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Abstract—We report a new approach to the design of direct-
drive linear permanent magnet motors for use in general-purpose
robotic actuation, with particular attention to applications in
bird-scale flapping-wing robots. We show a simple, quantitative
analytical modeling framework for this class of actuators, and
demonstrate inherent scaling properties that allow the production
of motors with force densities and efficiencies comparable to those
of biological muscles. We will show how this model leads to a
set of practical design specifications for muscle-like motors, and
examine the resulting trade-off between thermal management
and motor fabrication complexity.

I. INTRODUCTION

Actuator performance is one of the main technologi-
cal shortcomings preventing the development of successful
general-purpose robots. While mainstream electric, pneumatic,
and hydraulic actuators are capable of power densities, force
densities, and efficiencies far in excess of those of natural
actuators (i.e. muscles), they rarely can achieve all of these
properties simultaneously or during transients [1], [2]. Fur-
thermore, traditional actuators work best at size and force
scales well in excess of those associated with the human
body, rendering most industrial robots unsafe and too large for
human interaction [3]. As a result, bioinspired robots lag well
behind in performance compared to the organisms inspiring
them, and haptic interfaces tend to be weak compared with
their human operators.

Biological muscle has several properties that make it par-
ticularly difficult to mimic with conventional actuators [4].
Muscle has a variable stiffness, allowing it to passively stabi-
lize a joint, and is generally associated with compliant tendons
capable of efficient mechanical energy storage. It has very low
inertia, yet it can generate a very high force, sustained across
a displacement of up to 40% of the muscle’s length. Muscle
does this while remaining relatively efficient and powerful,
with efficiency during cyclic motion estimated between 10%
and 40% [5] and power densities near 100 W/kg.

A common approach to the problem of making robotic
actuators behave more like biological muscle has been the de-
velopment of artificial muscle materials, capable of undergoing
shape change in response to electrical, thermal, or chemical
stimulus [6]. While some of these materials have exciting long-
term prospects, at present they are only suitable for niche
applications, and fundamental progress in materials science
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Fig. 1. The tubular motor configuration considered in this work is shown
here, denoted the “HG” configuration. Nearest the center (indicated by a dot-
dashed line) is a quasi-Halbach magnet array, in which blocks with arrows are
magnets, with the arrows indicating the direction of magnetization. The axial
magnets in the array serve to provide closed flux paths, enhancing the field
produced. Outside the magnets lies a coil, here shown arranged in a typical
three-phase winding (A, B, and C denote phases, with negative current in
the primed windings). This magnet and coil structure is repeated periodically
along the z-axis to form the motor. The radial dimensions in the model (rii,
rio, rci, and rco) are as labeled.

will be required to improve their performance to compete with
natural muscle or even with conventional actuators.

Since artificial muscles are not yet able to improve upon
conventional actuators, how can conventional actuators be
improved to better compete with muscle? For the purposes
of this work, we will focus on the potential development of
electromagnetic (EM) actuators. In particular, the simplicity
of direct-drive EM actuators is appealing as a canvas for im-
provements, and we will specifically discuss linear permanent-
magnet (PM) direct drive actuators. Permanent magnet motors
have favorable scaling properties [7], as do direct-drive linear
actuators. While direct-drive motors are generally known for
having low force densities and low efficiencies [2], their
performance envelope is determined by their electromagnetic
and thermal design, which can be modeled from basic physics,
rather than by the tribological properties of gears, which are
both difficult to model and difficult to improve.

At present, general models for the maximum theoretical
performance of linear PM motors in terms of fundamental
physics are unavailable [7], [8]; our objective will therefore
be to develop such a general model, and to use it to find
ways to improve the force capability and efficiency of these



motors to a level competitive with biological muscle. Using
our model, we will establish that direct-drive linear PM motors
can be constructed with power densities, force densities, and
efficiencies all simultaneously exceeding those of biological
muscle. These improved properties can be achieved through
a combination of active cooling, parts miniaturization, and
careful electromagnetic design. We will show that the primary
physical mechanism allowing this improved performance is
the enhanced current density allowed by miniaturization and
cooling, well in excess of that allowed by conventional motor
design.

