Robotics: Science and Systems 2012
Sydney, NSW, Australia, July 09-13, 2012

E-Graphs: Bootstrapping Planning
with Experience Graphs

Mike Phillips, Benjamin Cohen, Sachin Chitta, Maxim Likhachev

of underlying structure that is under-utilized in motion planning
and mobile manipulation. In domestic environments for example,
walls and shelves are static, large objects such as furniture and
kitchen appliances most of the time do not move and do not
change, and objects are typically placed on a limited number of
support surfaces such as tables, countertops or shelves. Matio
planning for robots operating in such environments should be l
able to exploit this structure to improve its performance with each
execution of a task. In this paper, we develop an online motion
planning approach which learns from its planning episodes (expe-

riences) a graph, anExperience Graph. This graph represents the . . N . . L
underlying connectivity of the space required for the execution are still static for significant periods of time. Similarkgsks

of the mundane tasks performed by the robot. The planner uses tend to have some form of spatial structure, e.g. objects are
the Experience graph to accelerate its planning efforts whenever often found on support surfaces like tables and desks.
possible and gracefully degenerates to planning from scratch This work focuses on learning from experience for motion

if no previous planning experiences can be reused. On the | - o h reli h h thod f
theoretical side, we show that planning with Experience graphs planning. Lur approach relies on a grapn-search method for

is complete and provides bounds on suboptimality with respect Planning that builds aiExperience Graplonline to represent
to the graph that represents the original planning problem. the high-level connectivity of the free space used for the

On the experimental side, we show in simulations and on a encountered planning tasks. New motion planning requests
physical robot that our approach is particularly suitable for reuse this graph as much as possible, accelerating theipgann

higher-dimensional motion planning tasks such as planning for e o .
single-arm manipulation and two armed mobile manipulation. process significantly by eliminating the need for searching

The approach provides significant speedups over planning from large portions of the search-space. While previously encoun
scratch and generates predictable motion plans: motions planned tered motion planning problems can speed up the planner

from start positions that are close to each other, to goal positio® dramatically, it gracefully falls back to searching theganal
that are also close to each other, are similar. In addition, we search-space, adding the newly generated motion to the Ex-

show how the Experience graphs can incorporate solutions from . h. Pl . ith E . hs is theef
other approaches such as human demonstrations, providing an perience graph. Flanning wi Xperience graphs 1S thexeto

easy way of bootstrapping motion p|anning for Comp|ex tasks. Complete. Furthermore, we show that it prOVideS bounds on
sub-optimality with respect to the graph that represen¢s th

|. INTRODUCTION original planning problem. Planning with Experience gmph

Motion planning is essential for robots operating in dynamieads to consistent and predictable solutions for motiam®l
human environments. Tasks like picking and placing objedigquested in similar (but not the same) scenarios, e.g wieen t
and mobile manipulation of larger boxes require the robot @pal states of the robot are close to each other. Our approach
approach and pick up (or place) objects with minimal caisi is particularly useful when the tasks are somewhat repkeatab
with the rest of the environment. Fast performance of motigipatially, e.g. in moving a set of dishes off a particularrteu
planning algorithms in such tasks is critical, to account fdnto a dishwasher. Although the start and goal states woelld b
the speed of operation expected by humans and to accountdiierent for each motion plan, the general motion of moving
sudden changes in the environment. This is especially tfueddish from the counter to the washer would essentially be the
tasks involving higher-dimensional configuration spaeeg, Same each time.
for a two-armed mobile manipulation system (Figlire 1). We provide experimental results demonstrating the use of

At the same time, many of mundane manipulation tasks&ir approach both in simulation and on a real robot. A full-
such as picking and placing various objects in a kitchen apedy planner for the PR2 robot was developed for dual-arm
highly repetitive. It is therefore expected that robotswtilo mobile manipulation tasks using a search-based planner. We
be capable of learning and improving their performance wighow how the use of Experience graphs improves the perfor-
every execution of these repetitive tasks. In particulaibots mance of the planner in this high-dimensional state spaee. W
should be capable of exploiting learned knowledge about thkso present results comparing our planner against a sagnpli
underlying geometric structure in tasks and human envirobased planning approach for tabletop manipulation tasks wi
ments. While human environments can be very dynamic, etge PR2 robot. Finally, we show a preliminary application of
with people walking around, large parts of the environmeixperience graphs to learning by demonstration.

