdown states.

Note, however, that these derivations completely ignore the

presence of the hip torque. In the next section, we propose a

new method to incorporate the effects of the hip torque through

a fixed correction on the angular momentum value pθ in a way

similar to the one used in [5] for gravity corrections.

C. Stance Map for the Torque Controlled TD-SLIP

Hip actuation in legged systems can serve a number of

different purposes. Among both biological [1] and robotic [13,

19, 27] systems, its most common uses involve retraction of

legs in flight and control of body posture with legs in stance.

Interestingly, the use of hip actuation to provide thrust has

not been studied as extensively in the robotics literature. In

addition to a few direct experimental inquiries [12, 32] and

indirect uses in multi-legged platforms [26, 30], it has received

limited attention in [2] in the form of an active spring.

In the present paper, we propose an open-loop hip actuation

regime that enforces the ramp torque profile

τ(t) =

{

τ0(1− t
tf
) if 0 ≤ t ≤ tf

0 if t > tf
(12)

during stance, with τ0 and tf chosen prior to touchdown.

This open-loop profile has three important advantages. Firstly,

its simple functional dependence on time allows us to easily

incorporate its effects into the derivations of the previous

section. Second, if we choose tf to be the liftoff time, we

have τ(tlo) = 0, which prevents premature leg liftoff due to

the action of the hip and ensures a structural match to the

trajectories of the unforced system. Finally, its unidirectional

action ensures that no negative work is done during stance.

Inspection of the TD-SLIP dynamics of (1) shows that the

hip torque directly acts on the angular dynamics and only

indirectly effects radial motion. Consequently, we hypothesize



that an average correction to the constant angular momentum

pθ of Section II-B can capture the effects of the hip torque on

system trajectories. Normally, the angular momentum during

stance can be formulated as

pθ(t) = pθ(0) +

∫ t

0

τ(η)dη +

∫ t

0

mgr(η) sin θ(η)dη, (13)

by integrating the angular dynamics. Adopting the method

proposed in [5], we compute a corrected angular momentum

p̂θ = pθ(0) + ∆pτ +∆pg. (14)

where ∆pτ and ∆pg incorporate the time averaged effects

of the leg torque and gravitational acceleration, respectively.

Assuming tf = tlo, we have

∆pτ :=
1

tlo

∫ tlo

0

(
∫ η1

0

τ(η2)dη2

)

dη1 = τ0
tlo
3

. (15)

However, even with available analytic approximations, deriva-

tion of an exact closed-form expression for ∆pg is not feasi-

ble. Instead, we use a linear approximation to the integrand

r(η) sin θ(η) using its values at the touchdown and liftoff,

resulting in

∆pg :=
mgtlo
6

(2r0 sin θtd + rlo sin θlo) . (16)

Estimated values for the liftoff time tlo, leg angle θlo and

leg length rlo are provided by the unforced approximations of

the previous section. Substituting p̂θ for the constant angular

momentum in all derivations of Section II-B, we obtain a new

approximation that takes into account the effects of both the

hip torque and gravity on the stance trajectories.

Note that the corrections we propose have an iterative

character since both (15) and (16) use prior estimates of tlo and
θlo. Consequently, starting from the unforced approximations,

it is possible to iteratively apply these corrections to obtain

more accurate predictions at the expense of analytic simplicity.

Our simulations show that more than a single iteration is only

needed for extreme conditions such as the angle of attack being

very close to the touchdown leg angle, causing a bounce-back.

III. STABILITY OF AN ENERGY-REGULATED TD-SLIP

A. Compensation of Damping Losses

Unlike previous stability studies of lossless spring-mass

hoppers, fully passive self-stabilization with a fixed touchdown

angle and no active control is not possible with the TD-

SLIP model since damping losses will eventually drain out

all energy in the system. Consequently, active hip thrust must

be employed to sustain locomotion.