We will apply this model to determine the feasibility of
direct-drive linear PM motors in a specific new application, as
the wing actuators in bird-scale flapping-wing flying robots.
Specifically, we will show the potential of such motors to
sinusoidally drive a load of 1000 N/kg at a peak velocity of
1 m/s while retaining efficiencies above 40%, as compared
to the efficiency of just 10% to 20% for bird muscles under
similar loading conditions [9], [10] .

II. FUNDAMENTAL MOTOR PHYSICS

In essence, we can consider a PM motor as an active
material actuator in which a body force is produced on a con-
ductor (the “active material”) proportional to the surrounding
magnetic flux density, B, and to the applied current density,
J . For this basic model, we will assume that the magnetic
field is produced “for free”, consider it as a material property,
and neglect the magnets necessary to produce it in a real
motor. We will likewise ignore any practical restrictions on
the provision of current, and assume that the conductor can
be excited by a spatially uniform current density. Thus, the 0-D
motor model consists of a bare conductor carrying a uniform
current density immersed in a uniform magnetic field that is
exactly perpendicular to the current. While this model can
describe rotary and linear motors equally well, we will restrict
our analysis to that of linear motors.

The force production and power consumption of a PM
actuator, its basic input-output relations, are given by the
Lorentz force law and by Ohm’s law,

F = BJV and (1)

P =
J2V

σ
, (2)

where F is the force produced by the motor, V is the volume
of active material, P is the electrical power converted by
the motor into heat, and σ is the conductivity of the active
material. Here, we do not consider superconducting motors,
which have zero Ohmic losses but instead have other power
loss mechanisms and require energy-hungry cryogenics. Both
of these quantities are directly proportional to the amount
of active material—depending on the application, it may be
preferable to describe this amount in terms of volume or
in terms of mass. For this analysis, we will consider mass-
sensitive applications; an alternative formulation in terms of
volume can be straightforwardly derived.

We would like to describe motor performance in terms of
parameters that do not couple motor size and drive current.
One such parameter is the ratio of the force generated to the
square root of the power consumed ε, commonly known as
the motor constant and listed on motor datasheets as Km. The
force generated per unit mass F ′, which we will call the force
density, is another such parameter:

F ′ =
BJ

ρc
, (3)

ε ≡ F√
P

= B

√
σM

ρc
. (4)

Here, ρc is the mass density of the active material and M is
the total mass of active material. Note that each performance
parameter is independently related to a single motor design
parameter, in addition to the material properties (B, σ, and
ρc): the force density achievable depends on the maximum
allowable current density, while the motor constant depends on
the size of the motor. The maximum current density, in turn, is
restricted either by the maximum amount of heat that can be
removed from and tolerated by the motor or by non-thermal
damage mechanisms (demagnetization and electromigration).

We can, in turn, relate these performance parameters to
the energy efficiency of a linear PM motor operating on a
given work loop. Consider perhaps the simplest situation, in
which an actuator of total stroke `s sinusoidally drives an ideal
dashpot at a frequency ω, with a resulting peak force amplitude
of F0. In this case, the instantaneous mechanical power Pm

and electrical power Pe are given by

Pm =
ω`sF0

2
cos2 ωt, (5a)

Pe = Pm +
F 2
0

ε2
cos2 ωt. (5b)

We can then integrate over one period in time to find the
mechanical and electrical work per cycle Wm and We, re-
spectively, calculate the efficiency η = Wm/We, and define a
dimensionless efficiency parameter η̂

η =
1

1 + η̂
, (6a)

η̂ ≡ 2F0

ω`sε2
=

ρc
σB2︸ ︷︷ ︸

materials

× 2

ω`s︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

(6b)

Here, we have broken out the components of ε to explain the
scaling of η̂, and F ′0 denotes the peak force amplitude F0

divided by the actuator mass M . Three factors are seen to
contribute to the efficiency parameter: the first is related to
the material properties of the actuator, the second is equal to
the inverse of the peak actuator velocity, and the third is equal
to the peak force density required by the work loop.