. L It
Abstract—Human environments possess a significant amount “! :
w
-

Fig. 1. Motion planning is often used to compute motions foetipe tasks
such as dual-arm mobile manipulation in a kitchen.

Il. RELATED WORK with new scenarios which might be completely different from

-)) _the ones in the database. Our approach also does not rely
Initial approaches to motion planning focused on planning, gpiect or shape recognition and is thus agnostic to the

from. scratch, i.e. there was no reuse of the information froFBpresentation of the environment, e.g. as a voxel grid or
previous plans. Recently, there has been more work on reys&iqual objects represented using meshes. Although our
of previous information for motion planning, especiallytife 55hr0ach is also comparable to Probabilistic Roadniapsi[8],
context of performance optimization for motion planning in,ci| difference is that Experience Graphs are genefeted
realtime dynamic environments. Lien et. al. [9] present®d g5y pased requests instead of sampling the whole space. We
approach that involved constructing roadmaps for obssacle e 5150 able to provide a bound on the quality of the returned
storing them in a database, and reusing them during motighy,ion, which most sampling-based methods lack. Laatly,
planning. Bruce et. al.L[3] extended the traditional RRYe wijll demonstrate using an example, our approach can be
approach to reuse cached plans and bias the search towgilliqirapped by initial plans generated in different masine
waypomts_ from older plans. Extensions of this approach @Y. using learning from demonstration.
be found in|[17] 5].
In [12], an evolutionary algorithm approach was used to bias I1l. ALGORITHM
RRT search for replanning in dynamic environments towarg\s
the edges of the explored areas, intended to reduce the time
spent on searching parts of the space that have already beef" Experience Graptor E-Graph is a graph formed from
explored. In [177], workspace probability distributions nere the solutions found by the planner for previous planning
automatically learned for certain classes of motion plagni dueries or from demonstrations. We will abbreviate thipbra
problems. The distributions attempted to capture a locall§S G*. The graphG?® is incomparably smaller than graph
optimal weighting of workspace features. G usegl to represent the c_JriginaI planning pr_oblem. At the
Trajectory libraries have seen use for adapting policies f§2Me time, it is representative of the connectivity of thacep
new situations|[15], especially for control of underaceaat €x€rcised by the previously found motions. The key idea of
systems and high-dimensional systems. [Ih [1], new traje‘&'—"’mn'”_g withG¢ is therefore Fo _blas thg search effort;, using
tories in a state space were generated by combining nea?o?pemally constructed heuristic funcnon,.towards flgdm
trajectories, including information about local value éion W2y t0 get onto the grapt® and to remain searchl'nGS
estimates at waypoints. 10 [11], a trajectory library wasdis "ather tharz as much as possible. This avoids exploring large
in combination with an optimal control method for genergtinPOrtions of the original grapli. In the following we explain
a balance controller for a two link robot. Transfer of padigi NOW to do this in a way that guarantees bounds on solution
across tasks, where policies designed for a particulanteske uality with respect to the original grapf.
adapted z?md reused in a new task, We're discu§sead in [16]'8. Definitions and Assumptions
A learning based approach to reuse information from previ- o o))
ous motion plans, the environment, and the types of obstacle First we will list some definitions and notations th'at will
was presented in JetchéV [6]. Here, a high-dimensionalifeatN€lP explain our algorithm. We assume the problem is repre-
vector was used to capture information about the proximi?ﬁmed as a graph where a start and goal state are provided
of the robot to obstacles. After a dimensionality reduction (Sstart, Sgoat) @nd the desired output is a path (sequence of
the feature space, several learning methods includingesea€dges) that connect the start to the goal.
neighbor, locally weighted regression and clustering @edu « G(V¢,E) is a graph modeling the original motion
to predict a good path from the database in a new situation. ~ planning problem, wheré& ¢ is the set of vertices and
The work in [7] is most similar to our work and involves ~ E€ is the set of edges connecting pairs of vertices in
the use of a database of older motion plans. The approach Ve,
uses a bi-directional RRT and tries to draw the search taward « G°(V¢, E) is the E-Graph that our algorithm builds
a path which is most similar to the new motion planning over time G¢ C G).
problem (based on distances to the start, goal and obstaclese c(u,v) is the cost of the edge from vertexto vertexv
The problem of culling a database of paths to find a set ofs ¢ (u,v) is the cost of the edge from vertexto vertex
paths that are most robust with respect to unknown obstacle v in graphG¢
configurations was treated in [2]. Edge costs in the graph are allowed to change over time
The use of a database of motion plans is a key featuiacluding edges being removed and added which happens
of our approach. However, we differ from other approacheghen new obstacles appear or old obstacles disappear). The
in that we attempt to use all the information from previousiore static the graph is, the more benefits our algorithm
searches instead of attempting to pick the most similar provides. The algorithm is based on heuristic search and is
best path. Our approach can reuse parts of the Experietiverefore assumed to take in a heuristic functign(u, v)
Graph even when the start and goal states change. Contesiimating the cost from to v (u,v € V). We assumé“
to other approaches, our approach also gracefully degieserds admissible and consistent. An admissible heuristic neve
to planning from scratch (with no reused information) toldeaverestimates the minimum cost from any state to the goal. A

