LQG-MP: Optimized Path Planning for Robots
with Motion Uncertainty and Imperfect State
Information

Jur van den Berg Pieter Abbeel Ken Goldberg

Abstract— This paper presents LQG-MP (linear-quadratic
Gaussian motion planning), a new approach to robot motion
planning that takes into account the sensors and the contrtgr
that will be used during execution of the robot’'s path. LQG-
MP is based on the linear-quadratic controller with Gaussia
models of uncertainty, and explicitly characterizes in adance
(i.e., before execution) the a-priori probability distributions
of the state of the robot along its path. These distributions
can be used to assess the quality of the path, for instance by 5
computing the probability of avoiding collisions. Many methods C ct
can be used to generate the needed ensemble of candidate math \_
from which the best path is selected; in this paper we report
results using the RRT-algorithm. We study the performance @) (b)
of LQG-MP with simulation experiments in three scenarios Fig. 1. (a) The maximum factor; by which the ellipse containing the
involving a kinodynamic car-like robot, multi-robot planning positions within one standard deviation can be scaled beitomtersects

with differential-drive robots, and a 6-DOF manipulator. obstacles gives an indication of the probability that sadins will be avoided
(top). c: is computed as the Euclidean distance to the nearest abstatie
I. INTRODUCTION environment transformed such that the ellipse becomestalisai (bottom).

. . . . (b) The ellipses show the a-priori distributions as comguty LQG-MP
Motion Unqertamty’ 1.€. the fact that the moﬂo_n of thezjong the best among the 1000 candidate paths for ScenafibeAsamples
robot unpredictably deviates from what a dynamics modeésult from performing 100 simulations.

predicts, and imperfect state information due to partial or

noisy measurements of the robot’s state, arise in many real- o . .

world robotic tasks ranging from guiding mobile robots over f'I;Ee key insight c:jf LQCT['NIIF 'Strt]h?t thl? s—pnondkr(\jow_ledgiﬁ

uneven terrain to performing robotic surgery with high-DO € sensors and controfler that will be used during the
E}i(ecutmn of the path can be used to optimize the path in the

manipulators. The amount of motion and sensing uncertain anning phase. We base our aporoach on the linear-guadrati
may depend on the particular motion that is executed and t gp . PP X q
controller (LQG-controller) with Gaussian models of the

state the robot is in, so different paths for the robot wikda . . . ) -

different uncertainties associated with them. Becausetysaf motion qnd sensing uncertainty, as it prowdpﬂmalcontrol
and accuracy are of critical importance for many roboti<£Or guiding a robot anng.a planned path [4]. We wil shgw
tasks, these uncertainties will have significant influenae ohat for a given stochastic model of the motion dynamics,

which path is best for the task at hand. The challenge we dig-nd. a StOChaS.tIC m_od_el of th_e Sensor me_asurements_obtalned
uring execution, it is possible to derive advance(i.e.

cuss in this paper is to precisely quantify these unceresint before execution) the a-priori probability distributionfsthe

in advance, such that the best path can be selected. : .
Many traditional path planners assume deterministic mos_tates f”md the control _mpgts .Of the robot along a given path
tion and full knowledge of the state [18], [13], and Ieave(See Fig. 1). These dlst_r!but|ons can be u;ed to cqmpute,
for example, the probability that collisions will be avoitje

issues of uncertainty to theontrol phase in which the he likelihood that th bot will arri t th |
path may be executed using a feedback controller [152)e ikelinood that the robot wi arrive at the goal, or any

Planning and control are related but distinct fields. Whil ther measure defining the quality of the path. We can then

recent work on path planning has addressed motion and/¢€ any motion planning method to generate a large set of

sensing uncertainty (see Section Il), most planning maho&art]ﬁ'da:]e pathsl, an(_:i Sel?t t?_e path that is best with respec
do not account for control during execution and most contréP € chosen p a.nnlng Objective. . ]
methods take the path as given. LQG-MP builds a bridge Our approach is generally applicable to both holonomic

between these disciplines and draws from results in both.and non-holonomic robots with state spaces of arbitrary
dimension and kinematics and dynamics constraints. We

This work was supported in part by NSF Award 0905344 and NItV assume that the stochastic dynamics model of the robot and
1R0O1EB-006435-01A1. h h . b K del . licit] d
The authors are with the University of California at BerkelBerkeley, (N€ Stochastic observation model are given explicitly, an

CA, USA. E-mail: {berg, pabbeel, goldbef@berkeley.edu. that their stochasticity can be modeled by Gaussian noise.



