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Abstract— The complexity of robotic hands is needed to adapt
devices to the many kinds of tasks, but the large number of
motors needed to fully actuate the DoFs comes at the cost of
size, complexity and weight of devices. A possible approach to
solve this problem consists of reducing the number of actuators
thus resulting more efficient, simpler and reliable than their fully
actuated alternatives. Reducing control inputs seems to inspire
also biological systems and in particular motor control of human
hands, which share with robotic hands the large number of DoFs.
Recent studies demonstrated that a few control variables, named
postural synergies, are able to account for most of the variance
in the patterns of hand movements and configurations of hands.
This paper focuses on hands with postural synergies. Reducing
the number of control inputs, from fully actuated joints to few
synergies, might reduce the dimension of the force and motion
controllability subspaces thus compromising the dexterity of the
grasp, however, this is not true in general but strongly depends
on how synergies are distributed. The paper investigates to what
extent a hand with many DoFs can exploit postural synergies to
control force and motion of the grasped object.

I. INTRODUCTION

Robotic hands have many degrees of freedom distributed
among several kinematic chains, the fingers. The complexity
of the mechanical design is needed to adapt hands to the
many kinds of tasks required in unstructured environments.
Roboticists over the years have attempted to imitate the human
hand in terms of dexterity and adaption capabilities. Some
remarkable example of robotic hand design are the DLR hand
II [6] and the UTAH/MIT hand with 16 actuated joints, 4
per each finger [9]. One of the main issues in designing and
controlling robotic hands is that a large number of motors is
needed to fully actuate the degrees of freedom but this comes
at the cost of size, complexity and weight of the device. This
disadvantage could be overtaken if the robotic hands were
actuated and controlled by a reduced number of inputs, thus
resulting more efficient, simpler and reliable than their fully
actuated alternatives as shown in [3, 4].

A simplified control seems to inspire also biological systems
and in particular motor control of human hands, which share
with robotic hands the large number of degrees of freedom.
Recent studies in neuroscience [13, 14] demonstrated that a
limited set of input variables, named postural synergies, are
able describe most of the variance in the patterns of hand
movements and configurations in manipulation and grasping

tasks.
Recently, these studies on human hands inspired new re-

searches on design and control strategies for robotic hands
whose main issue is to achieve a trade-off between simplicity,
gained through synergy based control, and its versatility [5,
8]. In [8] the synergy idea concept has been applied to control
different hand models: a simple gripper, the Barrett hand, the
DLR hand, the Robonaut hand and the human hand model.
In [5] authors proposed a robotic hand design able to match
postural synergies mechanically coupling motion of the single
joints.

Postural synergies in robotic hands allow to control the
whole device through a lower dimension set of actions. Pos-
tural synergies can be easily derived for a given robotic hand,
designed with postural synergies, while in human hands it
can be evaluated performing a Principal Component Analysis
(PCA) of hand postures during grasping operations [13].

To the best of our knowledge, the research in this field
lacks of some basic and structural results which relates for
instance the number and types of synergies to the possibility
of controlling contact forces and object motion in grasping
and manipulation tasks. This is the main focus of this paper.

This paper builds upon previous contributions by the authors
[10] and extends results to hands controlled by postural
synergies.

II. MODELING HANDS WITH SYNERGIES

A. Kinematics of the grasp

Consider a robotic hand that grasps an object as in Fig. 1.
Let {N} represent the inertial frame fixed in the workspace
and let frame {B} be fixed to the object. Let nc be the number
of contact points between the object and the grasp. Contacts
may occur at any place of the robotic hand. At contact point i,
though as fixed to the object, the frame {Co

i } is defined, with
axes {n̂oi , t̂oi , ôoi }. The unit vector n̂oi is normal to the contact
tangent plane, and directed toward the object. The other two
unit vectors are orthogonal and lie in the tangent plane of
the contact. Similarly we can define the frame {Ch

i }, fixed to
the contact point thought as fixed to the hand. Let u ∈ R6

denote the vector describing the position and orientation of



Fig. 1. Hand-object grasp with postural synergies: main quantities.