At first glance, the expression for η̂ in Equation 6b is
disappointing, as it links an increase in force density directly
to a decrease in efficiency. However, the efficiency remains
high for even relatively large values of force density if copper



and the best available magnets (1.47 T remanence NdFeB)
are used. For reference, it is estimated [10] that bird flight is
less than 20% efficient. Using work loop parameters similar
to those seen by pigeon flight muscles [9] (2/ωL = 1 m/s,
F ′0 = 1000 N/kg) we find η̂ = 7.1 × 10−2, or that the
efficiency is 93%. Thus, the actuator properties of copper wire
in a magnetic field are sufficient to achieve very high efficiency
even when operating under the relatively slow, heavily-loaded
conditions of flapping-wing flight. While we anticipate that
the capability of a real motor will be greatly reduced due to
the need for magnets and spatially-varying fields, there is a
considerable performance margin available.

III. ACTUATOR ANALYTICAL MODELING AND
OPTIMIZATION

A. Tubular Motor Electromagnetic Model

In order to model a real motor, we need to account for the
magnetic field that can be produced by a given set of magnets,
rather than assume a field provided by the environment. For-
tunately for this process, modern rare-earth magnet materials
behave linearly within their performance envelope [11], and
so their fields can be computed from Poisson’s equation. For
maximum flexibility and ease of computation, we will consider
linear motors with periodic magnet and coil structures, referred
to as permanent magnet synchronous motors in the literature;
the behavior of aperiodic motors such as voice coils can be
derived from that of periodic motors by accounting for end
effects [12], [13].

The magnets and coils in a linear motor can be arranged
in many different ways [14], each amenable to a different
set of analytical techniques. Here, we will consider a tubular
motor configuration due to its efficient copper usage and
intrinsic symmetry. Computation of the magnetic fields and
resulting performance of tubular motors has been performed
in many different ways [15]–[17], but the solutions reported in
the literature tend to have numerical stability problems, and
are presented in a manner that can make direct comparison
between different configurations and different scales difficult.

In this work, we chose to directly solve Poisson’s equa-
tion in cylindrical coordinates for several different motor
topologies. Here we will present the analysis for a motor
comprising a quasi-Halbach magnet array arranged to project
a magnetic field radially outwards, surrounded by a layer
of coils, as shown in Figure 1 and referred to henceforth
as the “HG” configuration (Halbach-Gap). A Halbach array
[11], [18] is chosen to produce closed magnetic flux paths,
and thus strong fields, without using iron. An ideal Halbach
array has a continuously varying direction of magnetization,
which is very difficult to fabricate, but a segmented array
(quasi-Halbach) reaches 90% of the ideal performance with
only four uniform magnets per period [18]. While the HG
configuration is relatively ineffective, we consider it here due
to the relative brevity of its field model, and easy extension to
a more-efficient structure with Halbach arrays on both sides of
the air gap. Results for other magnet configurations, including

configurations with iron components and completely closed
flux paths, will be presented in a future publication.

The magnetic field can be determined by first breaking down
the magnetization into a Fourier series:

M =
∑
n odd

[Mrn cos (nkz) r̂ +Mzn sin (nkz) ẑ] , (7a)

Mrn =
4Br

nπµ0
sin

(
nπδ

2

)
, (7b)

Mzn = − 4Br

nπµ0
cos

(
nπδ

2

)
. (7c)

In these equations, M is the magnetization vector, Mrn and
Mzn are the radial and axial components of the magnetization,
respectively, n is the harmonic order, k is the wavenumber of
the magnet array (equal to 2π divided by the pole pitch p),
Br is the remanence of the permanent magnet material, and δ
is the fractional width of the radial magnets in the array. Note
that the magnetization, and thus the overall magnetic field, has
only odd harmonics. The current density in the coil region can
similarly be described in terms of a (scalar) Fourier series.