Overview

consistent heuristic is one that satisfies the triangleuakty, [

hC (s, Sgoal) < c(s,s") + hC (s, Sgoal)- 0-0-0-0-0-00" *
- S1 S
C. Algorithm Detail ' <
The planner maintains two graph@,and G¢. At the high- ..’
level, every time the planner receives a new planning reques S, Py
the findPathfunction is called. It first update§¢ to account Sna™ Sgoa

for edge cost changes and perfor'm Som? precomputatio,ﬂg, 2. A visualization of Equatiof]1. Solid lines are comgbsd edges
Then it calls thecomputePathfunction, which produces a from G, while dashed lines are distances according:to Note thath®

path . This path is then added t6<€. The updateEGraph segments are always _onIy two points long, whil€ segments can be an
function works by updating any edge costsGii that have arbitrary number of points.

changed. If any edges are invalid (e.g. they are now blocke *
by obstacles) they are put into a disabled list. Conversgly, |
an edge in the disabled list now has finite cost it is re-emhble

At this point, the graphG¢ should only contain finite edges. :
A precomputeShortcuts function is then called which can b @« wiwwiwvi . .
used to compute shortcut edges before the search begins. W %
to compute shortcuts are discussed in Sedtibn V. Finally, ou @ef =1 (b) € = 2
heuristich?, which encourages path reuse, is computed.

findPathéstart, Sgoat)
1: update EGraph(sgoat)
2: m = computePath(sstart, Sgoal)
3 GE=Gfun

o Sgoal

(c) e —
updateEGraph(,q:) Fig. 3. Shortestr according toh? asef changes. The dark solid lines are
1: updateChangedCosts() _) paths inG€ while the dark dashed lines are the heuristic’s pattNote as
2: disable edges that are now invalid) € increases, the heuristic prefers to travel®f. The light gray circles and
3: re-enable disabled edges that are now valid lines show the grapli* and the filled in gray circles represent the expanded
4: precomputeShortcuts() states under the guidance of the heuristic.
5: compute heuristi&® according to Equatiof] 1

states, while when on 4% segment a single pair of points
ffices since no real edge between two states is needed for
to be defined.
h The largere€ is, the more we avoid exploring and focus
on traveling on paths i€, Figure[3 demonstrates how this
tyorks. Ase€ increases, it becomes more expensive to travel
off of G¢ causing the heuristic to guide the search along parts
of G¢. In Figure 34, the heuristic ignores the gra@hbecause
without inflating A& at all, following real edges costs (like
those inG¢) will never be the cheaper option. In the other
h®(s0) = men Z min{e®hS (si, si41), ¢ (sisi01)} (1) parts of FigLré:B we can see a“sincrgase,r:he heuristic uses
=0 more and more o&¢. This figure also shows how during the
wherer is a path(sg...sy—1) andsy_1 = Sgoa and € is search, by following old paths, we can avoid obstacles and
a scalar> 1. have far fewer expansions. The expanded states are shown as
Equation[1 is a minimization over a sequence of segmefiilied in gray circles, which change based on how theis
such that each segment is a pair of arbitrary states, € G biased bye¢.
and the cost of this segment is given by the minimum of two The computePathfunction runs weighted A* without re-
things: eithers®h%(s,, s;), the original heuristic inflated by expansions|[13, 10]. Weighted A* uses a parametér >
€, or the cost of an actual least-cost pathGri, provided 1 to inflate the heuristic used by A*. The solution cost is
that s,, s, € GE. guaranteed to be no worse thahtimes the cost of the optimal
In Figure[2, the pathr that minimizes the heuristic containssolution and in practice it runs dramatically faster than A*
a sequence of alternating segments. In reatityan alternate The main modification to Weighted A*, is that in addition to
betweenh® and G¢ segments as many or as few times assing the edges thaf already provides (getSuccessors), we
needed to produce the minimal When there is &¢ segment add two additional types of successos$ortcutsand snap
we can have many states on the segment to connect twomotions The only other change is that instead of using the

Our algorithm’s speed-up comes from being able to reu$
parts of old paths and avoid searching large portions
graphG. To accomplish this we introduce a heuristic whic
intelligently guides the search towat@ when it looks like
following parts of old paths will help the search get close
the goal. We define a new heurisi€ in terms of the given
heuristich® and edges irG¢.