{B} relative to {N}. Vector c̃oi ∈ R6 (c̃hi ∈ R6) describes the
position and orientation of the i-th contact reference frame
{Ci}, thought as fixed to the object (hand), relative to {N}.
Group all these vectors in the overall contact vector c̃o =
[c̃oT1 , ·, c̃oTnc ]T. Let q = [q1 · · · qnq ]T ∈ Rnq define the vector
of actual joint displacements, and let τ ∈ Rnq represent joint
loads (forces in prismatic joins and torques in revolute joints).
Let f ∈ R3 be the force applied to the object at the point p and
let mu ∈ R3 be the applied moment. These are combined into
the object load, or wrench, denoted by w =

[
fT mT

]T ∈ R6.
For small displacements some relevant linear relationships

can be defined between the vectors of the many reference sys-
tems, such as the contact reference frames, and other relevant
variables such as joint displacements. In the following small
variations from a reference configuration will be indicated
with the prefix ∆. Two matrices are of the utmost importance
in grasp kinematic analysis: the Grasp Matrix G and the
Hand Jacobian J Following definitions reviewed in [12], let
us introduce matrices G̃ and J̃ : the transpose of the complete
Grasp Matrix G̃T ∈ R6nc×6 maps the object displacement ∆u
to the displacements of all the nc contact frames ∆c̃o

∆c̃o = G̃T∆u (1)

while the complete Hand Jacobian Matrix J̃ ∈ R6nc×nq

relates the joint displacement variation to the displacements

Notation Definition
u ∈ R6 position and orientation of object
w ∈ R6 external wrench applied to the grasped object
nc number of contact ponits
Co

i reference system at the i-th contact point on the object
c̃oi ∈ R6 position and orientation of reference frame Co

i
Ch

i reference system at the i-th contact point on the hand
c̃hi ∈ R6 position and orientation of reference frame Ch

i
λi vector of forces (and moments) at the contact i
nq number of joints

q ∈ Rnq actual joint variables
qr ∈ Rnq reference joint variables

τ vector of joint forces and torques
nz number of postural synergies

z ∈ Rnz actual synergy variables
zr ∈ Rnz reference synergy variables

σ generalized forces along synergies
G ∈ R6×nl grasp matrix
J ∈ Rnl×nq hand jacobian matrix
X ∈ Rnq×nq joint displacement gain matrix (∆q = X∆qr)
Y ∈ Rnz×nz postural synergy gain matrix (∆z = Y∆zr)
S ∈ Rnq×nz synergy matrix (∆qr = S∆z)

TABLE I
PRIMARY NOTATION FOR GRASP ANALYSIS.

of the contact frame fixed to the hand structure:

∆c̃h = J̃T∆q (2)

In order to define the kinematic constraint and the contact
forces imposed by the contact between the hand and the object,
a suitable contact model has to be introduced. Two contact
models have been considered in this work: hard-finger (HF),
and soft-finger (SF) [12]. These models select components
of the contact velocities to be constrained by the contact
model. This is done by equating a subset of nl components
of the hand and object contact velocities. The corresponding
components of the contact force and moment are considered
without constraints imposed by the friction model. The HF
model constraints the three components (nl = 3) of the
linear velocity while the SF model constraints also the angular
velocity about the normal at the contact (nl = 4).

The constrained velocities components are coded in the Se-
lection Matrix H ∈ Rnl×6nc [12] which selects nl components
of the relative contact twists for all the contacts and sets them
to zero:

H(∆c̃h −∆c̃o) = 0. (3)

Finally, from (1) and (2) into (3) the following constraint
equation is obtained:[

J −GT
] [ ∆q

∆u

]
= 0 (4)

where the Grasp Matrix and Hand Jacobian are:

GT = HG̃T ∈ Rnl×6

J = HJ̃ ∈ Rnl×nq
(5)

For more details on the construction of H , G, and J readers
are referred to [12] and therein references.