Our approach is designed for linear models, but can alsninimize expected cost [8], [11], [25], [27]. HoweVver, tkes
be applied to non-linear models if they are locally wellalgorithms implicitly assume to receive maximum-likeldtb
approximated by their linearizations. measurements from the sensors, which does not result in the
We implemented our approach using the RRT motiotrue probability distributions of the state of the robott bu
planning algorithm [18] for representative path planningather a measure of how well one will be able to infer the
problems, and validated our approach using simulation estate. Besides the sensors, LQG-MP also takes into account
periments. We will show that the quality of candidate paththe controller that will be used for executing the path, and
can differ starkly based on the uncertainty, even if tradiil computes the true a-priori probability distributions ofeth
planning criteria such as path length or clearance fromstate of the robot along its future path.
obstacles are similar, and that the type of sensors usedgduri
execution of the path has a significant influence on which
path is best. A path planner that is unaware of the sensors -8t * = R" be thestate spacef the robot, and let/ =
the controller and their uncertainties would not be able t& P& thecontrol input spacef the robot. We assume that
make this distinction, and may produce sub-optimal pathsiime is dlscretlzed. into stages of equal d_uratlon, and that
The remainder of this paper is organized as follows. W@PPIying a control inputi; € U/ at staget brings the robot
start by discussing related work in Section Il. We formallyTom statex; € A’ at stage to statex;; € X at stagel + 1
define the problem addressed in this paper in Section I1I. [@ccording to a given stochastic dynamics model:
Section_ .IV we .sholvv how LQG—MP computes the a-priori X = f(Xi—1, w_1, my), m, ~N(0,M;), (1)
probability distributions for a given path. In Section V, we

discuss application examples and simulation results of LQ@¥herem; is the process noise at stagerawn from a zero-
MP for several motion and sensing models and plannirfg€an Gaussian distribution with variankg that models the

IIl. PROBLEM DEFINITION

objectives. We conclude in Section VI. motion uncertainty. We assume that the functjors either
linear or locally well approximated by its linearization.
Il. RELATED WORK Let us be given a start state'*™* € X where the robot

A substantial body of work has addressed uncertainty {€gins and a goal regioti=>*! C X’ where the robot needs to
motion planning. The uncertainty typically originatesrfro 90 A pqthH for the robot is defined as a series of states and
three sources: (i) motion uncertainty, (i) sensing uraiaty ~ control inputs(xg, ug, ..., x7, uz), such thatxj = x>,
and partial observations, and (iii) uncertainty about th&; € A®°, andx; = f(xj_,u;_4,0) for 0 <t < ¢,
environment. Our approach focuses on the first two, but ¥heref is the number of stages of the path. That is, a path
to some extent also applicable to the latter, as we will shofPnnects the start state and the goal region, and is camisiste
in one of our experiments. with the dynamic_s model if there were no process nois_e.

Planners that specifically take into account motion uncer- DUring execution of the path, the robot will deviate
tainty include [14], [21], [29]. These planners plan pathatt from the path due _to motion uncertainty. To comper_lsate
avoid rough terrain, but do not consider partial obserigbil for unexpected motions, we assume that the path will be
and sensing uncertainty. In [10], the probability of catliss executed using a feedback <_:o_ntro_|ler that aims to I_<eep the
is minimized for the specific case of a manipulator wittfobot close to the path by minimizing the cost function
base pose uncertainty. The sensing uncertainty is taken int ¢
account in the planner of [28], which aims to optimize the E(Z((xt—XZ)TC(Xt—xt*)+(ut—ut*)TD(ut—ut*))), 2
information content along a path. Planners in [5], [7], [20] t=0
assume that landmark regions exist in the environment whenghich quadratically penalizes deviations from the path.
the accumulated motion uncertainty can be “reset”. and D are given positive-definite weight matrices.