Recall that our choice of the hip torque in (12) incorporates

two parameters: τ0 and tf . We have already shown that

choosing tf = tlo is advantageous in preventing early liftoff

and ensuring structural correspondence of system trajectories

to our analytical approximation. The simplest possible strategy

for the remaining parameter τ0, very close in spirit to the radial
actuation strategy adopted by Raibert’s runners [27] and its

subsequent analysis in [21], is to choose a particular value

and keep it constant across subsequent strides. The underlying

idea is that since damping losses are proportional to the total

energy level of the system, constant energy input will give rise

to trajectories at a stable energy level. Unfortunately, in our

2-DOF model, such a strategy results in a two dimensional

return map, for which, analytical solution and characterization

of equilibrium points is not feasible.

Another possibility, which we adopt in the present paper, is

to use the hip torque to compensate for all dissipative effects

within a single step, ensuring conservation of energy in the

apex return map and hence reducing its dimension by one.

Note that the total energy dissipated within a single TD-SLIP

step is given by

Eloss = Ec + Ek , (17)

where Ec represents damping losses with

Ec :=

∫ tlo

0

cṙ2(η) dη , (18)

and Ek := (rlo − r0)
2/2 captures the leftover energy in the

leg spring when it lifts off before it is fully extended due

to damping. Fortunately, our analytic approximations provide

closed form expressions for both of these components. In

particular, damping losses can be approximately computed as

Ec =
−c/M2ω̂0

4ζ
(ζ cos(2(φ+ φ2) + φ3) + 1 (19)

− e−2ζω̂0tlo(ζ cos(2ωdtlo + 2(φ+ φ2) + φ3) + 1)) ,

while Ek only depends on the previously computed rlo.
In contrast, the energy supplied by the hip torque is

Eτ = τ0

∫ tlo

0

(1−
t

tlo
) θ̇(t)dt , (20)

for which our analytical approximations can also be used to

obtain closed-form expressions. We omit the details here for

space considerations. Since both (17) and (20) can be obtained

in closed form as a function of initial conditions and the choice

of touchdown angle θtd, we can easily find the desired torque

magnitude τ0 by solving

Eτ = Eloss . (21)

As noted above, this choice of torque results in successive

apex states having the same energy, at least while working

within our approximate apex return map. Naturally, additional

corrections would be needed to apply these ideas to the exact

plant model since inaccuracies of our approximations would

invalidate this conservation. Nevertheless, we use this active

compensation regime to reduce the dimension of our analytic

apex return map, allowing us to easily identify its equilibrium

points and characterize their stability.

B. Equilibrium Points with a Fixed Leg Placement Policy

In this section, we use our analytic approximations to

identify and characterize equilibrium points of the one dimen-

sional “energy-regulated” return map on the apex height ya
arising from the use of a fixed touchdown angle policy with



θtd = β and the energy-regulating hip torque described in

Section III-A. All results in this section will be presented in

non-dimensional versions of relevant variables, defined as

ȳa := ya/r0
¯̇xa := ẋa/

√
gr0

Ēa := Ea/(mgr0)

k̄ := kr0/(mg)

ζ0 := c/(2
√
mk) .

Finally, in order to facilitate comparison with earlier studies,

we use kinematic and dynamic parameters that roughly match

those of an average human with m = 80kg and r0 = 1m.

Fig. 3 shows two families of return maps for β = 20◦

and β = 32◦, respectively, together with the dependence of

equilibrium points on the energy level of the system. These

results show that the TD-SLIP exhibits asymptotically stable

behavior under the fixed touchdown angle, energy-regulated

regime, with the location of the equilibrium point depending

on the chosen energy level. We can also observe that as the

fixed touchdown angle β increases, the energy range for which

stable fixed points exist increases as well. This is rather natural

since the torque actuation at the hip can only supply energy

through the angular momentum, which directly increases the

angular span during stance. Increasing the touchdown angle

admits a larger angular span for stance, allowing stable fixed

points to form at higher energy levels as well.
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Fig. 3. Apex height return map (left) and associated equilibrium points
(right) for the TD-SLIP model as a function of different (dimensionless)
energy levels, generated with the proposed analytical approximations. The top
plots are obtained with β = 20◦, k̄ = 40, ζ0 = 0.07, whereas the bottom
plots use β = 32◦, k̄ = 40, ζ0 = 0.07 in dimensionless coordinates. Solid
and dashed lines in the right figure indicate stable and unstable equilibrium
points respectively. Shaded regions correspond to kinematically infeasible
configurations.

