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Abstract—This paper focuses on the problem of real-time pose
tracking using visual and inertial sensors in systems with limited
processing power. Our main contribution is a novel approach
to the design of estimators for these systems, which optimally
utilizes the available resources. Specifically, we design a hybrid
estimator that integrates two algorithms with complementary
computational characteristics, namely a sliding-window EKF
and EKF-SLAM. To decide which algorithm is best suited to
process each of the available features at runtime, we learn the
distribution of the feature number and of the lengths of the
feature tracks. We show that using this information, we can
predict the expected computational cost of each feature-allocation
policy, and formulate an objective function whose minimization
determines the optimal way to process the feature data. Our
results demonstrate that the hybrid algorithm outperforms each
individual method (EKF-SLAM and sliding-window EKF) by a
wide margin, and allows processing the sensor data at real-time
speed on the processor of a mobile phone.

I. INTRODUCTION

In this paper we address the problem of tracking the
3D-pose of small, resource-constrained systems in unknown
environments. Specifically, we are interested in estimating
the motion of miniature devices, similar in size to a mobile
phone. In contrast to medium- and large-scale systems, (e.g.
mobile robots, UAVs, autonomous cars), small devices have
limited computational capabilities and battery life, factors
which make the pose-estimation problem challenging. In the
absence of GPS, the types of sensors that can be used for pose
estimation in small-scale systems are quite restricted. In our
work, we opt for using visual and inertial measurements. This
is motivated by the fact that cameras and inertial measurement
units (IMUs) are small, lightweight, and inexpensive sensors,
which can operate in almost any environment. Our goal
is to estimate the moving platform’s trajectory only, using
the inertial measurements and the observations of naturally
occurring point features. We do not assume that a map of the
area is available, nor do we aim to build such a map. Thus,
the problem we address is analogous to visual odometry, with
the added characteristic that an IMU is available. We term the
approach visual-inertial odometry.

The key challenge that needs to be addressed when de-
signing an estimator for this task is the limited availability of
processing power. Feature detection algorithms can track hun-
dreds of features in images of natural scenes, but processing
all this data in real time is challenging, particularly for a small,
resource-constrained device. To date, the existence of resource

limitations has been typically addressed by proposing a mo-
tion estimation algorithm (e.g., EKF-SLAM, sliding-window
iterative estimation), and testing whether it can operate within
the given resource constraints. If it can, success is declared.
However, this design paradigm has the shortcoming that it
cannot ensure optimal use of the available resources: even
though one algorithm may operate using a certain amount of
CPU time, it is possible that a different algorithm can either
(i) produce a more accurate estimate in the same amount of
time, or (ii) compute an estimate of the same precision faster.
Clearly, this situation is undesirable.

An additional difficulty that arises when designing an es-
timator for any localization task is that, typically, the com-
putational efficiency of different methods depends strongly
on the nature of each particular dataset. For instance, one
algorithm may outperform all others when the environment is
feature-rich and the vehicle is moving slowly, while a different
algorithm may be the fastest in feature-sparse environments
under fast motion. This makes algorithm selection a difficult
task, for which no general, systematic methods exist to date.

To address the limitations described above, in this work we
propose a new paradigm for the design of motion estimation
algorithms. Specifically, we propose designing a hybrid esti-
mator that incorporates two (or more, in general) algorithms
with complementary computational characteristics. This makes
it possible to decide, in real time, to process different measure-
ments (e.g., different features) by a different algorithm. Since
the optimal choice for each measurement will depend on the
characteristics of the sensor data, in the proposed framework
we employ statistical learning to learn these characteristics.
Gathering statistical information allows us to compute the
expected cost of any strategy for allocating measurements to
algorithms. To identify the optimal strategy we solve, in real
time, an optimization problem whose objective function is the
expected computation time.

In this paper, we apply the approach described in the pre-
ceding paragraph to the problem of visual-inertial odometry.
Specifically, we design a hybrid extended Kalman filter (EKF),
which integrates EKF-SLAM with a sliding-window EKF
estimator. As explained in Section III, these two estimators
process the same measurement information in different ways,
and have complementary computational characteristics. We
show that the optimal choice of algorithm to process each
individual feature depends on the distribution of the feature-
track lengths of all features. This distribution is not known in



advance (it depends on the environment, the camera motion,
as well as the feature tracker used), and therefore we learn
it from the image sequence. Using this information, the
optimal strategy for processing the feature measurements can
be computed by solving a one-variable optimization problem,
as shown in Section V. Our results demonstrate that the hybrid
algorithm outperforms each individual method (EKF-SLAM
and sliding-window EKF) by a wide margin. In fact, the hybrid
filter allows processing the sensor data at real-time speed on
a mobile phone, something that is not possible with either of
the individual algorithms.