With the magnetization and current density described thusly,
we can proceed to solve the appropriate form of Poisson’s
equation in the magnet, coil, and air regions of the motor:

∇2Amagnet = −µ0∇×M , (8a)

∇2Acoil = −µ0Jn cos (nkz) θ̂, (8b)

∇2Aair = 0, (8c)

where A is the magnetic vector potential and Jn is the Fourier
series coefficient of the current density in the circumferential
direction. Here, we have assumed that both the magnet and
the conductor have unity relative permeability. The solution
in the air regions is simply a linear combination of modified
Bessel functions, but solution of the equations in the magnet
and coil regions leads to inhomogeneous Bessel equations,

∂2A

∂r
+

1

r

∂A

∂r
−
(
c2 +

1

r2

)
A (r) = d, (9)

where A is a function of the radial coordinate only and c
and d are constants. These equations are often solved in the
literature using Green’s functions [15] or by approximating
the radial magnets’ magnetization as being nonuniform in
order to give a solution in terms of elementary functions
[16]. However, there exists a set of named functions that
solve this equation, the modified Struve functions [17], [19].
So long as care is taken in the formulation of the solutions
to avoid numerical stability problems, the modified Struve
functions can be efficiently calculated using the power series
and asymptotic series presented in [19], [20].

Using the modified Struve functions L0 and L1, the mag-
netic field in each region can be found, as shown in Equa-
tions 10. Here, I0 and I1 refer to modified Bessel functions of
the first kind, K0 and K1 refer to modified Bessel functions
of the second kind, a and b are arbitrary constants, and H
is the magnetic field vector. These solutions must then be
patched together using appropriate boundary conditions for the



magnetic field and the magnetic flux density to find values for
the constants a and b in each region, and to thus find the
magnetic field throughout the motor structure.

To calculate the force produced by the motor, we can first
compute the Maxwell stress tensor at the inner and outer
surfaces of the coil region. We can then multiply the stress
at the inner and outer coil surfaces by the appropriate circum-
ferences, add them, and average over the length of a pole pitch
to find the force per unit length generated by the motor. We
can approximate the force production as being done by only
the first spatial harmonics of the current and magnetic field
distributions [18], greatly simplifying the calculation process.
By gathering all of the dimensional parameters together, we
find an expression for the total force generated by the motor,

F =
BrJ1`

k2
f̂ , (11a)

f̂ ≡ π
(
âcb̂m + âmb̂c

)
, (11b)

where f̂ is given by Equation 11b. Here, ` is the overall length
of the motor, J1 is the first harmonic of the current density,
and f̂ is a dimensionless parameter that depends only on ratios
between the pole pitch and the radii of the motor components.

The dimensionless force f̂ depends on four dimensionless
parameters related to the magnetic fields: âc and b̂c, describing
the coil, and âm and b̂m, describing the magnets. âc and b̂c,
given below in Equations 12a and 12b, do not depend upon
the particular arrangement of magnets, but the dimensionless
magnet parameters âm and b̂m must be found and tabulated
for each magnet configuration by solving the magnetic field

boundary conditions. In Equations 12a and 12b, rci is the coil
inner radius, and rco is the coil outer radius.

âc = krci

[(
I1 (krci)− L1 (krci)

)
K0 (krci) +(

I0 (krci)− L0 (krci)
)

K1 (krci)
]
−

krco

[(
I1 (krco)− L1 (krco)

)
K0 (krco) +(

I0 (krco)− L0 (krco)
)

K1 (krco)
]
,

(12a)

b̂c = krci

[(
I0 (krci)− L0 (krci)

)
I1 (krci)−(

I1 (krci)− L1 (krci)
)

I0 (krci)
]
−

krco

[(
I0 (krco)− L0 (krco)

)
I1 (krco)−(

I1 (krco)− L1 (krco)
)

I0 (krco)
]
.

