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Abstract— This paper presents LQG-MP (linear-quadratic
Gaussian motion planning), a new approach to robot motion
planning that takes into account the sensors and the controller
that will be used during execution of the robot’s path. LQG-
MP is based on the linear-quadratic controller with Gaussian
models of uncertainty, and explicitly characterizes in advance
(i.e., before execution) the a-priori probability distributions
of the state of the robot along its path. These distributions
can be used to assess the quality of the path, for instance by
computing the probability of avoiding collisions. Many methods
can be used to generate the needed ensemble of candidate paths
from which the best path is selected; in this paper we report
results using the RRT-algorithm. We study the performance
of LQG-MP with simulation experiments in three scenarios
involving a kinodynamic car-like robot, multi-robot plann ing
with differential-drive robots, and a 6-DOF manipulator.

I. I NTRODUCTION

Motion uncertainty, i.e. the fact that the motion of the
robot unpredictably deviates from what a dynamics model
predicts, and imperfect state information due to partial or
noisy measurements of the robot’s state, arise in many real-
world robotic tasks ranging from guiding mobile robots over
uneven terrain to performing robotic surgery with high-DOF
manipulators. The amount of motion and sensing uncertainty
may depend on the particular motion that is executed and the
state the robot is in, so different paths for the robot will have
different uncertainties associated with them. Because safety
and accuracy are of critical importance for many robotic
tasks, these uncertainties will have significant influence on
which path is best for the task at hand. The challenge we dis-
cuss in this paper is to precisely quantify these uncertainties
in advance, such that the best path can be selected.

Many traditional path planners assume deterministic mo-
tion and full knowledge of the state [18], [13], and leave
issues of uncertainty to thecontrol phase in which the
path may be executed using a feedback controller [15].
Planning and control are related but distinct fields. While
recent work on path planning has addressed motion and/or
sensing uncertainty (see Section II), most planning methods
do not account for control during execution and most control
methods take the path as given. LQG-MP builds a bridge
between these disciplines and draws from results in both.
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Fig. 1. (a) The maximum factorct by which the ellipse containing the
positions within one standard deviation can be scaled before it intersects
obstacles gives an indication of the probability that collisions will be avoided
(top). ct is computed as the Euclidean distance to the nearest obstacle in the
environment transformed such that the ellipse becomes a unit disc (bottom).
(b) The ellipses show the a-priori distributions as computed by LQG-MP
along the best among the 1000 candidate paths for Scenario A.The samples
result from performing 100 simulations.

The key insight of LQG-MP is that the a-priori knowledge
of the sensors and controller that will be used during the
execution of the path can be used to optimize the path in the
planning phase. We base our approach on the linear-quadratic
controller (LQG-controller) with Gaussian models of the
motion and sensing uncertainty, as it providesoptimalcontrol
for guiding a robot along a planned path [4]. We will show
that for a given stochastic model of the motion dynamics,
and a stochastic model of the sensor measurements obtained
during execution, it is possible to derivein advance(i.e.
before execution) the a-priori probability distributionsof the
states and the control inputs of the robot along a given path
(see Fig. 1). These distributions can be used to compute,
for example, the probability that collisions will be avoided,
the likelihood that the robot will arrive at the goal, or any
other measure defining the quality of the path. We can then
use any motion planning method to generate a large set of
candidate paths, and select the path that is best with respect
to the chosen planning objective.

Our approach is generally applicable to both holonomic
and non-holonomic robots with state spaces of arbitrary
dimension and kinematics and dynamics constraints. We
assume that the stochastic dynamics model of the robot and
the stochastic observation model are given explicitly, and
that their stochasticity can be modeled by Gaussian noise.



Our approach is designed for linear models, but can also
be applied to non-linear models if they are locally well
approximated by their linearizations.

We implemented our approach using the RRT motion
planning algorithm [18] for representative path planning
problems, and validated our approach using simulation ex-
periments. We will show that the quality of candidate paths
can differ starkly based on the uncertainty, even if traditional
planning criteria such as path length or clearance from
obstacles are similar, and that the type of sensors used during
execution of the path has a significant influence on which
path is best. A path planner that is unaware of the sensors,
the controller and their uncertainties would not be able to
make this distinction, and may produce sub-optimal paths.

The remainder of this paper is organized as follows. We
start by discussing related work in Section II. We formally
define the problem addressed in this paper in Section III. In
Section IV we show how LQG-MP computes the a-priori
probability distributions for a given path. In Section V, we
discuss application examples and simulation results of LQG-
MP for several motion and sensing models and planning
objectives. We conclude in Section VI.