II. RELATED WORK

A huge number of methods have been proposed for pose
estimation, and thus any attempt at a general literature survey
in the limited space available would be incomplete. We there-
fore here focus on methods that seek to optimize, in some
sense, the computational efficiency of localization. To the best
of our knowledge, no prior work exists that employs learning
of the feature tracks’ characteristics to explicitly optimize
the computational cost of estimation. Past work has focused
primarily on SLAM, and can broadly be categorized as:

a) Exact reformulations of the SLAM equations: Typical
methods decompose the computations into smaller parts, and
selectively carry out the only necessary computations at each
time instant (see e.g., [1]–[4]). Typically, in these methods
the currently visible features are updated normally at every
time step, while the remaining ones are updated only “on
demand” or when re-visited. In the case of visual-inertial
odometry, however, where the state vector contains only the
actively tracked features and no loop-closure is considered,
these methods are not applicable.

b) Approximations of the SLAM equations: On the other
hand, several methods exist that employ approximations to
the SLAM equations (e.g., [5]–[7] and references therein), to
reduce the required computations. In contrast to these meth-
ods, which trade-off information for efficiency, our proposed
approach involves no information loss, and no approximations,
other than the inaccuracies due to the EKF’s linearization.

c) Feature selection methods: A different family of ap-
proaches seek to reduce the computational cost of localization
by processing only the most valuable, in terms of uncertainty
reduction, measurements (e.g., [8], [9]). Only processing a
small subset of carefully selected measurements can often
result in high accuracy. However, since the remaining mea-
surements are simply discarded, loss of information inevitably
occurs. In our proposed approach, all the available measure-
ments are processed, and no localization information is lost.

III. ESTIMATORS FOR VISUAL-INERTIAL ODOMETRY

We now examine the possible choices of algorithms for
processing the feature observations in visual-inertial odom-
etry. Since real-time performance is necessary, any candidate
algorithm must have bounded computational complexity, irre-
spective of the duration of the trajectory. Within this class,
practically all algorithms proposed to date employ either an

EKF (e.g., [10]–[12]), or iterative minimization over a window
of states (e.g., [13]–[15]). The latter approaches iteratively re-
linearize the measurement equations to better deal with their
nonlinearity, which, however, incurs a high computational cost.
In our recent work [16] we showed that, by choosing lineariza-
tion points that preserve the system’s observability properties,
EKF-based visual-inertial odometry can attain better accuracy
than iterative-minimization methods, at only a fraction of the
computational cost. Therefore, in this paper we only focus on
EKF-based algorithms.

Within the class of EKF methods, there are two possible
formulations of the estimator. Specifically, we can employ the
EKF-SLAM approach (e.g. [17]–[19] and references therein),
in which the state vector contains the current IMU state as
well as feature positions. To keep the computations bounded,
features that leave the field of view must be removed from
the state vector, leaving only the currently observed ones [19].
Other EKF algorithms instead maintain a sliding window of
camera poses in the state vector, and use the feature obser-
vations to apply probabilistic constraints between these poses
(e.g., [10], [20], [21]). Out of this class of methods, the multi-
state-constraint Kalman filter (MSCKF) algorithm [10] uses
the all the information provided by the feature measurements,
which makes it our preferred method.

Both the MSCKF and EKF-SLAM use exactly the same
information, and only differ in the way they organize the
computations, and in linearization (more on this in Section VI).
If the measurement models were linear, both methods would
yield exactly the same result, equal to the MAP estimate of the
IMU pose [22]. With respect to computational cost, however,
the two methods differ dramatically. For the EKF-SLAM
algorithm the cost at each time-step is cubic in the number
of features (since all features in the state vector are observed).
In contrast, the MSCKF has computational cost that scales
linearly in the number of features, but cubically in the length
of the feature tracks (see Section IV-B). Therefore, if many
features are tracked, each in a small number of frames, the
MSCKF approach is preferable, but if few features are tracked
over long image sequences, EKF-SLAM would result in lower
computational cost1. Clearly, EKF-SLAM and the MSCKF
algorithm are complementary, with each being superior in
different circumstances. This motivates us to integrate both
algorithms in a single, hybrid filter, as described next.