Other approaches blend planning and control by defining We assume that noisy sensors provide us with partial
a global control policy over the entire environment. MDPsinformation about the state during execution of the path
for instance, can be used with motion uncertainty to optiaccording to a given stochastic observation model:
mize probability of success [1], [30]. However, they reguir
discretization of the state and control input spaces. ThéMD 2t = h(xi,ny), n; ~ N(0, Vi), (3)
concept can be extended to POMDPs to also include sensiwderez; is the measurement obtained at stadgkat relates
uncertainty [12], [16], [26], but these suffer from issuds oto statex; through functionh, andn; is the measurement
scalability [24]. The method of [17] also provides a globahoise drawn from a zero-mean Gaussian with variaNge
control policy in case of motion and sensing uncertainty. We assume that the functidnis either linear or locally well

Another class of planners considers the uncertainty aboapproximated by its linearization.
the environment and obstacles, rather than motion and sens\We define our problem in two parts; (i) given the stochastic
ing uncertainty [6], [9], [22], [23]. They typically aim tolpn  dynamics model, the stochastic observation model, and the
paths for which the probability of collisions is minimal.  cost function, compute the a-priori distributions of thatst

Existing planners that are most directly related to LQGand control input along a given path, and (ii) given a plagnin
MP take into account the available sensing capability tobjective based on the probability distributions, selda t
maximize the probability of arriving at the goal or tobest path among a large set of candidates.



IV. A-PRIORIPROBABILITY DISTRIBUTIONS propagate the applied control inpat, and a measurement

In this section we describe how to compute the a-prioffPdate to incorporate the obtained measuremgnt

probability distributions of the state and control inputtbé Process update:

robot along a given patfil. For this, we use the fact that X, = A%y + Biag (10)
we know in advance what controller will be used to execute P = AP AT £ VMV, (11)
the path: for linear dynamics and observation models with

Gaussian noise and a quadratic cost function, the optimalMeasurement update:

approach .for executin_g the path is _to use an LQR_feedback K, = PrHT(H,P; HY + W,N,WT)~! (12)
controller in parallel with a Kalman filter for state estinaet, . L _ L
which is called linear-quadratic Gaussian (LQG) contrdl [4 X =Xy + Koz — Hix;) (13)
A Kalman filter provides the optimal estimate of the state Py = (I - KH)P, . (14)

given previous state estimates, measurements and conglase are the standard Kalman filter equations for optimal

?nputs,.and an LQR controller provides the optimal Cor‘troéstimation given the dynamics and observation model of
Input g|v-en-the e_s'umate of the §tate._ ) Equations (7) and (8) [31]. Note that the Kalman-gain matri-
We will first discuss how to linearize the dynamics andcesKt can be computeih advance(i.e. before execution)

observation model, and then review the Kalman filter angy e, the initial variance?,, without knowledge of the actual
LQR controller. From these, we compute the a-priori probgsgntrq| inputsii; and measurements.

bility distributions of the states and the control inputstod

robot along the path. C. LOR for Optimal Control
_ i i _ The control inputsa, that are optimal to apply during
A. Linear(ized) Dynamics and Observation Model execution of the path are determined by the control policy

In principle, our approach applies to linear dynamics anthat minimizes the cost function of Equation (9). For the
observation modelg and h. However, since the robot is dynamics model of Equation (7), the cost function is minimal
controlled to stay close to the path during execution, we camhenu; = L:x;, whereL; is thefeedback matrixwhich is
approximate non-linear models with local linearizations.( computed in advance for all€ 0,...,¢ — 1 using:
first-order Taylor expansions) around the pathThis gives

the following linear(ized) stochastic models: Se=C - _— (15)
.. N Ly = =(Bi11St+1Bi41 + D)™ By Sep1 it (16)
Xe = f (G0 0, 0) + Ar(xe-1 =30 ) + @) Si = C+ A1 Sei1Avpr + AL Sepa B Le. (17)
Bi(ui—1 —ui_y) + Vimy, : - - -
. N These are the standard equations for a finite-horizon déscre
2 = h(x}, 0) + Hi(xe — x;) + Winy, ®)  time LQR controller [4].

As the true stat&; is unknown, the estimate; of the state
which is obtained from the Kalman filter is used to determine
the control inputa, at each stage during execution of the

o?ath' Hence, the control policy is:

WhereAt = %(X;—lau?—lao)’ By = %(x;—lau;—lao)’

Vi = aa_;{l(xz(—la_u?—lao)_’ H; = %(X?,O), Wi = %(X?,O)
are the Jacobian matrices ffandh along pathil.
It is convenient to express the control problem in terms

the deviationfrom the path. By defining ay = Lixy. (18)