II. RELATED WORK

A substantial body of work has addressed uncertainty in
motion planning. The uncertainty typically originates from
three sources: (i) motion uncertainty, (ii) sensing uncertainty
and partial observations, and (iii) uncertainty about the
environment. Our approach focuses on the first two, but is
to some extent also applicable to the latter, as we will show
in one of our experiments.

Planners that specifically take into account motion uncer-
tainty include [14], [21], [29]. These planners plan paths that
avoid rough terrain, but do not consider partial observability
and sensing uncertainty. In [10], the probability of collisions
is minimized for the specific case of a manipulator with
base pose uncertainty. The sensing uncertainty is taken into
account in the planner of [28], which aims to optimize the
information content along a path. Planners in [5], [7], [20]
assume that landmark regions exist in the environment where
the accumulated motion uncertainty can be “reset”.

Other approaches blend planning and control by defining
a global control policy over the entire environment. MDPs,
for instance, can be used with motion uncertainty to opti-
mize probability of success [1], [30]. However, they require
discretization of the state and control input spaces. The MDP
concept can be extended to POMDPs to also include sensing
uncertainty [12], [16], [26], but these suffer from issues of
scalability [24]. The method of [17] also provides a global
control policy in case of motion and sensing uncertainty.

Another class of planners considers the uncertainty about
the environment and obstacles, rather than motion and sens-
ing uncertainty [6], [9], [22], [23]. They typically aim to plan
paths for which the probability of collisions is minimal.

Existing planners that are most directly related to LQG-
MP take into account the available sensing capability to
maximize the probability of arriving at the goal or to

minimize expected cost [8], [11], [25], [27]. However, these
algorithms implicitly assume to receive maximum-likelihood
measurements from the sensors, which does not result in the
true probability distributions of the state of the robot, but
rather a measure of how well one will be able to infer the
state. Besides the sensors, LQG-MP also takes into account
the controller that will be used for executing the path, and
computes the true a-priori probability distributions of the
state of the robot along its future path.

III. PROBLEM DEFINITION

Let X = R
n be thestate spaceof the robot, and letU =

R
m be thecontrol input spaceof the robot. We assume that

time is discretized into stages of equal duration, and that
applying a control inputut ∈ U at staget brings the robot
from statext ∈ X at staget to statext+1 ∈ X at staget+1
according to a given stochastic dynamics model:

xt = f(xt−1,ut−1,mt), mt ∼ N (0,Mt), (1)

wheremt is the process noise at staget drawn from a zero-
mean Gaussian distribution with varianceMt that models the
motion uncertainty. We assume that the functionf is either
linear or locally well approximated by its linearization.

Let us be given a start statexstart ∈ X where the robot
begins and a goal regionX goal ⊂ X where the robot needs to
go. A pathΠ for the robot is defined as a series of states and
control inputs(x⋆

0,u
⋆
0, . . . ,x

⋆
ℓ ,u

⋆
ℓ ), such thatx⋆

0 = xstart,
x⋆
ℓ ∈ X goal, and x⋆

t = f(x⋆
t−1,u

⋆
t−1,0) for 0 < t ≤ ℓ,

whereℓ is the number of stages of the path. That is, a path
connects the start state and the goal region, and is consistent
with the dynamics model if there were no process noise.

During execution of the path, the robot will deviate
from the path due to motion uncertainty. To compensate
for unexpected motions, we assume that the path will be
executed using a feedback controller that aims to keep the
robot close to the path by minimizing the cost function

E
(

ℓ
∑

t=0

((xt−x⋆
t )

TC(xt−x⋆
t )+(ut−u⋆

t )
TD(ut−u⋆

t ))
)

, (2)

which quadratically penalizes deviations from the path.C
andD are given positive-definite weight matrices.

We assume that noisy sensors provide us with partial
information about the state during execution of the path
according to a given stochastic observation model:

zt = h(xt,nt), nt ∼ N (0, Nt), (3)

wherezt is the measurement obtained at staget that relates
to statext through functionh, andnt is the measurement
noise drawn from a zero-mean Gaussian with varianceNt.
We assume that the functionh is either linear or locally well
approximated by its linearization.

We define our problem in two parts; (i) given the stochastic
dynamics model, the stochastic observation model, and the
cost function, compute the a-priori distributions of the state
and control input along a given path, and (ii) given a planning
objective based on the probability distributions, select the
best path among a large set of candidates.