N-1

heuristich®, we use our new heuristic? . Our planner provides a bound on the sub-optimality of
the solution cost. The proof for this bound depends on our

computePath{;;a,¢, Sgoa) heuristic functionh¢ beinge®-consistent.
1: OPEN = i, - . . o
> CLOSED@: 0 Lemma 1. If the original heuristic functioh® is admissible,
3: g(sstart) =0 then the heuristic function? is £¢-consistent.
4: f(sstu,'r‘t) =¥ hg (Sstu'r't) .
5: insertsstqrt iNto OPEN With f(sstart) From Equatior L
6: while sg4; is Not expandedio
7: removes with the smallestf-value fromOPEN he (s) < min{e¥h(s,s"), " (s,8")} + hé(s")
8 inserts in CLOSED
9: S = getSuccessors(s) U shortcuts(s) U snap(s) hg(s) < EghG(S, S/) + e (s’)
10: forall s’ € S do -
11 if s was not visited beforéhen he(s) < e€e(s. s he(s'
12: f(s") =g(s') =0 ()* (’)+ ()
13: end if G i icci
w it g(s') > o(s) + (s, ') ands’ ¢ CLOSED then gThe Last stgp follows fromk“ being admissible. Therefore,
15: g(s') — g(s) + C(S, SQ he is e -consistent.
16: f(s") = g(s') +e¥hé (s - .
17: in(se)rts/ in(to)OPEN \,E,m? f(s') Theorem 2. For a finite graphG, the planner terminates, and
18: end if the solution it returns is guaranteed to be no worse thén:*
19: end for times the optimal solution cost in gragh.
20: end while

Considerh’(s) = hf(s)/ef. W(s) is clearly consistent.
sh d wh di Then, e“hé(s) = ¥ - €h/(s). The proof thate” - €1/ (s)
orteut successors are generated when expanding a alfs 1o Weighted A* (without re-expansions) returninghgat

< :
s € G*. A shoricut successor US.@S to jump to_ a place_ bounded bys® - € times the optimal solution cost follows
much closer tos,,.: (closer according to the heuristic). Thls.ﬁOm [10]

shortcut may use many edges from various previous paths.
The shortcuts allow the planner to quickly get near the goal V. IMPLEMENTATION DETAIL
without having to re-generate paths it has produced beforey, this section we discuss how various parts of the algorithm
Possible shortcuts are discussed in Sedfibn V. could be implemented.

Finally, for environments that can support it, we introduce
shap motionsSometimes, the heuristic may lead the searéh Heuristic
to a minimum at the “closest” point t&:¢ with respect to Some heuristicsh® are derived using dynamic program-
the heuristic, but it may not be a state 6/¥. For example, ming in a lower dimensional state space, such as a 2D Dijkstra
in (z,y,0) navigation, a 2D(x,y) heuristic will create a search for an, 3, #) navigation problem. Alternatively, some
minimum for 2 states with the same x,y but differefit heuristicsh® can be computed in O(1) upon request (e.g.
A problem then arises because there isn't a useful heurisgigclidean distance).
gradient to follow, and therefore, many states will be exfggh In the first case, we can computé by running a Dijkstra
blindly. We borrow the idea oadaptive motion primitivef4] search on the low-dimensional projection@fwith additional
to generate a new action which can snap to a stat&/6n edges fromG¢ connecting the low-dimensional projection of
whenever states;,s; have h%(s;,s;) = 0 ands; € G° the states ifG<. This can be computed with similar efficiency
and s; ¢ G¢. The action is only used if it is valid with to the original heuristic:®, so it doesn’t hurt the planning
respect to the current planning problem (e.g. doesn’'tdmllitimes (this is what we used in our experiments).
with obstacles). As with any other action, it has a cost that i In the second case, tit¢ can be computed by constructing

taken into account during the search. a fully connected graph in the state spaceofvith h“ edges
between them all as well as the edges fréfh and then
IV. THEORETICAL ANALYSIS running Dijkstra’s algorithm on it.