(12b)

For the HG configuration, âm and b̂m are given by Equa-
tions 13a and 13b. The dimensionless magnet parameters, in
this case, depend upon rii, the inner radius of the magnets
inside the coil, and rio, the outer radius of the magnets inside
the coil. Note that all radii are non-dimensionalized by the
wavenumber k.

The remaining basic performance measures for the motor
can also now be written:

P =
`J2

1

σk2
P̂ , (14)

M =
ρc`

k2
m̂. (15)

Hmagnet =
∑
n odd

[
a I1 (nkr) + bK1 (nkr) +

π

2
Mrn (I1 (nkr)− L1 (nkr))−Mrn

]
r̂ cos (nkz) +[

−a I0 (nkr) + bK0 (nkr)− π

2
Mrn (I0 (nkr)− L0 (nkr))−Mzn

]
ẑ sin (nkz) ,

(10a)

Hcoil =
∑
n odd

[
a I1 (nkr) + bK1 (nkr)− πJn

2nk
(I1 (nkr)− L1 (nkr))

]
r̂ sin (nkz) +[

−a I0 (nkr) + bK0 (nkr) +
πJn
2nk

(I0 (nkr)− L0 (nkr))

]
ẑ cos (nkz) ,

(10b)

Hair =
∑
n odd

[
a I1 (nkr) + bK1 (nkr)

]
r̂ cos (nkz) +

[
− a I0 (nkr) + bK0 (nkr)

]
ẑ sin (nkz) . (10c)

âm = 0 (13a)

b̂m =
π

2
sin

(
πδ

2

)[
krii

(
(I0 (krii)− L0 (krii)) I1 (krii)− (I1 (krii)− L1 (krii)) I0 (krii)

)
−

krio

(
(I0 (krio)− L0 (krio)) I1 (krio)− (I1 (krio)− L1 (krio)) I0 (krio)

)]
+

cos

(
πδ

2

)[
krio I1 (krio)− krii I1 (krii)

] (13b)



where P̂ is the dimensionless power parameter and m̂ is
the dimensionless mass parameter. The dimensionless power
parameter is independent of motor configuration, while the
dimensionless mass parameter changes with both the motor
configuration and the motor materials. For example, in Equa-
tion 17 below, the dimensionless mass parameter is given for
the HG configuration:

P̂ ≡ π

2

(
(krco)

2 − (krci)
2
)
, (16)

m̂ = π

[
ρm
ρc

(
(krio)

2 − (krii)
2
)

+ (krco)
2 − (krci)

2

]
,

(17)

where ρm is the mass density of the magnet. We can now also
compute the motor constant ε,

F ′ =
BrJ1
ρc

f̂

m̂
, (18)

ε = Br ε̂

√
σM

ρc
, ε̂ ≡ f̂√

P̂ m̂
. (19)

Note that the expressions for the motor constant and the force
density are almost identical to those presented in Section II,
with the addition of dimensionless correction factors ε̂ and
f̂/m̂ representing the effects of the spatially varying magnetic
fields and the mass of the magnets. The functional form of
Equations 19 and 18 do not depend on the details of the
magnet and conductor configuration; the motor configuration
and geometry affect only the value of the dimensionless
correction factors.

The dimensionless motor constant ε̂ depends only on the
ratios of the layer radii to the pole pitch, and can be shown
to be convex in these dimensionless lengths. There is a broad
optimum range of geometry for the HG magnet configuration,
near dimensionless geometry krii = 0.86, krio = 3.0, krci =
3.03, krco = 3.87, and δ = 0.41. (An air gap between the
magnets and coils equal to 1% of the radius is included as
a thermal expansion and manufacturing tolerance allowance.)
With this geometry, the maximum value of the dimensionless
motor constant is ε̂ = 0.21. Other configurations yield better
optimum values for the dimensionless motor constant; for
instance the results of Trumper et al. for a planar Halbach
array motor configuration [18] can be transformed into this
framework to give a value of ε̂ = 0.37.