IV. A- PRIORI PROBABILITY DISTRIBUTIONS

In this section we describe how to compute the a-priori
probability distributions of the state and control input ofthe
robot along a given pathΠ. For this, we use the fact that
we know in advance what controller will be used to execute
the path: for linear dynamics and observation models with
Gaussian noise and a quadratic cost function, the optimal
approach for executing the path is to use an LQR feedback
controller in parallel with a Kalman filter for state estimation,
which is called linear-quadratic Gaussian (LQG) control [4].
A Kalman filter provides the optimal estimate of the state
given previous state estimates, measurements and control
inputs, and an LQR controller provides the optimal control
input given the estimate of the state.

We will first discuss how to linearize the dynamics and
observation model, and then review the Kalman filter and
LQR controller. From these, we compute the a-priori proba-
bility distributions of the states and the control inputs ofthe
robot along the path.

A. Linear(ized) Dynamics and Observation Model

In principle, our approach applies to linear dynamics and
observation modelsf and h. However, since the robot is
controlled to stay close to the path during execution, we can
approximate non-linear models with local linearizations (i.e.
first-order Taylor expansions) around the pathΠ. This gives
the following linear(ized) stochastic models:

xt = f(x⋆
t−1,u

⋆
t−1,0) +At(xt−1 − x⋆

t−1) + (4)

Bt(ut−1 − u⋆
t−1) + Vtmt,

zt = h(x⋆
t ,0) +Ht(xt − x⋆

t ) +Wtnt, (5)

whereAt = ∂f
∂x(x

⋆
t−1,u

⋆
t−1,0), Bt = ∂f

∂u(x
⋆
t−1,u

⋆
t−1,0),

Vt =
∂f
∂m (x⋆

t−1,u
⋆
t−1,0), Ht =

∂h
∂x (x

⋆
t ,0), Wt =

∂h
∂n(x

⋆
t ,0)

are the Jacobian matrices off andh along pathΠ.
It is convenient to express the control problem in terms of

the deviationfrom the path. By defining

x̄t = xt − x⋆
t , ūt = ut − u⋆

t , z̄t = zt − h(x⋆
t ,0), (6)

as the state deviation, control input deviation and measure-
ment deviation, respectively, we can formulate the dynamics
and observation model of Equations (4) and (5) as

x̄t = Atx̄t−1 +Btūt−1 + Vtmt, mt ∼ N (0,Mt), (7)

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt), (8)

and the cost function of Equation (2) as

E
(

ℓ
∑

t=0

(x̄T
tCx̄t + ūT

tDūt)
)

. (9)

This is the standard formulation of an LQG-control problem.

B. Kalman Filter for Optimal State Estimation

The Kalman filter keeps track of the estimatẽxt and
variancePt of the true statēxt during the execution of the
path. It continually performs two steps; a process update to

propagate the applied control inputūt, and a measurement
update to incorporate the obtained measurementz̄t:

Process update:

x̃
−
t = Atx̃t−1 +Btūt−1 (10)

P−
t = AtPt−1A

T
t + VtMtV

T
t , (11)

Measurement update:

Kt = P−
t HT

t (HtP
−
t HT

t +WtNtW
T
t )−1 (12)

x̃t = x̃
−
t +Kt(z̄t −Htx̃

−
t ) (13)

Pt = (I −KtHt)P
−
t . (14)

These are the standard Kalman filter equations for optimal
estimation given the dynamics and observation model of
Equations (7) and (8) [31]. Note that the Kalman-gain matri-
cesKt can be computedin advance(i.e. before execution)
given the initial varianceP0, without knowledge of the actual
control inputsūt and measurements̄zt.

C. LQR for Optimal Control

The control inputsūt that are optimal to apply during
execution of the path are determined by the control policy
that minimizes the cost function of Equation (9). For the
dynamics model of Equation (7), the cost function is minimal
whenūt = Ltx̄t, whereLt is the feedback matrix, which is
computed in advance for allt ∈ 0, . . . , ℓ− 1 using:

Sℓ = C (15)

Lt = −(BT
t+1St+1Bt+1 +D)−1BT

t+1St+1At+1 (16)

St = C +AT
t+1St+1At+1 +AT

t+1St+1Bt+1Lt. (17)

These are the standard equations for a finite-horizon discrete-
time LQR controller [4].