Having established the presence of stable equilibrium points

for the torque-controlled SLIP model, Fig. 4 shows a compar-

ison of fixed points predicted by our analytic approximations,
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Fig. 4. Left: Comparison of stable equilibrium points predicted by our
analytic approximation (solid line) with those obtained by numeric simulation
of TD-SLIP dynamics (plus signs) for β = 28◦ and different apex energy
levels in the range Ēa ∈ [2, 10]. Shaded region in the middle illustrates the
stable domain of attraction for the simulated plant model. Right: Percentage
mean-square error between initial and steady-state dimensionless energy levels
for the simulated plant.

with those that arise within simulations of the exact TD-

SLIP model. In order to make direct comparisons possible,

we started TD-SLIP simulations from a large range of initial

ya and Ea values, with a fixed touchdown angle and an energy

regulation controller similar to the one presented Section III-

A, but now taking the energy level of the very first step as

an overall regulation goal. This modification was necessary

since using the approximations to locally enforce energy

conservation at every step would slowly cause prediction errors

to accumulate, either draining all energy out of the system, or

causing it to diverge. We then checked whether the system

converges to a stable equilibrium point in apex coordinates

after 25 steps up to a tolerance of 10−4. Shaded region in the

middle of the left plot of Fig. 4 illustrates the resulting domain

of attraction, while the plus marks in the same plot illustrate

the associated set of fixed points.

Note, also, that the domain of attraction exhibited by the

simulation almost exactly covers the region between the un-

stable and stable fixed points predicted by our approximations.

There is also an almost exact match between the fixed points

predicted by our approximations and those obtained from

simulation. The cavities to the right of the region of attraction

arise from the presence of the “gap” region in the return

map, resulting from kinematic constraints that require the apex

height to be sufficiently large to allow leg placement. The

reason for this can be clearly seen in the bottom right plot

of Fig. 3, where parts of the return map overlap with the

kinematically infeasible gray region on the bottom. This means

that some initial conditions at high energy levels will lead

to apex states for which leg placement at an angle of β is

impossible. This gap was also observed by previous studies

[16], and is reproduced by both our analytical approximations,

and the simulated plant.

The right plot in Fig. 4 shows the mean and standard

deviations of the percentage mean-square energy difference be-

tween the initial and steady state apex points for the simulated

plant. The fact that this difference is consistently below 0.3%
shows that our approximations are capable of very accurately

modeling energy losses and successfully predict fixed points of



the exact TD-SLIP plant. It is worth noting, also, that accuracy

also increases significantly with increasing energy levels.

C. Parameter Dependence of Equilibrium Points

Equilibrium points that arise from our fixed touchdown

angle, energy-regulated regime naturally depend on the kine-

matic and dynamic parameter choices. Fig. 5 illustrates the

dependence of stable fixed points on each individual parameter

(the touchdown angle β, the dimensionless leg stiffness k̄
or leg damping ζ0) with the remaining two parameters kept

constant. The leftmost figure mirrors our observations in the

previous section, namely that the range of stable energy levels

increase with larger touchdown angles.
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Fig. 5. Dependence of stable equilibrium points on variations of the
touchdown angle β (left), leg spring stiffness k̄ (middle) and leg damping ratio
ζ0 (right). Arrows indicate increasing directions for each varied parameter.

The dependence of equilibrium points on the leg stiffness,

illustrated in the middle figure shows that increasing spring

constants cause an increase in the range of stable energy levels.

This is also natural since an increased stiffness corresponds to

shorter stance times, resulting in decreased damping losses

and a corresponding decrease in the necessary torque input.

Finally, we observe that the impact of the damping coefficients

on the equilibrium points is not as pronounced, providing

evidence that our compensation strategy successfully balances

damping losses. Nevertheless, increasing the amount of damp-

ing causes a slight decrease in the range of stable energy levels.