X =% —X), Uy=w-—u;, 7z =z —h(x},0), (6) After application of the control input, the Kalman filter
produces the estimate of the next state from which in turn a

as the state deviation, control input deviation and measurgew control input is determined. This cycle repeats unél th
ment deviation, respectively, we can formulate the dynamiGyecution of the path is complete.

and observation model of Equations (4) and (5) as S
D. A-priori Distributions of State and Control Input

Xp = Axe1 + Bity oy + Vimy,  my ~ N(0,My),  (7) Given the LQR control policy and the Kalman filter,
z; = HiXy + Wing, n, ~N(0,N;), (8) we can analyze in advance how the true stateand the
estimated state&; will evolve during execution of the path

and the cost function of Equation (2) as as functions of each other. The evolution of the true state

4 x; is dependent on the estimated state through the LQR
E(Z(ifCitJrﬁ;fDﬁt)). (9) control policy (Equation (18)) and the evolution of the
t=0 estimated stat&, is dependent on the true state through the

This is the standard formulation of an LQG-control problemMeasurement obtained in the Kalman filter (Equation (13)).
This gives the following equations:

B. Kalman Filter for Optimal State Estimation

The Kalman filter keeps track of the estimate and
varianceP; of the true statex; during the execution of the
path. It continually performs two steps; a process update to

Xt = AXpo1 + B Ly1%X—1 + Vimy, (19)
Xy = AXy—1 + BeLy1%—1 + Ky (20 — (20)
Hy(Aix—1 + ByLi—1%¢—1))



=AXi 1+ Bl 1% 1 + Ky (Htit + Winy — L
Hy (A% 1 + BiLy 1% 1)) ygoal
=A%+ BiLi1% 1 + Ky ;’
Hy(A4Xe—1 + BeLi—1X¢—1 + Vimy) + Wing — - d A\
Hi(AX¢ 1+ BiLi 1% 1)) - \\¢
= AtXp—1 + BeLe X1 + KeHi AgXe 1 + /& R
-KthV;Emt + KiWin; — Kt-l—ltf-éltxt—la | | Ty_zc o (if\x}\/\)é///’
Equation (19) follows from substituting Equation (18) into A
Equation (7). The first equality of (20) follows from substi- @ (b)

tuting Equation (18) into Equation (10) and Equation (10Fig. 2. (a) The environment of Scenario A, in which a car-likabot

; ; . ; i as to move between a start state and a goal region witholidiegl with
into Equation (13)’ the second and third equahtles follo obstacles. Sensors can only measuregtiteordinate of the position of the

after substituting Equations (8) and (19), respectiveiyd @ ropot. The best path according to LQG-MP among the 1000 géetkiby
the fourth equality follows after expanding the terms. RRT is shown. (b) The state of a car-like robot.

Combining Equations (19) and (20) gives the matrix form;
For each scenario, we use the random rapidly-exploring

Ft} = [ A BiLia } [’ftl} + tree (RRT) algorithm [18] to generate a large set of candidat
Xt KiH Ay Ayt Bilioy = KeHedi | (%1 paths. The RRT algorithm is well suited for our context as
{ Vi 0 } {mt] [mt} ~ N(0 {Mt 0}) it can handle any dynamics model (without process noise)
K HV, KWi| |ng | |[ny L0 N of the form of Equation (1) well. Even though it only plans

which we write shorthand (for the appropriate definitions oft Single path between the start state and the goal region,

yi, ai, Fy, Gy and Q) as: the path is generated randomly and will thus be different
each time the algorithm is run. Hence, to generate multiple
yi = Fiyi—1 + Geqy, a: ~ N(0,Qy). (21)  (different paths, we run the RRT algorithm multiple times.

From this, we can compute the megnand the varianc&; A car-Like Robot

of yr = [xf] for any stage’ of the execution of the path: In the first scenario, we apply LQG-MP to a non-holo-

v = Fiyi-1, Yo =0, (22) nomic car-like robot with 2nd-order dynamics in a 2-D
- - Py, 0 environment with obstacles. The robot needs to move from
Ry =FRi 1 Fy +GQiGy, Ro= {0 0] . (23)  a start statessta"t to a goal regiont’°! without colliding
with the obstacles in the environment (see Fig. 2(a)).