As the true statēxt is unknown, the estimatẽxt of the state
which is obtained from the Kalman filter is used to determine
the control inputūt at each staget during execution of the
path. Hence, the control policy is:

ūt = Ltx̃t. (18)

After application of the control input, the Kalman filter
produces the estimate of the next state from which in turn a
new control input is determined. This cycle repeats until the
execution of the path is complete.

D. A-priori Distributions of State and Control Input

Given the LQR control policy and the Kalman filter,
we can analyze in advance how the true statex̄t and the
estimated statẽxt will evolve during execution of the path
as functions of each other. The evolution of the true state
x̄t is dependent on the estimated state through the LQR
control policy (Equation (18)) and the evolution of the
estimated statẽxt is dependent on the true state through the
measurement obtained in the Kalman filter (Equation (13)).
This gives the following equations:

x̄t = Atx̄t−1 +BtLt−1x̃t−1 + Vtmt, (19)

x̃t = Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

z̄t − (20)

Ht(Atx̃t−1 + BtLt−1x̃t−1)
)



= Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

Htx̄t +Wtnt −

Ht(Atx̃t−1 +BtLt−1x̃t−1)
)

= Atx̃t−1 +BtLt−1x̃t−1 +Kt

(

Ht(Atx̄t−1 +BtLt−1x̃t−1 + Vtmt) +Wtnt −

Ht(Atx̃t−1 +BtLt−1x̃t−1)
)

= Atx̃t−1 +BtLt−1x̃t−1 +KtHtAtx̄t−1 +

KtHtVtmt +KtWtnt −KtHtAtx̃t−1,

Equation (19) follows from substituting Equation (18) into
Equation (7). The first equality of (20) follows from substi-
tuting Equation (18) into Equation (10) and Equation (10)
into Equation (13); the second and third equalities follow
after substituting Equations (8) and (19), respectively, and
the fourth equality follows after expanding the terms.

Combining Equations (19) and (20) gives the matrix form:
[

x̄t

x̃t

]

=

[

At BtLt−1

KtHtAt At +BtLt−1 −KtHtAt

] [

x̄t−1

x̃t−1

]

+

[

Vt 0
KtHtVt KtWt

] [

mt

nt

]

,

[

mt

nt

]

∼ N (0,

[

Mt 0
0 Nt

]

),

which we write shorthand (for the appropriate definitions of
yt, qt, Ft, Gt andQt) as:

yt = Ftyt−1 +Gtqt, qt ∼ N (0, Qt). (21)

From this, we can compute the meanŷt and the varianceRt

of yt =
[

x̄t

x̃t

]

for any staget of the execution of the path:

ŷt = Ftŷt−1, ŷ0 = 0, (22)

Rt = FtRt−1F
T
t +GtQtG

T
t , R0 =

[

P0 0
0 0

]

. (23)

Note that the mean̂yt is zero for all stagest. Hence,
[

x̄t

x̃t

]

∼
N (0, Rt). As it follows from Equations (18) and (6) that

[

xt

ut

]

=

[

I 0
0 Lt

] [

x̄t

x̃t

]

+

[

x⋆
t

u⋆
t

]

, (24)

the a-priori distribution of the statext and the control input
ut at staget of the execution of the path is:

[

xt

ut

]

∼ N (

[

x⋆
t

u⋆
t

]

,ΛtRtΛ
T
t ), Λt =

[

I 0
0 Lt

]

. (25)

The covariance between
[

xi
ui

]

and
[

xj
uj

]

is given by:

cov(

[

xi

ui

]

,

[

xj

uj

]

) = ΛiRiF
T
i+1F

T
i+2 · · ·F

T
j ΛT

j , i < j. (26)

Using the a-priori distributions, the quality of pathΠ can
be computed with respect to the chosen planning objective.
We can then use any motion planner to generate a large set
of candidate paths, from which the best one is selected.

V. EXAMPLE APPLICATIONS AND RESULTS

In this section, we report simulation results for three
scenarios in which LQG-MP is used to select a path. In
each of the three scenarios, we use a different dynamics
model, observation model and planning objective, and pro-
vide comparative analysis with a brute-force approach. We
report results for an Intel P7350 2GHz with 4GB RAM.
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Fig. 2. (a) The environment of Scenario A, in which a car-likerobot
has to move between a start state and a goal region without colliding with
obstacles. Sensors can only measure they-coordinate of the position of the
robot. The best path according to LQG-MP among the 1000 generated by
RRT is shown. (b) The statex of a car-like robot.