B. Finite Element Validation of Electromagnetic Model

In order to check the accuracy of our analytical solution
for the motor magnetic fields, we performed a finite element
(FEA) simulation of the optimum HG motor configuration
given in the previous section and compared the results to
those derived analytically for an identical motor. The FEA
was performed using a remanence of 1.47 T and a magnet
relative permeability of 1.05 in ANSYS. Special attention
to numerical instabilities that arise in the analytical model
when the value of nkr exceeds 30 at the outside of the
motor is needed to analytically compute the magnetic field
to high harmonic order. Contour plots of the radial magnetic

flux density are shown in Figure 2, for both the analytical
model of Equations 10 and the FEA model. These plots show
good qualitative agreement, primarily differing due to the
inherent limitations of a Fourier series representation for the
discontinuous magnetization.

FEA was also used to make quantitative assessments of
the analytical solution’s veracity. Figure 3 shows a compar-
ison of the radial flux density in the middle of the air gap
between the analytical and FEA models, with approximately
8% discrepancy. This difference can be explained primarily
by the non-unity relative permeability of the magnets in the
FEA model. For a slightly different motor geometry, the linear
force density under a square wave current density excitation
was computed using both analytical and FEA techniques; the
analytical method predicted a force between 1% and 3% lower
than that from the FEA.

C. Thermal Model

While Equation 19 describes the efficiency of the motor
while operating under any conditions and at any size scale, we
need to specify the maximum current density J1 in order to
determine the achievable force density. The dominant physical
process limiting the current density is Joule heating of the wire
and magnets beyond their maximum operating temperatures.
In order to specify the maximum current density, then, we
can use a basic heat transfer model [21] to relate it to the
maximum temperature rise ∆T .

For brevity, consider a simple, planar heat transfer model
for the HG motor configuration in which it is cooled solely
by convection on its exterior, as characterized by a convection
coefficient h̄. From elementary heat transfer theory, we can
calculate a thermal resistance, Rth from the inner surface of
the coil to the ambient according to

Rth =
rco − rci + 2κch̄

−1

4πκcrco
, (20)

where κc is the thermal conductivity of the coil. We can then
proceed to calculate the motor temperature as a function of
the time-average (RMS) current density J̄1,

∆T =
π
(
r2c,o − r2c,i

)
RthJ̄1

2

2σ
=

J̄1
2

σκck2
P̂ R̂th, (21a)

R̂th ≡ πκcRth =
krco − krci + 4πBi−1

4krco
, (21b)

Bi ≡ ph̄

κc
, (21c)

where we have defined a Biot number Bi in terms of the
pole pitch p. Combining this expression (Equation 21a) with
Equation 18 and the definition of ε̂, we find the perhaps
surprising result that the thermal constraint is equivalent to
a constraint on the pole pitch:

p ≤ 2πBr

ρcF̄ ′

√
πσκc∆T ×

ε̂√
m̂R̂th

, (22)

where F̄ ′ denotes the RMS force density. This relationship
suggests that it should be possible to achieve an arbitrarily
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Fig. 2. A plot of the radial magnetic flux density for an optimized HG configuration motor (krii = 0.86, krio = 3.0, krci = 3.03, krco = 3.87, δ = 0.41)
as computed using ANSYS finite element software (right) and using the analytical model of Equations 10 with 75 harmonic terms (left). Qualitative agreement
between the analytical and numerical flux plots is excellent, primarily differing in the sharpness of the boundaries between radial and axial magnets.

high force density so long as the pole pitch is made sufficiently
small. While this is contrary to standard motor design practice,
which is done by simply assuming a maximum current density
(typically 107 A/m2), it is in agreement with the scaling
described by Cugat et al. [7] and can be intuitively explained
with reference to microelectronics, where current densities
over 109 A/m2 are routinely used in small bond wires and
interconnects.