B. Quasistatic model of the grasp

The forces and torques acting on the system composed of
the hand and the grasped object are the object external wrench
w, the forces/torques applied to the joints τ and the contact
forces λ exchanged between the hand and the object at the
contact points. The static equilibrium of the hand and of the
object is given by

τ = JTλ (6)
w = −Gλ (7)

The general solution of eq. (7), assuming that w is in the
column space of G, R(G), is:

λ = −G+w +Aξ (8)

where G+ is a generic right–inverse of the grasp matrix and
A ∈ Rnl×nh is a matrix whose columns form a basis of the
nullspace of G, N (G), and the vector ξ ∈ Rnh parametrizes
the homogeneous part of the solution. The term Aξ represents
the solution to (7) when no external load w is applied and are
usually referred to as internal forces. The control of internal
forces is paramount to stabilize the grasp since these allow
to satisfy the contact constraints. In previous works [1] it
has been shown that for general grasp kinematics, e.g. in
wholearm grasps where contacts are allowed with inner part
of the fingers or the palm [2], controlling internal forces is not
straightforward since the number of internal forces directions,
i.e. the dimension of the subspace N (G), turns to be larger
than the number of controlled joint actions. The problem
of controlling internal forces becomes even worse in hands
controlled with synergies since the number of synergy actions
is even lower than the number of joints.

C. Hands controlled with postural synergies

We suppose that the hand is actuated using a number of
inputs whose dimension is lower than the number of hand
joints and we define it as synergies. The synergies are then
collected in a vector z ∈ Rnz .

Recent results on the organization of the human hand
in grasping and manipulation have inspired many research
activities in robotics and more in general in hand design
and control. In [13] authors proved that, notwithstanding the
complexity of the human hand, a few variables are able to
account for most of the variance in the patterns of human
hands configuration and movement. These conclusions were
based on the results of experimental tests in which subjects
were asked to perform grasping actions on a wide variety of
objects. Data were recorded by means of data gloves and were
analyzed with principal component analysis techniques. In [7],
the authors deal with robotic grasping with synergies and refer
to the single principal component, or synergy, as an eigengrasp
which can also be thought of as a special direction of motion
in the joint space of the hand. Robotic hand design has been
inspired by the synergy organization of the human hand [5].
The numerical example section of this paper deals with the
Barrett Hand, a robotic hand with 8 joints controlled through

4 postural synergies corresponding to 4 motors. It is worth
noting that the number of synergies is always lower than the
number of joints and in general, according to the performed
grasping tasks more than two synergies can be engaged.

This paper refers to postural synergies no matters what
type of grasp, human or robotic, is considered. Differently
from other approaches where the actual joint variables is a
linear combination of synergies [5, 7], in this paper we define
the postural synergies as a joint displacement aggregation
corresponding to a reduced dimension representation of hand
movements according to a compliant model of joint torques.

Definition 1: The reference vector qr for joint variables is a
linear combination of postural synergies z ∈ Rnz with nz ≤
nq

qr = Sz (9)

through the synergy matrix S ∈ Rnq×nz , whose columns
describes the shapes, or directions, of each synergy i the joint
space.

To map the postural synergies Sz to the actual joint vari-
ables, a compliant model for joint torques has been chosen:

qr − q = Cqτ (10)

where Cq ∈ <nq×nq is the compliance matrix that takes
into account the static gains of the joint torque control and
possibly the hand link compliance, while τ are the generalized
force/torque applied to the joints (Fig. 1).

From (6) and (9), eq. (10) can be rewritten as

Sz − q = CqJ
Tλ. (11)

A compliant model of the synergy actuation is here assumed
(Fig. 1). The synergy actuator generalized forces σ are propor-
tional to the difference between the reference and the actual
synergy values:

σ = C−1
z (zr − z) (12)

where Cz ∈ Rnz×nz is a matrix whose elements are the
reciprocal of the static gains of the synergy motor control.