IV. THE HYBRID MSCKF/SLAM ALGORITHM

In this section we present the hybrid MSCKF/SLAM es-
timator for visual-inertial odometry. We begin our presenta-
tion by briefly outlining the MSCKF algorithm, which was
originally proposed in [10]. In our work, we employ the
modified MSCKF algorithm, which attains increased accuracy
and consistency by choosing linearization points that ensure
the correct observability properties [16].

1Similar conclusions can be reached from the analysis of [23], which
compares EKF-SLAM to iterative optimization over a window of poses.



A. The MSCKF algorithm for visual-inertial odometry

The MSCKF does not include the feature positions in the
state vector, but instead uses the feature measurements to
directly impose constraints between the camera poses. The
state vector of the MSCKF is:

xT
k =

[
xT
Ik

xT
C1

xT
C2

· · · xT
Cm

]T
(1)

where xIk is the current IMU state, and xCi , i = 1 . . .m are
the camera poses (positions and orientations) at the times the
last m images were recorded. The IMU state is defined as:

xI =
[
q̄T pT vT bT

g bT
a

]T
(2)

where q̄ is the unit quaternion describing the rotation from
the global frame to the IMU frame, p and v denote the IMU
position and velocity, respectively, while bg and ba are the
gyroscope and accelerometer biases.

The MSCKF uses the IMU measurements to propagate the
current IMU state and the covariance matrix, Pk+1|k, while the
feature measurements are used for EKF updates. Let’s assume
that the i-th feature, which has been observed in ℓ images, has
just been lost from tracking (e.g., it went out of the field of
view). At this time, we use all the measurements of the feature
to carry out an EKF update. Let the observations of the feature
be described by the nonlinear equations zij = h(xCj , fi)+nij ,
for j = 1 . . . ℓ, where fi is the feature position (described
by the inverse-depth parameterization [24]) and nij is the
noise vector, modelled as zero-mean Gaussian with covariance
matrix σ2I2. Using all the measurements we compute a
feature position estimate f̂i, and then compute the residuals
z̃ij = zij − h(x̂Cj , f̂i), j = 1 . . . ℓ. By linearizing, these
residuals can be written as:

z̃ij ≃ Hijx̃Cj +Hfij f̃i + nij , j = 1 . . . ℓ (3)

where x̃Cj and f̃i are the estimation errors of the j-th camera
pose and i-th feature respectively, and the matrices Hij and
Hfij are the corresponding Jacobians. Since the feature is
not included in the MSCKF state vector, we proceed to
marginalize it out. For this purpose, we first form the vector
containing the ℓ residuals from all the feature’s measurements:

z̃i ≃ Hix̃+Hfi f̃i + ni (4)

where z̃i and ni are block vectors with elements z̃ij and nij ,
respectively, and Hi and Hfi are matrices with block rows Hij

and Hfij , for j = 1 . . . ℓ. Subsequently, we define the residual
vector z̃oi = VT z̃i, where V is a matrix whose columns form
a basis of the left nullspace of Hfi . From (4), we obtain:

z̃oi = VT z̃i ≃ VTHix̃+VTni = Ho
i x̃+ no

i (5)

Once z̃oi and Ho
i are available, we proceed to carry out a

Mahalanobis gating test for the residual z̃oi , by computing:

γ = (z̃oi )
T
(
Ho

iPk+1|k(H
o
i )

T + σ2I
)−1

z̃oi (6)

and comparing it against a threshold given by the 95-th
percentile of the χ2 distribution. By stacking together the
residuals of all features that pass this gating test, we obtain:

z̃o = Hox̃+ no (7)

where z̃o, Ho, and no are block vectors/matrices, with block
rows z̃oi , Ho

i , and no
i , for i = 1 . . . n, respectively. We can now

use the above residual, which only involves the camera poses,
for an EKF update. However, if a large number of features are
processed at each time instant (the common situation), further
computational savings can be achieved. Specifically, in [10]
it is shown that instead of using the above residual, we can
equivalently compute the thin QR factorization of Ho, written
as Ho = QHr, and then employ the residual z̃r for updates,
defined as:

z̃r = QT z̃o = Hrx̃+ nr (8)

where nr is the r×1 noise vector, with covariance matrix σ2Ir.
Once the residual z̃r and the matrix Hr have been computed,
we compute the state correction and update the covariance
matrix via the standard EKF equations:

∆x = Kz̃r (9)

Pk+1|k+1 = Pk+1|k −KSKT (10)

S = HrPk+1|k(H
r)T + σ2Ir (11)

K = Pk+1|k(H
r)TS−1 (12)

B. Computational complexity of the MSCKF

The way in which the feature measurements are processed
in the MSCKF is optimal, in the sense that no approximations
are used, except for the EKF’s linearization [22]. This is true,
however, only if the sliding window of states, m, contains at
least as many states as the longest feature track. If it does not,
then the measurements that occurred more than m timesteps in
the past cannot be processed. Therefore, to use all the available
feature information, the MSCKF must maintain a window of
states long enough to include the longest feature tracks.

We now examine the dependence of the computational
requirements of the MSCKF on the number of features and
the lengths of the feature tracks. The computation time of the
MSCKF is dominated by the following operations:
1) The computation of the residual and Jacobian matrix in (5),
for each feature. If n features are processed, with feature track
lengths ℓi, i = 1 . . . n, this requires O(

∑n
i=1 ℓ

3
i ) operations.

2) The Mahalanobis test, requiring O(
∑n

i=1 ℓ
3
i ) operations.

3) The computation of the residual and the Jacobian matrix
in (8), which, by exploiting the structure in Ho, can be
implemented in approximately O(

∑n
i=1 ℓ

3
i ) operations.

4) The computation of the Kalman gain and the update of
the covariance matrix, which require O(r3/6+ r(15+ 6m)2)
operations. Here 15 + 6m is the size of the state covariance
matrix, and r is the number of rows of Hr. It can be shown
that, in general, r (which equals the number of independent
constraints for the camera poses) is given by [25]:

r = 2(ℓ(1) + ℓ(2) + ℓ(3))− 7 (13)



5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Feature track length

P
ro

ba
bi

lit
y

 

 

Canyon area
Town streets

Fig. 1. Distribution of the feature track lengths in two parts of the Cheddar
Gorge dataset [26]. The features detected were Harris corners, matched by
normalized cross-correlation.

where ℓ(1), ℓ(2), and ℓ(3) are the three longest feature tracks.
From the above we see that, while the computational cost

of the MSCKF is linear in the number of features, it is at least
quadratic in the size of the sliding window, m. In fact, if the
size of the sliding window is chosen to be equal to the longest
feature tracks, then r is also O(m), and the overall complexity
becomes cubic in m. This demonstrates a shortcoming of
the MSCKF: to preserve all measurement information, the
complexity of the algorithm scales cubically as a function of
the longest feature track length.

In real-world datasets the distribution of the feature-track
lengths is non-uniform, with many features tracked for short
durations, and very few stabler features tracked over longer
periods. For instance, Fig. 1 shows the distribution of the
feature track lengths in two parts of a real-world dataset [26].
It can be seen that, even though the longest feature tracks
reach 40 images, the vast majority of features is tracked for a
small number of frames (the percentage of features tracked in
five or less images is 88% and 69% in the two cases shown,
respectively). To be able to process the small percentage of
features with long track lengths, the MSCKF must maintain
a long sliding window, which is computationally inefficient.
In what follows, we show how we can integrate the MSCKF
algorithm with EKF-SLAM, to address this limitation.