Note that the meaﬂt is zero for all §tages Hence,[jf;i] ~ 1) Dynamics model:The statex = (z,y,60,v) of the

N(0, Ry). As it follows from Equations (18) and (6) that robot is a 4-D vector consisting of its positida, y), its
X I 0] [x x5 orientationd, and its speed (see Fig. 2(b)). Its control input
[UJ = {O LJ [it] {u;] 5 (24) u = (a,¢) is a 2-D vector consisting of an acceleration

and the steering wheel angfe corrupted by process noise

m = (&, ) ~ N (0, ["0g 0_0;}). This gives the following non-

linear dynamics model:

the a-priori distribution of the state, and the control input
u; at staget of the execution of the path is:

¥ I 0
[ii] ~ N( [ii} 7AthAtT), Ay = [O LJ : (25) x + Tvcosf
K y+ Tvsinf
The covariance betweeli: | and [ | is given by: flx,u,m) = 0+ rvtan(o + ¢)/d| (27)

x| [x; A S AT o6 v+7(a+a)
‘ =NREL FL - FA A, i<y . i _
Cov({ i:|’ [uj}) 172 i Ay 1< (26) where 7 is the duration of a stage (time step), atidhe
Using the a-priori distributions, the quality of pathcan distance between the front and rear axle of the car [19].

be computed with respect to the chosen planning objective.2) Observation model:To show the effect of partial

We can then use any motion planner to generate a large S8Sing, the robot only receives feedback ontoeordinate
of candidate paths, from which the best one is selected. of its position. Hence, the measurement veet@ univariate
and consists of a measurement of theoordinate of the

V. EXAMPLE APPLICATIONS AND RESULTS robot corrupted by measurement noise= § ~ N(0,02).
In this section, we report simulation results for threelhis gives the following linear observation model:
scenarios in which LQG-MP is used to select a path. In o -
each of the three scenarios, we use a different dynamics hx,n) =y +9. (28)
model, observation model and planning objective, and prdeven though the sensor feedback is very partial, informa-
vide comparative analysis with a brute-force approach. Wion about the other variables is still obtained through the
report results for an Intel P7350 2GHz with 4GB RAM. interplay with the dynamics model.



3) Planning objective:We aim to find the path for the byo
robot with a minimal probability of colliding with obstade ! !
Instead of computing this probability exactly, we will use
an approximation that can be computed efficiently given the| ;| ~ s
probability distributions along the path. To this end, weko

at the number of standard deviations that one can deviatg bs d
from the path before the robot may collide with an obstacle.| | by c / 2N

Let this number be denoted for staget along the path. 4 | @y 2 ) \.-
For a multivariate Gaussian distribution of dimensiarthe bs® (1 g 5( \\ on
probability that a sample is within, standard deviations is ‘ %

given by T'(n/2,c?/2), whereT is the regularized Gamma @ ”’z))

function [32]. It provides a lower bound of the prObabllltyFig 3. (a) The environment of Scenario B, in which eight rtsbioave to

of av0|d|ng collisions at stage We now define the qual'ty move to their antipodal position in the environment withootual colli-

of a pathH as. sions. The numbers indicate the priority rank assigned th eabot. Five
beaconsy, ..., bs send out a signal whose strength decays quadratically
L with distance. (b) The state of the differential-drive robot.
2
[1T®/2,¢/2), (29) o . N
t=0 that it will be executed without collisions. We performed

10,000 simulations of executions of the path using the LQR-
controller and an extended Kalman Filter with artificially
generated process and measurement noise, and counted the
The value ofc; for staget is computed as follows. For number of collision-free executions. This took in total 204

simplicity, we approximate the geometry of the car by seconds, which is almost 4000 times as much as the time
bounding disc, such that its orientation has no influence dﬁeedEd by LQG-MP to evaluate the paths. It turns out that

whether or not the car is colliding. Also its speed does n&Pe path selected by LQG'MP_ has a 99% probability of
influence its collision status. Hence, is determined by the SUCcess. The average probability of success over the 1000

distribution A (p,, ;) of the position of the car (i.ex = 2), paths is 61%, .and the yvor§t path has a probability of success
which is the marginal distribution of the first two variabls ©f 13%. This is an indication of the typical and worst-case
N([xﬂ A R,AT) as computed in Equation (25). LE} be success rate of paths planned by a planner unaware of the