D. Forces and object displacements controlled by synergies

Consider an equilibrium configuration where an object with
an external wrench w0 is grasped by a hand whose synergy
values are z0 and the corresponding joint displacements are
q0. The contact forces in this reference equilibrium are λ0.
Starting from this equilibrium configuration, we consider a
variation of the input synergy reference values ∆zr, which
leads to an actual variation of the postural synergies ∆z, to
a variation of the joint displacement ∆q and a variation of
contact forces ∆λ for the new equilibrium configuration of
the quasi-static model. We suppose that the object wrench w0

is kept constant. Lets furthermore assume that the variation
of the jacobian matrix J due to the joint displacement is
disregardable. In the new equilibrium configuration, the object
is in a static equilibrium and all the contact forces ∆λ result
to be self-balanced

G∆λ = 0. (13)



In other terms, the activation of postural synergy displacements
∆ze induces a variation of contact force ∆λ ∈ N (G), the
internal forces subspace.

As discussed in [12], when the dimension of the contact
force subspace is larger than the dimension of the control
inputs, the grasp can results to be statically indeterminate,
or hyperstatic and this typically happens for robotic hands
controlled with a few postural synergies. In this case a possible
way to analyze the grasp, and in particular to study the contact
forces, is to relax the rigid contact hypothesis and consider
elastic contacts: the kinematic constraint imposed by (4) is no
longer satisfied and, as discussed in [1], the contact force ∆λ
is modeled as [

J −GT
] [ ∆q

∆u

]
= Cs∆λ (14)

where Cs ∈ Rnl×nl denotes the contact compliance matrix.
From (11), the variation ∆λ corresponding to the above
described variation from the reference configuration can be
written as

JS∆z − J∆q = JCqJ
T∆λ. (15)

Then summing up (14) and (15) we get

JS∆z −GT∆u =
(
Cs + JCqJ

T
)

∆λ. (16)

from which we can compute the contact forces as a function
of synergy and object posture displacements

∆λ = K
(
JS∆z −GT∆u

)
(17)

where the total stiffness matrix K takes into account the
contact compliance Cs and the joint control gains Cq

K =
(
Cs + JCqJ

T
)−1

(18)

Note that eq. (17) relates contact force displacements ∆λ to
both synergy and object displacements ∆z and ∆u, but object
and synergy displacements are not independent variables.
Inspired by [1], we will use the Principle of Virtual Works to
evaluate the quasi-static changes ∆λ generated, or controlled,
by the postural synergy displacement ∆z only, and similarly
we will compute the quasi-static changes ∆u generated by the
postural synergy displacement ∆z only.

It is worth underlying that this work studies the effect on
the grasp due to changes of the postural synergies which play
the role of controlled variables. No other actions is considered
on the grasp. For example we assume that no change on the
external wrench occurs.

The Principle of Virtual Works, applied to the configuration
obtained applying a synergy variation ∆z to a reference
condition, leads to

∆λTGTδu = 0 (19)

where δu indicates the virtual displacement of the object
reference frame, i.e. an infinitesimal displacement compatible
with the contact constraints imposed by the hand. From (17)
we obtain

∆zTSTJTKTGTδu = ∆uTGTKTGδu (20)

which, holding true for any arbitrary object virtual displace-
ment δu, can be simplified as

GKJS∆z = GKGT∆u (21)

Thus object displacement from one equilibrium configuration
to another, generated by a synergy change ∆z is

∆u =
(
GKGT

)−1
GKJS∆z (22)

and from (17) one gets the contact force changes ∆λ generated
by ∆z as

∆λ =
(
I −G+

KG
)
KJS∆z (23)

where G+
K is the pseudoninverse of grasp matrix G weighted

with the stiffness matrix K (18). From (23) and (15) we
can then express the variation of joint displacement ∆q due
to an activation ∆z of synergies as

∆q = X∆qr = XS∆z (24)

with X = I−CqJ
T
(
I −G+

KG)KJ
)
. We will refer to matrix

X as the joint displacement gain matrix.
Remark 1: Defining the postural synergies as in Definition

1 with compliance models allows to still find a linear relation-
ship between joint variables and synergies but trough matrix
XS as in (24) and not through the synergy matrix S only as
in [5, 7].