C. The hybrid MSCKF/SLAM algorithm

The alternative way of processing feature measurements
in the EKF is to include them in the state vector, and use
their observations as in the standard visual-SLAM formulation.
As discussed in Section III, this approach has computational
properties complementary to those of the MSCKF: while the
MSCKF is better at processing many features tracked for a few
frames, EKF-SLAM is faster when few features are tracked for
many frames. This motivates us to combine both approaches in
a single, “hybrid” estimator. Specifically, we formulate a filter
whose state vector at time-step k contains the current IMU
state, a sliding window of m camera poses, and sk features:

xk =
[
xT
Ik

xT
C1

· · · xT
Cm

fT1 · · · fTsk
]T

(14)

This provides us with the ability to choose whether a feature
will be processed using the MSCKF approach, or whether it

will be included in the state vector and processed as in EKF-
SLAM. By analyzing in detail the computational requirements
of each EKF update, it can be shown that, when many features
are present, there is nothing to be gained by initializing in the
state vector any feature observed fewer than m times [25].
Thus, the optimal (in terms of computational requirements)
strategy for using the features turns out to be a simple one: if
feature i’s track is lost after fewer than m frames (i.e., li < m),
then the feature is processed using the MSCKF equations, as
described in Section IV-A. On the other hand, if a feature is
still actively being tracked after m images, it is initialized into
the state vector, and used for SLAM. Thus, the only choice
that one needs to make is the size of the sliding window, m.
In Section V we show how this can be chosen optimally.

At a given time step, the EKF update is carried out using
a residual vector constructed by stacking together the residual
computed from the “MSCKF features” and from the sk
observations of the “SLAM features”:

z̃k =


z̃rk
z̃1m

...
z̃skm

 ≃


Hr

H1m

...
Hskm

 x̃k + nk = Hkx̃k + nk (15)

In the above equation, z̃jm, for j = 1 . . . sk are the residuals
of the observations of the sk SLAM features from the latest
camera state (state m), and Hjm, for j = 1 . . . sk are the
associated Jacobian matrices (see (3)). Each of these residuals
is a 2×1 vector, while each Hjm is a 2×(15+6m+3sk) matrix
(here 15+6m+3sk is the size of the state covariance matrix).
The residual z̃k and the Jacobian Hk are used for updating
the state and covariance matrix, similarly to (9)-(12).

For initializing new features, the m measurements of a
feature are used to triangulate it and to compute its initial
covariance and the cross-correlation with other filter states.
In our implementation, we use the inverse-depth feature pa-
rameterization [24], due to its superior linearity properties.
The latest camera clone, xCm , is used as the “anchor” state,
based on which the inverse-depth parameters are computed.
If the feature is still actively being tracked at the time its
anchor state needs to be removed from the sliding window,
the anchor is changed to the most recent camera state, and the
covariance matrix of the filter is appropriately modified. The
details of feature initialization as well as the “anchor change”
process are shown in [25]. Finally, the hybrid MSCKF/SLAM
algorithm is described in Algorithm 1.

V. OPTIMIZING THE PERFORMANCE OF THE HYBRID EKF

In this section we show how the size of the sliding window,
m, can be selected so as to minimize the computational
cost of the hybrid MSCKF/SLAM filter. As the results in
Section VI show, the choice of m has a profound effect on
the time requirements of the algorithm. With a suitable choice,
the hybrid method can significantly outperform each of its
individual components.



Algorithm 1 Hybrid MSCKF/SLAM algorithm
Propagation: Propagate the state vector and covariance
matrix using the IMU readings.

Update: Once camera measurements become available:
• Augment the state vector with the latest camera pose.
• For features to be processed in the MSCKF (feature tracks

of length smaller than m), do the following
– For each feature to be processed, calculate the resid-

ual and Jacobian matrix in (5).
– Perform the Mahalanobis gating test in (6).
– Using all features that passed the gating test, form

the residual vector and the Jacobian matrix in (8).
• For features that are included in the state vector, compute

the residuals and measurement Jacobian matrices, and
form the residual z̃k and matrix Hk in (15).

• Update the state vector and covariance matrix, via (9)-
(12), using the residual z̃k and Jacobian matrix Hk.

• Initialize features tracked in all m images of the sliding
window.

State Management:
• Remove SLAM features that are no longer tracked, and

change the anchor pose for SLAM features anchored at
the oldest pose.

• Remove the oldest camera pose from the state vector. If
no feature is currently tracked for more than mo poses
(with mo < m− 1), remove the oldest m−mo poses.

A. Operation count for each update

By carefully analyzing the computations needed, we calcu-
late the number of floating-point operations per update of the
hybrid algorithm:

fk = α1

n∑
i=1

ℓ3i + α2(r + 2sk)
3

+ α3(r + 2sk)(15 + 6m+ 3sk)
2 + l.o.t (16)

where the αi’s are known constants, n is the number of
features used in the MSCKF, r is defined in (13), and l.o.t.
stands for lower-order terms2. The three terms shown above
correspond to the computation of the MSCKF residual, the
Cholesky factorization of the matrix S in (12), and the
covariance update equation, respectively. Note that (16) also
models the probability of failure for the Mahalanobis test.