% N .. uncertainties. Among the paths taking the upper-left pgessa
T _
a matrix such thal/,Uy" = ;. The set of positions within the best one has a success rate of 88% (versus 99% for the

one sta_ndard deviation is_then an _eIIi_pse centered at the mgg, o path overall). This shows that the type of sensors used
b optalned by transfo_rmmg a unit disc 8%, andc, is the during execution has a significant influence on which path
maximum factor by which the ellipse can be scaled such th?st optimal, even as the environment is symmetric
it does noF Intersect W'th Qbstacles (see Fig. 1(a)). . In Fig. 1(b) the samples of 100 simulations are shown for
Cp_mputmg ¢t can §ﬁ|0|ently be |mpIem§:nteq USINg the pest among the 1000 paths, along with the uncertainty
collision-checker that is capable of performing distanak ¢ ellipses of the a-priori probability distributions as canted
culations and linear transformations on the geometry,rfor i by LQG-MP. As can be seen, the samples indeed follow the
stance SOUDE)’]' Transforming the environment (including, "y io i distributions computed by LQG-MP. This shows that
the robot) byU;”~ (such that the uncertainty ellipse becomes,,y e rror introduced into LQG-MP by the linearization of the

a unit disc, see Fig. 1(a)), and calculating the Euclideaiynamics model is insignificant for this example.
distance between the robot and the nearest obstacle in the

transformed environment gives the valuecpffor staget. B. Multi-Robot Planning with Differential-Drive Robots

4) Results:We randomly generated 1000 paths using the In the second experiment, we apply LQG-MP to multi-
RRT algorithm, which took 56.8 seconds. For each of theobot motion planning with disc-shaped differential-ériv
paths, we computed the a-priori probability distributiamsl  robots (e.g. Roomba vacuum cleaners). Eight robots need
the measure of Equation (29), which took in total 2.6%0 move simultaneously to their antipodal position in the
seconds. The best path among the 1000 is shown in Fignvironment without mutual collisions (see Fig. 3(a)). V¥e u
2(a). It can be seen that the “lower-right” passage is chosenprioritized approach to the multi-robot planning problem
to get to the goal. This can be explained as the uncertaintiye robots are planned for one by one in order of a priority
will mainly be in the z-coordinate given that the sensorsassigned to them, and aim to avoid collisions with robots of
only provide feedback on thg-coordinate. The geometry higher priority, which are treated as moving obstacles [2].
of the lower-right passage allows for more deviation in th@his means that for each robot we apply LQG-MP to a
z-direction than the upper-left passage. Indeed, changinlynamic environment in which not only the robot itself is
the observation model such that only thecoordinate is subject to uncertainty, but also the obstacles (i.e. thetsob
measured results in a path that takes the upper-left passagihigher priority).

To validate our results, we used a brute-force approach1) Dynamics model:The statex = (x,y,6) of each
to estimate for each path the “ground-truth” probabilityrobot is a 3-D vector consisting of its positién, y) and its

which is indicative of the probability that collisions witle
avoided during execution. It is the planning objective talfin
a path for which this measure is maximal.



TABLE |

orientationd (see Fig. 3(b)). Its control input = (v;, v,.) RESULTS FORSCENARIOB (1000PATHS PER ROBO)

is a 2-D vector consisting of the speeds of the left and
; ; ; Computation time Success rate
nght~ wheel, respgctlvelyr co_rrupted by process naise= robot RRT LOG-MP Bestpath Avg. path
(01,0r) ~ N(0,0:1). This gives the following non-linear

_ 1 22.3s 0.23s 100% 100%
dynamics model: 2 28.2s 0.99s 100% 70.3%
3 29.5s 1.75s 100% 69.2%

z+ I7(v 4+ + v + ) cos 4 3055  2.79s 100% 60.9%

x.u.m) — I (01 4 3+ v, - 5.) sin @ 30 5 57.0s 2.92s 99.2% 10.6%
Feeum) =y +57(u + 9 +or+0r) » (30) 6 4985  3.90s 99.8% 21.0%
0+ 1(vr + 0 — v —B1)/d 7 392s 526 99.9% 24.8%

. . . 8 77.8s 6.85s 99.7% 13.0%

wherer is the time step and the distance between the left otal 334s 5475 98.6% > 13%

and right wheel of the robot [19].