D. Correspondence of the Model to Biological Data

A recent quantitative comparison of ground reaction force

data from a variety of running animals to those predicted by a

simple, passive spring-mass model shows that despite the very

good correspondence of vertical force components between

biological data and the idealized SLIP model, there are some

discrepancies in how well horizontal forces can be predicted

[38]. In this section, we report on an interesting property of the

torque-actuated TD-SLIP morphology: It seems to be capable

of qualitatively reproducing ground reaction force profiles very

similar to those observed in biological systems.

Fig. 6 illustrates the body trajectory for a single stride of

steady-state running with the TD-SLIP model, together with a

depiction of “virtual footfalls” in the direction of instantaneous

ground reaction force vectors throughout the stance phase.

As a result of the ramp torque profile we use for supplying

energy to the system, large backward horizontal forces are

Leg length

Center of Mass Trajectory

Leg Force Directions

Fig. 6. COM trajectory for a single steady-state stride of the TD-SLIP
model with k̄ = 40, ζ0 = 0.07, running at approximately 3m/s (0.96 in
dimensionless units). Comparison of ground reaction force directions during
stance to biological data presented in [38] reveals a remarkable qualitative
match.

introduced in the beginning of the stance phase, resulting in

associated virtual footfalls appearing behind the actual toe

location. Towards the end of the stance phase, the hip torque

approaches zero and brings the virtual footfall and actual toe

locations together.

This qualitative structure is observed for all steady-state tra-

jectories of the TD-SLIP model and is remarkably consistent

with biological data presented in [38]. Even though we do not

yet have any quantitative basis in which any predictive claims

can be made, we think that this correspondence may provide

evidence towards the use of hip torque as an additional source

of energy used by biological runners, improving the predictive

accuracy and utility of dynamic models of running.

IV. FEEDBACK CONTROL OF TD-SLIP RUNNING

A. Deadbeat Control by Inversion of the Apex Return Map

The presence of a sufficiently accurate analytic formulation

of the apex return map naturally motivates its inversion to

obtain a controller for stabilizing the system around a desired

operating point [y∗a, ẋ
∗

a] in apex state coordinates. A similar

approach was adopted in a number of studies [8, 29, 31], but

never in the context of a lossy model or torque actuation.

In this section, we describe a deadbeat gait controller for

TD-SLIP as an application of our approximations, and show

that it is capable of very accurately regulating the apex states

of a running TD-SLIP and improves on both the accuracy

and stability of previous attempts to control a similar, torque-

actuated model in [12].

An explicitly specified desired apex state will require a

nonzero change in the energy level of the system. Using

a strategy similar to the energy-conserving torque controller

of Section III-A, we will use the hip torque to supply the

requested energy input to the system in a single step. Similar

to (21), this energy is given by

Eτ =
1

2
m((ẋ∗

a)
2 − ẋ2

a) +mg(y∗a − ya) + Eloss , (22)

which can easily be solved to determine the ramp torque

magnitude τ0, assuming, once again, that tf = tlo.



Once the desired torque profile is determined, the return

map has only one remaining degree of control freedom: the

touchdown angle θtd. A deadbeat controller can be formulated

as a one dimensional minimization problem in the form

θtd = argmin
−π
2

< θ <−π
2

(ẋ∗

a − ( πẋa
◦ P (θtd, [ya, ẋa]k) ))

2 , (23)

whose numerical solution is trivial due to the availability of

our analytic approximation for the return map P . This yields

an effective, one-step deadbeat controller for the regulation of

forward speed and hopping height for the TD-SLIP model.

B. Controller Performance and Comparison

As noted before, there are very few in depth studies of how

hip torque actuation can be used to achieve stable locomotion.

Among notable exceptions is recent work on locomotion

over mildly rough terrain [12] where the authors use TD-

SLIP equations of motion to derive an approximate energy

controller to regulate hopping height, and a PD-based torque

policy to regulate forward speed. In this section, we present a

comparison of the new controller we described in Section IV-

A, with the control strategy proposed in [12]. In order to

maintain consistency with our previous stability results, we use

the same kinematic and dynamic parameters with Section III-

B, roughly corresponding to an average human morphology.