It is interesting to examine the properties of (16). First, we
note that since r represents the number of constraints provided
by the MSCKF features for the poses in the sliding window,
it is bounded above by 6m−7: the total number of unknowns
in the sliding window is 6m, and the feature measurements
cannot provide any information about the global pose or scale,

2The full expression for the operation count consists of tens of individual
terms, whose inclusion would merely complicate the presentation, and not add
much insight. Note however, that in the optimization described Section V-B,
the complete expression is used.

which correspond to 7 degrees of freedom. If many features
are available, we will have r ≈ 6m− 7, and thus:

fk ≈ α1

n∑
i=1

ℓ3i + α2(6m+ 2sk − 7)3

+ α3(6m+ 2sk − 7)(15 + 6m+ 3sk)
2

This approximate expression makes it possible to gain intuition
about the behavior of the computational cost of the hybrid
method: as the size of the sliding window, m, increases, more
features will be processed by the MSCKF, and fewer features
will be included in the state vector of the filter. Thus, as m
increases, the term

∑n
i=1 ℓ

3
i will increase, but sk will decrease

rapidly. These two opposing trends result in the performance
curves shown in Section VI (e.g., Fig. 3).

B. Minimizing the average operation count

We now turn our attention to determining the optimal value
of m, in order to minimize the runtime of the hybrid EKF
estimator. Equation (16) provides us with the operation count
of one filter update, so at first glance, it may appear that one
needs to minimize this equation with respect to m, at each
time instant. However, that would be an ill-posed problem. To
see why, consider the case where, at time step k, the sliding
window has length m = 20, and ten features exist that have
been continuously tracked in 20 images. At this time, we have
the option of either increasing the size of the sliding window,
or including the ten features in the state vector. Which is best
depends on the future behavior of the feature tracks: if these
features end up being tracked for a very large number of
frames (≫ 20), then it would be preferable to include the
features in the state vector. If, on the other hand, the features
end up being tracked for only 21 frames, it would be preferable
to increase m by one.

Clearly, it is impossible to obtain future information about
any particular feature track. We can however, collect statistical
information about the properties of the feature tracks, and
use this information to minimize the expected cost of the
EKF updates. This is precisely the approach we implement.
Specifically, during the filter’s operation, we collect statistics
to learn the probability mass function (pmf) of the feature track
lengths, p(ℓi), the probability of failure of the Mahalanobis
gating test, as well as the pmf of the number of features tracked
in the images. Using the learned pmfs, we compute the average
number of operations needed for each EKF update, f̄(m), by
direct application of the definition of the expected value of a
function of random variables.

The value of m that yields the minimum f̄(m) can be found
by exhaustive search among all possible values. However, we
have found that the cost curve in practical cases is quasicon-
vex, which means that it has a unique minimum (see Fig. 2).
Therefore, to reduce the time needed for the optimization, we
perform the optimization by local search starting from a known
good initial guess (e.g., the last computed threshold). Since the
statistical properties of the feature tracks can change over time
(see Fig. 1), we perform the learning of the pmfs as well as the
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Fig. 2. Comparison of actual runtime vs. expected flop count. Since the
curves have different units, each has been normalized with respect to its
minimum value.

selection of the optimal threshold in consecutive time windows
spanning a few seconds (15 sec in our implementation).

It is worth noting that in modern computers the use of flop
counts to model computational cost is not always suitable, as
performance is affected by several factors including vector-
ization, cache access patterns, data locality, etc. However, we
have experimentally verified that in the algorithms considered
here, and for our implementation, the computed flop counts
closely follow the observed runtimes. Specifically, Fig. 2
shows the actual runtime of the hybrid filter, as well as the
value f̄(m) calculated analytically, for a specific trajectory.
We can observe that the two curves are very similar, with the
only significant differences observed at the two “extremes” of
very small or very large m. These regions are less important,
however, as they fall outside the typical operational region of
the hybrid filter. Thus, using f̄(m) as the objective function
to minimize is appropriate.