2) Observation model:The robots receive feedback on ag g secondary objective, we aim to minimize the un-
their state from five beacoris, . . ., b; scattered around the certainty around the robot's path to leave maximal “space”
environment that each send out an identifiable signal of unigr the other robots. That is, in case of e%ual probabiliies
strength that decays quadratically with the distance to thg,ccess. we aim to minimize the functidn,_, tr(x7). This
beacon. Each beacd has a known location(;,9i,1). s equivalent to maximizing the likelihood that the robotiwi
Hence, the measurement vectorconsists of five readings exactly follow the pathil during execution. The robot with
of signal strengths, one from each beacon, corrupted Re highest priority does not need to avoid other robotst so i

measurement noisa = (by,....bs) ~ N(0,031). This  wj|l select its path purely based on the secondary objective
gives the following non-linear observation model: 4) Results: For each of the robots in turn, we planned
1((z—71)%+ (y —91)2 + 1) + by 1000 paths using the RRT algorithm and selected the path

that is best according to the planning objective. Note that t
h(x,n) = : e (31) paths were planned such that, if there were no uncertainty,
1/((x—25)% 4+ (y— 95)*> + 1) + bs they are collision-free with respect to the robots of higher
priority for which a path has already been selected. Thdtresu
is shown in Fig. 4, along with the uncertainty ellipses of the
é\-priori probability distributions along the paths. It cha
seen that the robots need to get close to the beacons to be able
to estimate their position accurately. Almost all of theatsh
move through the region around the central beadgrend
by. At the same time, the robots aim to stay far away from
each other, in order to minimize the probability of collisto
Robot 2, for instance, makes a wide detour around robot 1.
gobot 3 first avoids robot 1 and then robot 2, causing its
path to have a wide S-shape.

The quantitative results are given in Table I. The second
column shows the time needed to plan 1000 paths for each
robot, and the third column shows the time needed by

exp(—3(p—p)T (Zi+%7) " (p—pY)) LQG-MP to compute the probabilities of success for all

/ o d i JN1/2 dp, (32) paths. It shows that these probabilities can be computed

Ipll<2r mdet(X] + X7)/ - : _ _

B _ efficiently. Per path, it takes an order of magnitude lesgtim
wherep,’ = p! — p;. This is the integral over the set of than planning the path itself. The third column shows the
relative positionsp for which the robots collide (that is probability of success of the best path among the 1000 paths.
when ||p|| < 2r, wherer is the radius of the robots) of This is the path that LQG-MP selects for the particular robot
the probability density function of the distribution of aive  The fourth column shows the average probability of success
positions, and can be evaluated numerically. It followd thaf the 1000 paths. This provides an indication of what an
the probability that roboj does not collide with any robot uncertainty-unaware planner would typically achieve. The

3) Planning objective:For each robot, we aim to mini-
mize the probability that it will collide with a robot of higin
priority along its path. In this experiment, we approximat
this probability more directly than we did for the first
scenario. Let us assume we are planning for rghand that
a path has already been planned for roliots. , j—1. As the
robots are disc-shaped, only their position influences hdret
or not they collide. LetV'(p, X¢) be the marginal probability
distribution of the position of robot at staget alongi’s
path as computed by LQG-MP. Then, the distribution of th
relative position of robotj and roboti (fori c 1,...,5—1)
at staget is N (p — p7, Xt + X7). The probabilityP; (i @ j)
that robot; collides with robot; at staget is then given by:

at any stage along its paths: probability that all eight robots successfully reach their
¢ j—1 goal is the product of the robot’s individual probabilitiek
H H(l — P ® j)). (33) success, and is shown in the bottom row. This is 98.6% for
001 LQG-MP, whereas an uncertainty-unaware planner would on

. .
It is the planning objective for robof to maximize this average only have a 2.13% probability of success.

probability. C. 6-DOF Manipulator

In the third experiment, we apply LQG-MP to a holonomic
INote that we assume here that the probabilities of avoidalisions at 6-DOE icul pd bot i %pg Q . Th b
different stages along the path are independent. This isheotase, but it - articulate ro. Ot_ 'n_ a o- envwonment.n € .I’O ot
will for practical purposes be a reasonable assumption. needs to move from its initial state®**'* to a configuration



Fig. 4. The paths resulting from consecutively applying L-QIB to each of the robots in Scenario B (snapshots t0, 3,6, 9, 12, 16, 20, 28). The
numbers in the top-left image indicate the priority rank loé trobots. The arrows show the movement with respect to thdqus image. The robots
enlarged by the uncertainty ellipses of their a-priori @ioibty distributions are shown in green.