For each scenario, we use the random rapidly-exploring
tree (RRT) algorithm [18] to generate a large set of candidate
paths. The RRT algorithm is well suited for our context as
it can handle any dynamics model (without process noise)
of the form of Equation (1) well. Even though it only plans
a single path between the start state and the goal region,
the path is generated randomly and will thus be different
each time the algorithm is run. Hence, to generate multiple
different paths, we run the RRT algorithm multiple times.

A. Car-Like Robot

In the first scenario, we apply LQG-MP to a non-holo-
nomic car-like robot with 2nd-order dynamics in a 2-D
environment with obstacles. The robot needs to move from
a start statexstart to a goal regionX goal without colliding
with the obstacles in the environment (see Fig. 2(a)).

1) Dynamics model:The statex = (x, y, θ, v) of the
robot is a 4-D vector consisting of its position(x, y), its
orientationθ, and its speedv (see Fig. 2(b)). Its control input
u = (a, φ) is a 2-D vector consisting of an accelerationa
and the steering wheel angleφ, corrupted by process noise

m = (ã, φ̃) ∼ N (0,
[ σ2

a 0

0 σ2

φ

]

). This gives the following non-
linear dynamics model:

f(x,u,m) =









x+ τv cos θ
y + τv sin θ

θ + τv tan(φ+ φ̃)/d
v + τ(a+ ã)









, (27)

where τ is the duration of a stage (time step), andd the
distance between the front and rear axle of the car [19].

2) Observation model:To show the effect of partial
sensing, the robot only receives feedback on they-coordinate
of its position. Hence, the measurement vectorz is univariate
and consists of a measurement of they-coordinate of the
robot corrupted by measurement noisen = ỹ ∼ N (0, σ2

y).
This gives the following linear observation model:

h(x,n) = y + ỹ. (28)

Even though the sensor feedback is very partial, informa-
tion about the other variables is still obtained through the
interplay with the dynamics model.



3) Planning objective:We aim to find the path for the
robot with a minimal probability of colliding with obstacles.
Instead of computing this probability exactly, we will use
an approximation that can be computed efficiently given the
probability distributions along the path. To this end, we look
at the number of standard deviations that one can deviate
from the path before the robot may collide with an obstacle.
Let this number be denotedct for staget along the path.
For a multivariate Gaussian distribution of dimensionn, the
probability that a sample is withinct standard deviations is
given byΓ(n/2, c2t/2), whereΓ is the regularized Gamma
function [32]. It provides a lower bound of the probability
of avoiding collisions at staget. We now define the quality
of a pathΠ as:

ℓ
∏

t=0

Γ(n/2, c2t/2), (29)

which is indicative of the probability that collisions willbe
avoided during execution. It is the planning objective to find
a path for which this measure is maximal.

The value ofct for staget is computed as follows. For
simplicity, we approximate the geometry of the car by a
bounding disc, such that its orientation has no influence on
whether or not the car is colliding. Also its speed does not
influence its collision status. Hence,ct is determined by the
distributionN (pt,Σt) of the position of the car (i.e.n = 2),
which is the marginal distribution of the first two variablesof
N (

[

x
⋆
t

u
⋆
t

]

,ΛtRtΛ
T
t ) as computed in Equation (25). LetUt be

a matrix such thatUtU
T
t = Σt. The set of positions within

one standard deviation is then an ellipse centered at the mean
pt obtained by transforming a unit disc byUt, andct is the
maximum factor by which the ellipse can be scaled such that
it does not intersect with obstacles (see Fig. 1(a)).

Computing ct can efficiently be implemented using a
collision-checker that is capable of performing distance cal-
culations and linear transformations on the geometry, for in-
stance SOLID [3]. Transforming the environment (including
the robot) byU−1

t (such that the uncertainty ellipse becomes
a unit disc, see Fig. 1(a)), and calculating the Euclidean
distance between the robot and the nearest obstacle in the
transformed environment gives the value ofct for staget.

4) Results:We randomly generated 1000 paths using the
RRT algorithm, which took 56.8 seconds. For each of the
paths, we computed the a-priori probability distributionsand
the measure of Equation (29), which took in total 2.67
seconds. The best path among the 1000 is shown in Fig.
2(a). It can be seen that the “lower-right” passage is chosen
to get to the goal. This can be explained as the uncertainty
will mainly be in the x-coordinate given that the sensors
only provide feedback on they-coordinate. The geometry
of the lower-right passage allows for more deviation in the
x-direction than the upper-left passage. Indeed, changing
the observation model such that only thex-coordinate is
measured results in a path that takes the upper-left passage.