VI. EXPERIMENTAL RESULTS

A. Simulated data

We generate simulation data that closely match real-world
datasets, to have as realistic a test environment as possible.
Our first simulation environment is based on the dataset
of [26], which consists of a 29.6-km long trajectory through
canyons, forested areas, and a town. We generate a ground
truth trajectory (position, velocity, orientation) that matches
the vehicle’s actual trajectory, as computed by a high-precision
INS system. Using this trajectory, we subsequently generate
IMU measurements corrupted with noise and bias character-
istics identical to those of the Xsens MTi-G sensor used in
the dataset. Moreover, we generate monocular feature tracks
with statistical characteristics similar to those of the features
extracted in the actual dataset. The number of features ob-
served in each image and the feature track distribution change
in each part of the trajectory, as in the actual dataset (see
Fig. 1). Overall, there are 232 features observed in each image
on average, and the average feature track length is 5.6 frames.
The IMU measurements are available at 100 Hz, while the
camera frame rate is 20 Hz, as in the actual dataset. All the
results reported are averages over 50 Monte-Carlo trials.

Fig. 3 plots the results from the application of the hybrid
filter in this setting. Specifically, the top plot shows the average
runtime for each update of the hybrid algorithm. The solid
blue line is the average time when the threshold m is chosen
in advance, and kept constant for the entire trajectory. The red
dashed line denotes the runtime achieved when applying the
optimization process described in Section V, which optimally
chooses the threshold in each time window, to adapt to local
feature properties. This plot shows that, by optimizing the
value of m in real time, we can attain performance higher
than that of any fixed threshold. Note that when m is large,
no features are initialized, and thus the right-most part of the
plot gives the performance of the plain MSCKF (similarly, for
small m we obtain pure EKF-SLAM). Therefore, from this
plot we can see that the optimal hybrid filter has a runtime
37.17% smaller than that of the MSCKF, and 72.8% smaller
than EKF-SLAM.

In the second subplot of Fig. 3 we plot the RMS position
error, averaged over all Monte-Carlo trials and over the dura-
tion of the trajectory. We can observe that the plain MSCKF
results in the highest accuracy. We attribute this to two causes.
First, in the MSCKF features are explicitly marginalized, and
thus no Gaussianity assumptions are needed for the pdf of the
feature position errors (as is the case in SLAM). Second, all the
measurements of each feature are used jointly in the MSCKF,
which means that outliers can be more easily detected, and
better linearization points can be computed. By combining the
MSCKF with EKF-SLAM some accuracy may be lost, as the
errors for the features included in the state vector are now
assumed to be Gaussian. However, we can see that if the size
of the sliding window increases above a moderate value (e.g.,
9 in this case), the change in the accuracy is almost negligible.
Intuitively, when a sufficient number of observations is used to
initialize features, the feature errors’ pdf becomes “Gaussian
enough” and the accuracy of the hybrid filter is very close to
that of the MSCKF. Based on these results, in our optimization
we do not allow the value of m to fall below a certain threshold
(set to 7 in our implementation).

The timing results presented in Fig. 3 are obtained on a
laptop computer with a Core i7 processor at 2.13GHz, and
a single-threaded C++ implementation. Clearly, if the data
were to be processed on this computer, the timing performance
would easily allow for real-time implementation (the hybrid
filter requires fewer than 4 msec per update with optimal
m). However, our primary interest is in implementing pose
estimation on small portable devices. For this reason, we
conducted a second set of tests, in which the data were
processed on a Samsung Galaxy S2 mobile phone, equipped
with a 1.2-GHz Exynos 4210 processor. For these tests, we
ported our C++ implementation to Android using the Android
NDK. The simulation data were produced in a similar way as
described above, by emulating a real-world dataset collected
while driving in a residential area of Riverside, CA. The
vehicle trajectory and statistics of the dataset (e.g., feature
distribution, feature track length, and so on) are different, al-
lowing us to test the proposed algorithm in different situations.
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Fig. 3. Monte-Carlo simulation results: Timing performance and rms position
accuracy of the hybrid filter, for changing values of m. Timing measured on
a laptop computer.
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Fig. 4. Monte-Carlo simulation results: Timing performance and rms position
accuracy of the hybrid filter, for changing values of m. Timing measured on a
Samsung Galaxy S2 mobile phone. Note that the dataset used here is different
from the one used in Fig. 3, hence the different accuracy.