The linear map (24) between ∆q and ∆z is yet not com-
plete. In fact, according to the compliance model pictorially
described in Fig. 1, we still need to relate the reference changes
for synergies ∆zr to joint displacements ∆q. After some
algebra one gets that

∆z = Y∆zr (25)

with Y =
(
STXTC−1

q (I −X)SCz + I
)−1

. Matrix Y will
be referred to as the postural synergy gain matrix.

Finally, from (25) and Definition 1, we can express the
joint displacement variation due to a variation of the reference
postural synergies as

∆q = XSY∆zr (26)

Consequently the object displacement variation ∆u and the
internal force variation ∆λ can be evaluated as a function of
the synergy reference variation ∆zr as

∆u =
(
GKGT

)−1
GKJSY∆zr (27)

∆λ =
(
I −G+

KG
)
KJSY∆zr (28)

In (28) the first matrix on the right side is a projector onto
the nullspace of matrix G. Consequently ∆λ belongs to the
nullspace of the grasp matrix. In other terms the quasistatically
controllable contact forces are internal forces which do not
affect the motion of the object. This is an intuitive result
since the quasi-static model moves from one equilibrium
configuration to another where the object does not move.

The control of internal forces is paramount in robotic
grasping [12]. It allows to steer the contact forces to satisfy
the constraints imposed by friction models at the contacts thus



guarantying to not loose the contact with the object which
would compromise the whole grasp.

From (28) , define a basis matrix Es for the subspace of
controllable internal forces by postural synergies as

R(Es) = R
((
I −G+

KG
)
KJSY

)
(29)

Concluding all internal forces controllable by synergy ac-
tions can be parametrized through a free vector as Esα.

Remark 2: Starting from a reference configuration and act-
ing on synergies, the joint displacements depends both on the
synergy matrix S and on the whole system compliance, and
then in the more general case δq 6= S∆zr.

If the synergy actuation is perfectly stiff, i.e. if Cz = 0, it is
clear from (25) that Y = I and thus ∆z = ∆zr. Furthermore
if the links are perfectly stiff and the joint control gains are
infinite, i.e. Cq = 0, from (24) it results that X = I and
∆q = S∆z.

Summarizing in case of Cz = 0 and Cq = 0 one gets a
simplified version of eq. (26)

∆q = S∆z = ∆zr (30)

which is similar to the definition of synergy control given in [5,
7]. Note that (30) holds true for contacts that are not perfectly
indeformable, i.e. Cs 6= 0.

E. Control of rigid body object motion

Eq. (27) shows how the object displacements ∆u are
controlled from one equilibrum configuration to another by
synergy small variations ∆zr.

Among all the possible motions of the grasped objects,
rigid-body motion is perhaps the most interesting since it does
not involve visco-elastic deformations in the contact points.
Rigid-body motion can be regarded as low energy motions,
in other words they represent the natural way to change the
posture of the grasped object. Rigid-body motion controllable
by synergies has to be compatible with kinematic contact con-
straint (4) and (26) which relates controlled postural synergies
and joint displacements.

Thus a description of this motion can be obtained computing
N
[
JXSY −GT

]
. Let’s then define a matrix Γ, whose

columns form a basis of such subspace. Under the hypothesis
that the object motion is not indeterminate [12], i.e. N (GT) 6=
0, i.e. the object is completely restrained by contacts, matrix
Γ can be expressed as

Γ = N
[
JXSY −GT

]
=

[
Γzr Γzcs

0 Γucs

]
(31)

where Γzr is a basis matrix of the subspace of redundant mo-
tions N (JXSY ), and Γzcs and Γucs are conformal partitions
of a complementary basis matrix. The image spaces of Γzcs

and Γucs consist of coordinated rigid–body motions of the
mechanism, for the postural synergy references and the object
position and orientation, respectively.