Note that parameters used in [12] are not substantially dif-

ferent from ours when converted to dimensionless units. All

simulations were run in Matlab using a fourth order Runge-

Kutta integrator together with accurate detection of transition

events. Each run consisted of 25 steps, at the end of which we

determined whether there was convergence to a fixed point in

apex coordinates.
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Fig. 7. Comparison of tracking performance for apex speed (top) and apex
height (bottom) between the proposed controller (solid) and the PD control
policy described in [12] (dashed) as a function of (dimensionless) desired
velocity ¯̇x∗

a. Markers indicate where the controller of [12] loses stability.
Vertical axes are percentage errors.

Fig. 7 illustrates tracking performances of both controllers

for apex speed and height variables in terms of normalized

percentage error measures. Note that our controller based on

an accurate analytic model for the dynamics of TD-SLIP

significantly increases the range of velocity goals that can be

achieved without losing stability. Moreover, improvements can

be observed in the tracking accuracy for both the apex speed

and height variables. Finally, our controller does not require

any feedback or sensory measurements during stance, but

relies only on accurate measurement of apex states. This makes

practical implementations much more feasible compared to the

active PD control strategy since high-bandwidth feedback is

usually very challenging for fast legged robots.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel method to obtain

analytical approximations to the stance trajectories of a dissi-

pative, torque actuated planar spring-mass hopper. We have

successfully used our approximations to design an energy-

regulation controller for the hip torque that can accurately

compensate for the effects of damping within a stride, allowing

us to obtain a one-dimensional return map under a fixed

angle leg placement policy. Consequently, we were able to

analyze stability properties of this model, identifying and

characterizing its equilibrium points. The predictive accuracy

of our analytical approximations was confirmed by a very

close match to fixed points and their domains of attraction ob-

tained through numerical simulations of the exact plant model.

We have also demonstrated the utility of our approximations

through their use in designing a gait controller.

It is important to note that neither the energy regulating

hip torque controller, nor the subsequent stability analysis

would have been possible in the absence of our analytical

approximations. Consequently, we believe this paper presents

the first careful study of stability properties of running in

the presence of non-negligible damping. In this context, we

believe that the incorporation of damping as a significant

component in the dynamical model substantially increases

the applicability of associated analytical tools and controllers

to practical robot platforms in which dissipative effects will

always be present and may sometimes be a dominant factor

particularly if compliance is achieved through composite ma-

terials. In the future, we hope to demonstrate the practical

utility of our approximations by experimental verification of

their predictions with respect to a physical monopedal runner.

Our choice of hip torque as the primary source of energy

input to the system was motivated by the difficulty of imple-

menting radial actuation in physical robot platforms, and the

simplicity and success of existing robot platforms with similar

actuation mechanisms [26, 30]. We have also further simplified

our model by assuming a fixed body angle that may be justified

by morphologies in which additional legs on the front and back

of the body provide a stabilizing effect, or where the body

link is explicitly constrained by an experimental setup [12, 32].

In this context, we discovered an interesting correspondence

between the ground reaction force profiles resulting from the

use of a hip torque and biological data presented in [38],

leading to a possible explanation for the inability of the orig-

inal SLIP model in reproducing horizontal force components

during running and a very preliminary hypothesis that hip

torque may be playing a previously unaddressed important role



in the control of legged locomotion. In the future, we hope to

generalize our results to a freely rotating body link, making

the results applicable to less constrained morphologies such as

bipeds. For example, one of the interesting possibilities is how

forward-bending body posture and the resulting gravitational

torque can be used to balance the torque input from the

hip, making it possible to both have a freely rotating body,

while using the hip torque to provide thrust. This seems to

be one of the ways in which ideas similar to those used for

passive dynamic walking can be applied to efficient bipedal

running and we hope to extend our results in this paper to

such scenarios.
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