To validate our results, we used a brute-force approach
to estimate for each path the “ground-truth” probability
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Fig. 3. (a) The environment of Scenario B, in which eight robots have to
move to their antipodal position in the environment withoutmutual colli-
sions. The numbers indicate the priority rank assigned to each robot. Five
beaconsb1, . . . , b5 send out a signal whose strength decays quadratically
with distance. (b) The statex of the differential-drive robot.

that it will be executed without collisions. We performed
10,000 simulations of executions of the path using the LQR-
controller and an extended Kalman Filter with artificially
generated process and measurement noise, and counted the
number of collision-free executions. This took in total 10440
seconds, which is almost 4000 times as much as the time
needed by LQG-MP to evaluate the paths. It turns out that
the path selected by LQG-MP has a 99% probability of
success. The average probability of success over the 1000
paths is 61%, and the worst path has a probability of success
of 13%. This is an indication of the typical and worst-case
success rate of paths planned by a planner unaware of the
uncertainties. Among the paths taking the upper-left passage,
the best one has a success rate of 88% (versus 99% for the
best path overall). This shows that the type of sensors used
during execution has a significant influence on which path
is optimal, even as the environment is symmetric.

In Fig. 1(b) the samples of 100 simulations are shown for
the best among the 1000 paths, along with the uncertainty
ellipses of the a-priori probability distributions as computed
by LQG-MP. As can be seen, the samples indeed follow the
a-priori distributions computed by LQG-MP. This shows that
any error introduced into LQG-MP by the linearization of the
dynamics model is insignificant for this example.

B. Multi-Robot Planning with Differential-Drive Robots

In the second experiment, we apply LQG-MP to multi-
robot motion planning with disc-shaped differential-drive
robots (e.g. Roomba vacuum cleaners). Eight robots need
to move simultaneously to their antipodal position in the
environment without mutual collisions (see Fig. 3(a)). We use
a prioritized approach to the multi-robot planning problem:
the robots are planned for one by one in order of a priority
assigned to them, and aim to avoid collisions with robots of
higher priority, which are treated as moving obstacles [2].
This means that for each robot we apply LQG-MP to a
dynamic environment in which not only the robot itself is
subject to uncertainty, but also the obstacles (i.e. the robots
of higher priority).

1) Dynamics model:The statex = (x, y, θ) of each
robot is a 3-D vector consisting of its position(x, y) and its



orientationθ (see Fig. 3(b)). Its control inputu = (vl, vr)
is a 2-D vector consisting of the speeds of the left and
right wheel, respectively, corrupted by process noisem =
(ṽl, ṽr) ∼ N (0, σ2

vI). This gives the following non-linear
dynamics model:

f(x,u,m) =





x+ 1
2
τ(vl + ṽl + vr + ṽr) cos θ

y + 1
2
τ(vl + ṽl + vr + ṽr) sin θ

θ + τ(vr + ṽr − vl − ṽl)/d



 , (30)

whereτ is the time step andd the distance between the left
and right wheel of the robot [19].

2) Observation model:The robots receive feedback on
their state from five beaconsb1, . . . , b5 scattered around the
environment that each send out an identifiable signal of unit
strength that decays quadratically with the distance to the
beacon. Each beaconbi has a known location(x̌i, y̌i, 1).
Hence, the measurement vectorz consists of five readings
of signal strengths, one from each beacon, corrupted by
measurement noisen = (b̃1, . . . , b̃5) ∼ N (0, σ2

b I). This
gives the following non-linear observation model:

h(x,n) =







1/((x− x̌1)
2 + (y − y̌1)

2 + 1) + b̃1
...