Coming back to the rigid-body object motion controlled by
synergies, as already discussed it is easy to show that

R(Γucs) ⊆ R((GKGT)−1GKJSY ). (32)

i.e. rigid-body motions of the object are not all the pos-
sible motions of the object controlled by synergies as
in (27). The subspace of all synergy controlled object mo-
tion R((GKGT )−1GKJSY ) also contains motions due to
deformations of elastic elements in the model.

Concluding all rigid-body displacements of the object can
be parametrized through a free vector as Γucsβ.

III. MAIN RESULT

In grasps by hands controlled with synergies it is possible
that not all the object motions and contact forces result control-
lable by synergy actions. According to (31) and (32), desired
quasi-static rigid-body object motions ∆udes can be performed
if they remain within subspace R(Γucs) defined in (31) and
analogously, according to (28) and (29), arbitrary quasi-static
contact force displacements ∆λdes can be performed if they
evolve within subspace R(Es) defined in (29). It is worth
noting that with the results obtained up to here, we can
arbitrarily control motions in R(Γucs) or contact forces in
R(Es) when we do not want to jointly control them. In other
terms we are not guaranteed that in coupled motion and force
control, we can jointly control two vectors lying on these
subspaces.

However in grasping, due to the presence of unilateral,
conic contact constraints, task specifications can not be given
disjointly in terms of either object positions or contact forces.
Therefore conditions ∆udes ∈ R(Γucs) and ∆λdes ∈ R(Es)
are only necessary, but no longer sufficient, for joint control
of object motions and contact forces. Moreover, specifications
of jointly controllable object motions and contact forces may
not exhaust the control capabilities of synergy actions for the
given grasp due to the presence of synergy redundancy.

Our goal is therefore to define a set of controlled outputs
for a grasp with synergies that is guaranteed to be feasible
with synergy actions, that fully exploits the control inputs
and that is convenient for the specification of the tasks. The
first requirement implies that the output vector of forces
and motions can be controlled by synergies, the second that
controlled output vector has the same dimension nz of the
synergy vector zr and the third that the output vector consider
the typical approach of a grasping task:
• contact forces that can be controlled so as to avoid

violation of contact constraints;
• object trajectories that can be accommodated for by the

grasp with synergies;
• reconfiguration of limbs in presence of redundancy in

synergies.
The following theorem proposes a set of outputs for grasps
with synergies.

Theorem 1: Under the technical assumption that the grasp
is not indeterminate (N (GT) = 0), and the symplifying
assumption of Remark 2, i.e. Cz = 0 and Cq = 0 (X = I
and Y = I) consider the quasi–static model of any grasp with
synergies described in (27) and (28). It is always possible
to control, jointly but independently, the controllable internal
forces, the rigid–body object motions and redundancy with



the control input as synergy displacement ∆zr. Algebraically,
this corresponds to state that for any α, β and γ, there always
exists a ∆zr solving the linear system of equations Esα

Γucsβ
Γzrγ

 =

 (I −KGT (GKGT )−1G)KJS
(GKGT )−1GKJS

I

∆zr

(33)
where Γucs and Γzr have been defined in (31), and Es has
been defined in (29).

Moreover, solution for ∆zr is unique and the number of
synergies nz is equal to the sum of the dimensions of the
controlled output subspaces:

nz = dim(Es) + dim(Γucs) + dim(Γzr) (34)
Proof:

Linear system (33) can be rewritten as α
β
γ

 =

 E+
s (I −KGT (GKGT )−1G)KJS

Γ+
ucs(GKG

T )−1GKJS
Γ+
zr

∆zr

(35)
where B+ = (BTB)−1BT denotes the pseudoinverse of a
basis matrix B.