end-effector. This point is projected on the imaging plahe o
each camera, which has a unit focal distance and a known
location(&;, 7, 2;) (see Fig. 5(b)). Hence, the measurement

is a 4-D vector consisting of the pixel coordinates of the-end
effector on the imaging planes of both cameras, corrupted
by measurement noise ~ A(0,021). Ignoring occlusions,
this gives the following non-linear observation model:

(gw(x) - j;l)/(gz(x) - 21)

(:61,“;‘}21) (xz o, Z2) <.n) = (9y(x) — 91)/(92(x) — 21) .
] b) Y h(x,n) (g (X) — E2)/(g-(x) — %) +n. (35)

Fig. 5. (a) The state of the articulated robot of Scenario C. (b) A stereo (gy (X) B yz)/(gz (X) B 22)
camera tracks the positiop of the end-effector of the robot. 3) Planning objective:We aim to maximize the likeli-
hood that the end-effector arrives at its goal position. Let

in which the end-effector is inside a goal region on the othel (p¢, ¥,) be the distribution of the position of the end-

side of the environment. effector at the last stage of the path, then this likeliha®d i
1) Dynamics model:The statex = (6;,...,6s) of the ~maximal whentr(¥,) is minimal. 33, can be approximated

robot is a 6-D vector consisting of the angles of rotatiofirom the varianceX, of the statex, computed by LQG-MP

at each of the joints (see Fig. 5(a)). The control inpuds X, = TyX,T}, whereT, = 9%(x}), i.e. the Jacobian

u = (wi,...,ws) is a 6-D vector consisting of the angularmatrix of functiong at the goal position.

speeds at each of the joints, corrupted by process maise ~ 4) Results:We planned 1000 paths for the robot using

(@1,...,@6) ~ N(0,021). Ignoring higher order dynamics, the RRT algorithm, and computed for each the likelihood of

this results in the following linear dynamics model: arriving at the goal. Constructing the paths took 192 sespnd
and evaluating them using LQG-MP took 1.16 seconds. The

01+ 7(w1 +@1) path found best is shown in Fig. 6(a). Interestingly, the
f(x,u,m) = : (34) robot chooses to move in the plane perpendicular to the

06 + (w6 + ) viewing direction of the camera while being fully stretched

out. In such configurations, the position of the end-effecto

2) Observation modelThe robot receives feedback from contains most information about the angles at the jointgs Th

a stereo camera that tracks the position of the end-effectapparently outweighs the benefit of more precise positgnin
of the robot. Letp = g(x) be the function relating the set when the end-effector is closer to the camera. Indeed, an
of joint angles of the state to the positionp € R3 of the experiment in which the camera is placed above the robot



(4]
(5]

(6]
(7]
(8]

El

(b)

Fig. 6. The best path among the candidates for Scenario C wien
cameras (blue squares) are placed (a) next to the robot arab@ve the

robot. The jaggedness of the paths is due to the random naftihe RRT

algorithm.

[10]

[11]

results in a path with similar characteristics (see Fig)%6(b 12

VI. CONCLUSION AND FUTURE WORK

We have presented LQG-MP, a new approach to evaludid!
paths in motion planning for robots subject to motion and
sensing uncertainty. LQG-MP precisely characterizes the B4l
priori probability distributions of the state of the robdomag
a given path, based on which the path can be optimized fars)
the particular task. We have shown that this considerably
increases the probability of a successful execution Whg{b]
compared to uncertainty-unaware planners. The key of LQG-
MP is that it takes into account the a-priori knowledge of
both the sensors and controller in the planning phase.

In the experiments we performed, we have not used the
a-priori distributions of the control input that LQG-MP als [18]
computes, nor the covariances between the states at differg g
stages along the path. We envision that these could be ug
to compute the conditional distributions of the remainder o
the path after each application of a control input during thgll
execution. If the new distributions indicate that the gwali [22]
has dropped below a threshold, we might optréplan
Current planning times, though, do not allow for real-timq23]
application of LQG-MP. It is a major objective of future
work to bring planning times down, for instance by devisini 4
a focused planner such that planning a large set of candid %e]
paths is no longer required. Other limitations, such asdhe f [25]
that the candidate paths may not constitute a represemtativ
sample in high-dimensional state spaces, and the jaggzedn@g]
of the paths that RRT produces, might then also be resolved.

We plan to use LQG-MP in future work on optimizing
accuracy and safety in challenging robotic applicationshs
as autonomous helicopter flight, needle steering for pt@sta

[27]

brachytherapy, and robotic-assisted surgery. (28]
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