1/((x− x̌5)
2 + (y − y̌5)

2 + 1) + b̃5






. (31)

3) Planning objective:For each robot, we aim to mini-
mize the probability that it will collide with a robot of higher
priority along its path. In this experiment, we approximate
this probability more directly than we did for the first
scenario. Let us assume we are planning for robotj, and that
a path has already been planned for robots1, . . . , j−1. As the
robots are disc-shaped, only their position influences whether
or not they collide. LetN (pi

t,Σ
i
t) be the marginal probability

distribution of the position of roboti at staget along i’s
path as computed by LQG-MP. Then, the distribution of the
relative position of robotj and roboti (for i ∈ 1, . . . , j− 1)
at staget is N (pi

t −p
j
t ,Σ

i
t +Σj

t). The probabilityPt(i⊗ j)
that robotj collides with roboti at staget is then given by:
∫

‖p‖<2r

exp(− 1
2
(p−p

ij
t )

T (Σi
t+Σj

t)
−1(p−p

ij
t ))

2π det(Σi
t +Σj

t )
1/2

dp, (32)

wherep
ij
t = pi

t − p
j
t . This is the integral over the set of

relative positionsp for which the robots collide (that is
when ‖p‖ < 2r, where r is the radius of the robots) of
the probability density function of the distribution of relative
positions, and can be evaluated numerically. It follows that
the probability that robotj does not collide with any robot
at any stage along its path is:1

ℓ
∏

t=0

j−1
∏

i=1

(1 − Pt(i⊗ j)). (33)

It is the planning objective for robotj to maximize this
probability.

1Note that we assume here that the probabilities of avoiding collisions at
different stages along the path are independent. This is notthe case, but it
will for practical purposes be a reasonable assumption.

TABLE I

RESULTS FORSCENARIO B (1000PATHS PER ROBOT)

Computation time Success rate
robot RRT LQG-MP Best path Avg. path

1 22.3s 0.23s 100% 100%
2 28.2s 0.99s 100% 70.3%
3 29.5s 1.75s 100% 69.2%
4 30.5s 2.79s 100% 60.9%
5 57.0s 2.92s 99.2% 10.6%
6 49.8s 3.90s 99.8% 21.0%
7 39.2s 5.26s 99.9% 24.8%
8 77.8s 6.85s 99.7% 13.0%

total 334s 24.7s 98.6% 2.13%

As a secondary objective, we aim to minimize the un-
certainty around the robot’s path to leave maximal “space”
for the other robots. That is, in case of equal probabilitiesof
success, we aim to minimize the function

∑ℓ
t=0 tr(Σ

j
t ). This

is equivalent to maximizing the likelihood that the robot will
exactly follow the pathΠ during execution. The robot with
the highest priority does not need to avoid other robots, so it
will select its path purely based on the secondary objective.

4) Results: For each of the robots in turn, we planned
1000 paths using the RRT algorithm and selected the path
that is best according to the planning objective. Note that the
paths were planned such that, if there were no uncertainty,
they are collision-free with respect to the robots of higher
priority for which a path has already been selected. The result
is shown in Fig. 4, along with the uncertainty ellipses of the
a-priori probability distributions along the paths. It canbe
seen that the robots need to get close to the beacons to be able
to estimate their position accurately. Almost all of the robots
move through the region around the central beaconsb3 and
b4. At the same time, the robots aim to stay far away from
each other, in order to minimize the probability of collisions.
Robot 2, for instance, makes a wide detour around robot 1.
Robot 3 first avoids robot 1 and then robot 2, causing its
path to have a wide S-shape.

The quantitative results are given in Table I. The second
column shows the time needed to plan 1000 paths for each
robot, and the third column shows the time needed by
LQG-MP to compute the probabilities of success for all
paths. It shows that these probabilities can be computed
efficiently. Per path, it takes an order of magnitude less time
than planning the path itself. The third column shows the
probability of success of the best path among the 1000 paths.
This is the path that LQG-MP selects for the particular robot.
The fourth column shows the average probability of success
of the 1000 paths. This provides an indication of what an
uncertainty-unaware planner would typically achieve. The
probability that all eight robots successfully reach their
goal is the product of the robot’s individual probabilitiesof
success, and is shown in the bottom row. This is 98.6% for
LQG-MP, whereas an uncertainty-unaware planner would on
average only have a 2.13% probability of success.

C. 6-DOF Manipulator

In the third experiment, we apply LQG-MP to a holonomic
6-DOF articulated robot in a 3-D environment. The robot
needs to move from its initial statexstart to a configuration



Fig. 4. The paths resulting from consecutively applying LQG-MP to each of the robots in Scenario B (snapshots att = 0, 3, 6, 9, 12, 16, 20, 28). The
numbers in the top-left image indicate the priority rank of the robots. The arrows show the movement with respect to the previous image. The robots
enlarged by the uncertainty ellipses of their a-priori probability distributions are shown in green.
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Fig. 5. (a) The statex of the articulated robot of Scenario C. (b) A stereo
camera tracks the positionp of the end-effector of the robot.

in which the end-effector is inside a goal region on the other
side of the environment.