The linear system is square if the number #(Γucs) +
#(Es) + #(Γzr) = nz where #(N) denotes the number of
colums of matrix N ,

Since Γzr, Γucs, and Es are full column rank by definition,
from (31) we have #(Γucs)+#(Γzr) = dim(N [JS −GT ])−
dim(N (GT )). Observing thatN (I−G+

KG) = R(KGT ), from
(29) we obtain

#(Es) = #(JS)− dim(N (JS))− dim(R(JS) ∩R(GT )) =
= q − dim(N (JS))−

[
dim(N ([JS −GT ]))

−dim(N (JS))− dim(N (GT ))
]

= q −#(Γzr)−#(Γucs);

To complete the proof it suffices to show that coefficient
matrix in (35) is full row rank which is equivalent to prove
that

N

 E+
s (I −G+

KG)KJS
Γ+
ucs(GKGT )−1GKJS

Γ+
zr

T = {0}. (36)

Observe that each block of the matrix in the equation above
is full column rank, in fact

i: Es is a basis for R((I −G+
KG)KJS) (cf. (29));

ii: R(Γucs) ⊆ R((GKGT )−1GKJS), directly from (32);
iii: Γzr is a basis matrix for N (JS);

Hence, to prove (36) it is sufficient to show that the raw spaces
of the three blocks are also mutually linearly independent and
this directly follows from these observations.

iv: The columns of the third block span N (JS), while the
column space of the first two blocks lies within R(STJT);

v: R(G+
KΓucs) and R(I − G+

KG)KEs) are disjoint, then
so are the spans of the columns of the first and second blocks.
�

Remark 3: The result in (34) deals with dimensions of
subspaces and is numerical in nature. It states a very basic
structural property of grasp analysis with postural synergies: if
nz control inputs are available, one cannot control, jointly and

Fig. 2. The Barrett Hand.

independently, more than nz variables among internal forces,
object motion directions and kinematic redundancy. If one
wants to control more than nz output variables between mo-
tions and forces, it happens that the grasp can still accomplish
the requirements but in this case desired object motions and
internal forces cannot be independently assigned. This means
for instance that one cannot find contact forces satisfying
friction constraints to track a desired object trajectory o vice
versa.

Remark 4: The result in (33) deals with grasp control with
postural synergies. When the mechanical structure is complex,
with many joints, but the control inputs are few, it is not easy to
understand which synergy one needs to activate to accomplish
a given tasks. The solution of linear system (33) allows to
simply compute the control variables, the synergy references,
according to a task to be performed.

The theorem is useful also to find the minimal design
requirements in terms of number of synergies to be used to
accomplish the given task.

It is worth underlying that the motion of the object con-
sidered in this paper are motions performed with respect to
the palm of the hand. In other terms we are considering
fine motion control of grasped objects more than the large
displacements which can be performed with moving the wrist
with a robot arm, and not with the hand joints.

Finally, note that results presented in this paper still work
for fully actuated robotic hands provided that matrix S is
substituted with the identity matrix.

IV. NUMERICAL EXAMPLES

Results on the motion and force control of grasps with
synergies have been applied to the Barrett Hand, shown in



Figure 2 : it is a three finger, eight-axis mechanical hand,
in which each finger has two joints. One of the fingers,
referred to as 1, is stationary, while the other two can spread
synchronously up to 180 degrees about the palm. Although
there are eight axes, the hand is actuated by four motors: each
finger has an actuated inner link and a coupled outer link that
moves at a fixed rate with the inner link. An additional motor
control the synchronous spread of the two fingers about the
palm. A clutch mechanism allows the outer link to continue
to move even if the inner link motion is obstructed, however
this feature has not been considered in the presented analysis.

Let us refer with θi,1 (i = 1, .., 3) the rotation of the
inner link with respect to the palm, with θi,2 (i = 1, .., 3)
the rotation of the outer link with respect to the inner one
and with θi,0 (i = 2, 3) the spread of the two fingers about
the palm. Thus the configuration vector can be defined as:
q = [θ1,1, θ1,2, θ2,0, θ2,1, θ2,2, θ3,0, θ3,1, θ3,2]T .