Fig. 4 shows the results of the hybrid filter in this setting.
These results are very similar to what was observed in the first
simulation, with the optimal hybrid filter outperforming each
of the individual algorithms by a wide margin (runtime 45.8%
smaller than the MSCKF, and 55.6% smaller than SLAM).
More importantly, however, we observe that the hybrid filter
is capable of processing the data at real-time speeds, even
on the much less capable processor of the mobile phone.
Specifically, the average time needed for each update of the
hybrid filter with optimally chosen thresholds is 33.78 msec,
corresponding to a rate of 30 images per second. Since the
images are recorded at 20 Hz, this means that the proposed
hybrid estimator is capable of real-time processing, something
that is not possible with the any of the individual methods.
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Fig. 5. The trajectory estimates of the MSCKF, EKF-SLAM, and the hybrid
algorithm in the real-world experiment.

B. Real-world data

In addition to the synthetic datasets described above, we
employed our proposed algorithm for processing the feature
measurements recorded during a real-world experiment. Dur-
ing this experiment an IMU/camera platform was mounted on
top of a car and driven on city streets. The sensors consisted
of an Inertial Science ISIS IMU and a PointGrey Bumblebee2
stereo pair (only a single camera’s images are used). The IMU
provides measurements at 100 Hz, while the camera images
were stored at 10 Hz. Harris feature points are extracted, and
matching is carried out by normalized cross-correlation. The
vehicle trajectory is approximately 5.5 km long, and a total of
7922 images are processed.

In this dataset, to compensate for the low frame rate of
the images, we use lower feature-detection thresholds, which
leads to a larger number of features. Specifically, 540 features
are tracked in each image on average, and the average track
length is 5.06 frames. This substantially increases the overall
computational requirements of all algorithms. When run on
the mobile phone’s processor, the average time per update
is 139 msec for the MSCKF, 774 msec for EKF-SLAM,
and 77 msec for the hybrid filter with optimally selected
thresholds. In Fig. 5 the trajectory estimates for each of the
three methods are plotted on a map of the area where the
experiment took place. We observe that the accuracy of the
MSKCF and the hybrid filter are similar, and substantially
better than that of the EKF-SLAM.

In Fig. 6 we plot the computed values for the optimal
m during the experiment. This figure shows that, due to
the changing properties of the feature tracks’ distribution,
the optimal value varies considerably over time, justifying
the need for periodic re-optimization. As a final remark, we
note that the optimization process itself is computationally
inexpensive. In our implementation, the optimal threshold is
re-computed every 15 sec, and this process takes 0.31 msec,
on average, on the mobile phone. Therefore, the optimization
takes up fewer than 0.003% of the overall processing time,
while resulting in substantial performance gains.
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Fig. 6. The threshold selected via the optimization process for the real-world
experiment.

VII. DISCUSSION AND CONCLUDING REMARKS

In this work, we presented a hybrid MSCKF/SLAM esti-
mator for visual-inertial odometry, as well as a methodology
for optimizing the estimator’s computational efficiency. The
results presented in the preceding section demonstrate that the
proposed algorithm offers dramatic performance gains over
both the MSCKF and EKF-SLAM individually. In all the cases
examined, the algorithm was able to attain runtimes that allow
for real-time performance, even on the low-end (by today’s
standards) processor of a mobile phone. These results validate
the learning-based optimization approach for designing pose
estimation algorithms outlined in Section I.

In this paper we have exclusively focused on optimizing
the performance of the estimator (the estimation “back end”
as it is sometimes called). The “front end” of visual feature
extraction was not considered in this work. Obviously, for real-
time operation on a resource-constrained device both of these
components must be optimized, and this is the subject of our
ongoing work.

As a final remark, we would like to stress that the learning-
based performance optimization approach proposed in this
paper is general, and can be applied to different estimators, and
augmented with additional information. For instance, one can
model the correlations between the track lengths of different
features, which are now assumed independent. Moreover, one
can use additional information (e.g., the distinctiveness of
features) to predict the track length of each feature individ-
ually, or its likelihood of passing the Mahalanobis gating
test. Such improvements will allow further optimization of the
algorithm’s performance.
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