1) Dynamics model:The statex = (θ1, . . . , θ6) of the
robot is a 6-D vector consisting of the angles of rotation
at each of the joints (see Fig. 5(a)). The control input
u = (ω1, . . . , ω6) is a 6-D vector consisting of the angular
speeds at each of the joints, corrupted by process noisem =
(ω̃1, . . . , ω̃6) ∼ N (0, σ2

ωI). Ignoring higher order dynamics,
this results in the following linear dynamics model:

f(x,u,m) =







θ1 + τ(ω1 + ω̃1)
...

θ6 + τ(ω6 + ω̃6)






. (34)

2) Observation model:The robot receives feedback from
a stereo camera that tracks the position of the end-effector
of the robot. Letp = g(x) be the function relating the set
of joint angles of the statex to the positionp ∈ R

3 of the

end-effector. This point is projected on the imaging plane of
each camerai, which has a unit focal distance and a known
location(x̌i, y̌i, ži) (see Fig. 5(b)). Hence, the measurementz

is a 4-D vector consisting of the pixel coordinates of the end-
effector on the imaging planes of both cameras, corrupted
by measurement noisen ∼ N (0, σ2

nI). Ignoring occlusions,
this gives the following non-linear observation model:

h(x,n) =









(gx(x)− x̌1)/(gz(x)− ž1)
(gy(x) − y̌1)/(gz(x)− ž1)
(gx(x)− x̌2)/(gz(x)− ž2)
(gy(x) − y̌2)/(gz(x)− ž2)









+ n. (35)

3) Planning objective:We aim to maximize the likeli-
hood that the end-effector arrives at its goal position. Let
N (pℓ,Σℓ) be the distribution of the position of the end-
effector at the last stage of the path, then this likelihood is
maximal whentr(Σℓ) is minimal.Σℓ can be approximated
from the varianceXℓ of the statexℓ computed by LQG-MP
as Σℓ = TℓXℓT

T
ℓ , whereTℓ = ∂g

∂x (x
⋆
ℓ ), i.e. the Jacobian

matrix of functiong at the goal position.
4) Results: We planned 1000 paths for the robot using

the RRT algorithm, and computed for each the likelihood of
arriving at the goal. Constructing the paths took 192 seconds,
and evaluating them using LQG-MP took 1.16 seconds. The
path found best is shown in Fig. 6(a). Interestingly, the
robot chooses to move in the plane perpendicular to the
viewing direction of the camera while being fully stretched
out. In such configurations, the position of the end-effector
contains most information about the angles at the joints. This
apparently outweighs the benefit of more precise positioning
when the end-effector is closer to the camera. Indeed, an
experiment in which the camera is placed above the robot
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Fig. 6. The best path among the candidates for Scenario C whenthe
cameras (blue squares) are placed (a) next to the robot and (b) above the
robot. The jaggedness of the paths is due to the random natureof the RRT
algorithm.

results in a path with similar characteristics (see Fig. 6(b)).

VI. CONCLUSION AND FUTURE WORK

We have presented LQG-MP, a new approach to evaluate
paths in motion planning for robots subject to motion and
sensing uncertainty. LQG-MP precisely characterizes the a-
priori probability distributions of the state of the robot along
a given path, based on which the path can be optimized for
the particular task. We have shown that this considerably
increases the probability of a successful execution when
compared to uncertainty-unaware planners. The key of LQG-
MP is that it takes into account the a-priori knowledge of
both the sensors and controller in the planning phase.

In the experiments we performed, we have not used the
a-priori distributions of the control input that LQG-MP also
computes, nor the covariances between the states at different
stages along the path. We envision that these could be used
to compute the conditional distributions of the remainder of
the path after each application of a control input during the
execution. If the new distributions indicate that the quality
has dropped below a threshold, we might opt toreplan.
Current planning times, though, do not allow for real-time
application of LQG-MP. It is a major objective of future
work to bring planning times down, for instance by devising
a focused planner such that planning a large set of candidate
paths is no longer required. Other limitations, such as the fact
that the candidate paths may not constitute a representative
sample in high-dimensional state spaces, and the jaggedness
of the paths that RRT produces, might then also be resolved.

We plan to use LQG-MP in future work on optimizing
accuracy and safety in challenging robotic applications, such
as autonomous helicopter flight, needle steering for prostate
brachytherapy, and robotic-assisted surgery.
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