The mechanical couplings between the joints are expressed
by the following relations:

θ2,0 = −θ3,0 = z1

θ2,i = αiθ1,i = zi+1 i = 1, .., 3

where αi represents the ratio between the outer and the inner
angle for the i-th link. The joint angles are controlled acting
on four parameters, collected in the vector z = [z1, ..., z4]T .
Accordingly, the synergy matrix can be defined as

S =



0 1 0 0
0 α1 0 0
1 0 0 0
0 0 1 0
0 0 α2 0
−1 0 0 0
0 0 0 1
0 0 0 α3


. (37)

A reference value for the input parameters zr has then been
selected. By means of the synergy matrix and the forward
kinematic analysis the hand configuration has been defined and
the grasping has been analysed. The contact points between the
hand and the grasped object were located on the three finger
tips and the normal directions at the contact points have been
thought as oriented towards the center of the object. Both HF
and SF contact models have been considered.

Matrix G dimensions are 6×9 in case for HF and 6×12 in
case of SF contact models, while dimensions of N (G) are 3
and 6, respectively for the same cases. The contact compliance
matrix Cs has been chosen as a nl–dimensional identity matrix
where nl = 9 for the HF model and nl = 12 for the SF model.
The compliance matrices Cq and Cs have been considered
zero, so that, according to remark 2, X and Y are equal to
identity matrices with dimensions nq and nz respectively.

According to the previously described analysis, the dimen-
sion of the controllable internal forces and object motions
have been evaluated with both the hypothesis that the hand
is controlled with the four synergies, as in the real case, and
considering a case when all the eight joints are actuated. Table
II summarizes the obtained results, in particular the dimensions

HF SF
E Γucs Γzr E Γucs Γzr

synergies (4 inputs) 3 0 1 4 0 0
fully actuated (8 joints) 3 2 3 6 1 1

TABLE II
BARRETT HAND: CONTROLLABLE INTERNAL FORCES AND ALLOWABLE

MOVEMENTS FOR THE SYNERGY ACTUATED (4 DEGREES OF FREEDOM)
AND FULLY ACTUATED (8 DEGREES OF FREEDOM) HAND.

of the controllable internal forces, rigid body motions and hand
redundancy subspaces. We can observe that in all the cases
equation (34) on subspace dimensions is verified, since the
sum between the dimensions of Es, Γucs and Γzr is equal to
the number of synergies or to the number of joints.

Figure 3 shows, for the first three synergies, the hand motion
(first row) and the set of internal contact forces generated
acting through each single synergy, evaluated by means of
equation (28) (second row). The results shown in the figure
have been obtained considering the HF contact model. Only
three synergies have been represented since the activation of
the fourth synergy does not produce internal forces, this result
can be justified by the observation that the nullspace of JS,
whose basis is the matrix Γzr is not empty thus the system is
redundant.

It is worth noting that in the given grasping configuration
the four synergies of the Barret Hand are not able to control
any rigid-body motion of the object, since Γucs is zero as
shown in Table II.

V. CONCLUSIONS

In grasping hands with nz postural synergies, a structural
relationship exists between the dimension of controllable in-
ternal forces and object motion subspaces and the number
synergy control inputs. We proved that it is not possible to
control, jointly and independently, more than nz variables
among internal forces, object motion directions and kinematic
redundancy. This paper provides control strategies to perform
complex manipulation tasks, involving control of motion and
forces, through very few synergies as control inputs. Further-
more tools for design requirements of complex robotic hands
in terms of number of synergies to accomplish manipulation
tasks are provided. We believe that providing structural and
basic results like the controllability of forces and motions
in hand grasps with postural synergies will allow to better
understand and exploit the synergies in both robotics and
human studies. A numerical example relative to the Barrett
Hand is showed, further analysis on the human hand are in
progress.
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