As a numerical example consider once again the work loop
parameters associated with pigeon flight muscles [9], which
produce an RMS force density F̄ ′ ≈ 700 N/kg, the optimum
geometry for the HG configuration, a coil thermal conductivity
of κc ≈ 1 W/m ·K, and a maximum temperature rise of
100◦ C. If we wish to have a pole pitch of greater than 10 mm,
we will require a heat transfer coefficient h̄ ≥ 400 W/m2K.
This heat transfer coefficient can be achieved through vigorous
air cooling or by simple liquid cooling [21].

D. Model Summary and Application

Just as in the analysis of the ideal motor in Section II, certain
basic scaling properties of tubular linear synchronous motors
are readily apparent. The motor constant ε in Equation 19
scales according to the same parameters as it did in Equation 4,
with an additional dimensionless parameter describing the
deviations from the ideal motor. Thus, even with the permanent
magnet structure included, the motor constant still scales with
the square root of the motor mass.

We can also examine the impact of the dimensionless motor
constant correction factor on the motor efficiency,

η̂ =
ρc
σB2

r︸ ︷︷ ︸
materials

× 2

ω`s︸︷︷︸
velocity

× F ′0︸︷︷︸
force

density

× ε̂−2︸︷︷︸
motor

geometry

(23)
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Fig. 3. A comparison of the radial magnetic flux density in the center of the
coil of the HG motor depicted in Figure 2 between the 75-harmonic analytical
model (solid line) and the FEA model (open circles) The maximum deviation
occurs near the peak of the flux waveform, where the analytical solution is
approximately 8% greater in magnitude than the FEA result.

Here, we can see that ε̂ is a dimensionless efficiency parameter
that can be used to compare the efficiencies of different
motor configurations and geometric ratios at any size scale.
We have shown that, for the tubular HG configuration, the
optimum ε̂ = 0.21, and we can use the results of other
magnetic field calculations to find the optimum ε̂ for additional
configurations. In some literature [22] a similar parameter to
ε̂, the “motor constant square density” is used to characterize
motor performance, but this parameter does not separate the
influence of material selection from that of geometric design.

The overall size of the motor components scales with the
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Fig. 4. The ratio of the motor constant to the square root of the mass
is plotted for 30 different linear synchronous motors from four different
manufacturers: Copley (diamonds), Moog (squares), Anorad (triangles), and
Faulhaber (crosses). With the exception of the Moog motors, this figure of
merit is independent of size. Compare with the theoretical figure of merit for
an HG motor of 26 N ·W−0.5 · kg−0.5.

pole pitch, and thus with the required force density:

p ≤ 2π
Br
√
πσκc
ρc︸ ︷︷ ︸

materials

×
√

∆T︸ ︷︷ ︸
thermal

limit

× 1

F̄ ′︸︷︷︸
force

density

×

√
ε̂

m̂R̂th︸ ︷︷ ︸
motor

geometry

. (24)

If internal thermal conduction limits the heat transfer out of
the motor, the pole pitch scales inversely with the required
force density. If convective thermal resistance dominates heat
transfer out of the motor, the required pole pitch scales as the
inverse square of the specified force density–high force densi-
ties call for highly miniaturized coils and magnetic structures,
which may be difficult to fabricate. Short pole pitches also
require long motors, with many repeating units and thus a
high part and/or winding count.

Since the only motor dimensions that appear outside the
dimensionless parameters are the pole pitch and overall length,
the effect of the radial geometry of any motor configuration is
universal and independent of the desired performance. Thus,
the radial dimensions can be optimized for each configuration
to yield the highest possible value of the dimensionless motor
constant ε̂. The use of a closed-form analytical model renders
geometric optimization very computationally efficient, and a
modest computer proves capable of examining thousands of
geometries per second. Furthermore, ε̂ is convex in most
geometric parameters, although some configurations perform
best as the overall radial scale tends towards infinity (i.e. a flat
plate rather than a tube.)

E. Comparison with Commercial Motors

While motor manufacturers do not release enough data for
a full evaluation of Equations 23 and 24, we can nonetheless
verify the general scaling of the model against existing motors.
The ratio ε/

√
M , which should depend only on motor internal

Fig. 5. A photograph of the prototype wing-flapping test-bed, showing the
polyimide film wing, the brass wing spar, and the actuator attachment point.
The wing has a span of 250 mm, and is connected to the actuator with a 10
mm moment arm. The springs connected to the wing spar have a very low
stiffness, and are used solely to keep the wing centered in its range of motion.
Not shown are the actuator under test or the LVDT position transducer.

geometry and on materials choice, is plotted for a variety of
commercially-available linear synchronous motors across three
orders of magnitude in size in Figure 4. With the exception
of the largest motors, which incorporate more mechanical
components than the others, this ratio is approximately con-
stant for each motor type. There is considerable variability
in motor performance, however, with this figure of merit
varying by a factor of three between different motor types.
By comparison, with 1.47 T magnets and an optimum HG
geometry, the model of this work suggests a figure of merit
of 26 N ·W−0.5 · kg−0.5, about twice as high as the large
Moog motors can offer. The difference can be ascribed to the
mechanical components of the Moog motor (bearings, sealed
housing, etc.) and certain non-idealities of motor design not
covered by this model (copper packing factor, end effects,
etc.).

A similar examination of the pole pitch and force density
of commercial motors verifies the scaling of Equation 24. For
example, Anorad’s passively-cooled 15 mm pole pitch motors
average 80 N/kg while their 30 mm motors average 55 N/kg,
in close agreement with the expected scaling for convection-
dominated thermal resistance. Active cooling in these motors
results in very modest improvements in force density, perhaps
due to poor coupling between the cooling fluid and the coils.

IV. APPLICATIONS TO FLAPPING FLIGHT

Our motor model gives us a way to determine the size,
complexity, and cooling requirements of a linear PM motor
for any given performance requirements, including require-
ments traditionally [1] thought outside the capabilities of
such motors. As we have considered previously in this work,
flapping-wing flight is a problem in robotics that is particularly
constrained by actuator performance. The limited performance
of conventional actuators is usually overcome by driving the
wings symmetrically with a single high-speed rotary motor or
engine and a gear reduction system, but this design does not



allow the asymmetric flapping that is essential to low-speed
maneuverability [23]. To achieve full control authority over
the robot’s trajectory, each wing needs to be actuated inde-
pendently with variable stroke. The simplest way to achieve
this is to use direct-drive linear actuators to move each wing.

Using Equation 23, we can determine the efficiency achiev-
able with motors in such an actuation scheme. If we assume
that motors of an HG configuration will be used, and continue
to match the properties of the pigeon pectoralis muscle, we
find that the efficiency of our hypothetical two-actuator direct-
drive bird robot will be 40%, well in excess of the efficiency
of birds in nature.

In order to further explore this application, we have begun
construction of a flapping wing actuator test-bed, shown in
Figure 5. A wing with a passive feathering axis is connected
to a conventional linear EM actuator (BEI Kimco LA25-42-
000A) with similar dimensions and geometry to a pigeon wing.
This apparatus will be used to test motors designed and built
according to the principles described in this work, and to
obtain suitable comparison data using off-the-shelf actuators.

V. DISCUSSION AND FUTURE WORK

In conclusion, by developing a non-dimensionalized model
for linear PM motor performance, we have established that
linear motors are capable of extremely high, to date unrealized
performance. With suitable provision of active cooling and
miniaturized components, linear PM motors can achieve force
densities more than an order of magnitude higher than those
of commercially-available motors while retaining acceptable
efficiency. This capability opens up a large range of new
applications in robotics, from locomotion and manipulation
to haptic interfaces, at the relatively small cost of requiring
custom motor design for each application.

To obtain a more accurate estimate of motor performance,
our analysis framework can be modified to include non-
idealities such as the effects of less than 100% copper fill
in the coils, imperfect coil winding factors, and overhung
and underhung coil configurations. It can also be adapted to
handle saturable iron flux return paths, to accurately describe
magnets that are simpler in fabrication than Halbach arrays.
We will also use the lessons taught by our model to construct
a prototype motor to illustrate the theoretically achievable
performance.
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