) _In our implementation, we compute the heuristic in an
Our planner provides a guarantee on completeness WHh.demand fashion. Our computation runs Dijkstra’s atbani

respect tax (the original graph representation of the planningst yp until the heuristic of the requested state is contbute
problem). and then suspends until another un-computed heuristic is

Theorem 1. For a finite graph G, our planner terminates and©quested.
finds a path inG that connects theg;.,: and sgoa if ON€ B SpErtcuts

exists. ,
Shortcuts accelerate the search by allowing the search to

Since no edges are removed from the graph (we orthypass retracing an old path (re-expanding the states on it)
add) and we are searching the graph with Weighted A* {a G¢. The algorithm works with or without the shortcuts.
complete planner), if a solution exists on the original grapBasically, the shortcuts are pre-computed edges that conne
our algorithm will find it. all states inG¢ to a very small set of states i@¢. Shortcut

successors can only be generated when expanding a state
s € G¢. There are several obvious choices for choosing thi:
subset. For example, it can contain all states &inthat are
closest to the goal within each connected componer&‘of
The closeness can be definedMy or h¢. In our experiments
we usedh®. Other ways can also be used to compute this
subset of states. It is future work to explore these options.

C. Pre-Computations

Some of the computations a@¢ can be done before the
goal is known. In particular, there are several places in our
algorithm where we need to know the costs of least-cost paths Fig. 4. Full-body planning in a warehouse
between a pair of states {H¢. One example ishortcuts(s) i .)

(line 9 of computePath If stateu € G€ is being expanded and HEr€ Ze, Ye, 2, 0 define the position and yaw of the object
has a shortcut to the stateon the same component @f then N & frame attached _to the robot.. The planner operates _l;lnrect
we need to assign an edge cot, v). In order to do that we N this \{vorkspace (instead of joint space) and uses inverse
need to know the cost of a least-cost path@hfrom u to v. kinematics to map plans or paths back onto the joint angles
These costs can be computed before knowing the goal by usfigPoth arms.¢ represents the redundant degree of freedom
an all-pairs shortest path algorithm like Floyd-Warshahis 1N €ach arm. In the PR2, choosing this redundant degree of
can be done in a separate thread between planning querieé(r?%%dc?m as the upper arm roll joint angle restricts the numbe
well as adding the path from the previous query i6t). To © valid inverse kinematics sqlptlons for a'glvezn to one.
make Floyd-Warshall run faster and to save memory, we cé ¥b, % define the robot's position and yaw in the map frame
also exploit the fact that most of the pathsifi don'tintersect 2ndzs represents the extension of the telescoping spine.
each other in many places. We can therefore compress it into & 3D Dilkstra heuristic is used to plan (backwards) for a
much smaller graph containing only vertices of degfe2 and sphere mscrlbed_ in the_ca_rned object _from |_ts goal p_asrgo
run Floyd-Warshall on it. Then, the cost of a path between affy the start position (this is the low-dimensional projenti
pairz,y € GE is given bymin{c(x, x;)+c(a;, y;)+e(yi, y)}. for the.h.eunstlc). The heunsqc is useful in that it acctsun _
T4y for collisions between the object and obstacles. However, i
does not handle the complex kinematic constraints on the
motion of the object due to the arms, spine,and base and does
not account for collisions between the body of the robot and
the environment. In all experiments” = 2 and<f = 10
resulting in a sub-optimality bound of 20. We chose these

A variety of experiments were run in multiple domains twalues for the parameters (manually) as they provided a good
verify the performance gains produced by our algorithm. Wembination of speed-up and sub-optimality bound. In fitur
compared our approach against Weighted A* without usingork, we will look into ways to automatically reduce the sub-
G¢ as well as with a randomized planner|[14]. The domairgptimality bound as planning time allows. Settia§ to 10
in which this approach was tested includes planning for agfeatly encourages the search to go@6 if it looks like
degree of freedom arm as well as full-body planning for thiellowing it can get it closer to the goal. Settiayj to 2 inflates
PR2 robot (two arms, the telescoping spine and the navigatithe whole heuristic including the part of thé using paths in

(a) Bootstrap goals (b) One of the test sets

Wherez,; € {z1,22} and yle {y1,y2}. z1 andz, are states
with degree# 2 that contain the path on which x resides.
andy, are defined similarly.

VI. EXPERIMENTAL RESULTS

motion of the base). G¢. This encourages the planner to use shortcuts as soon as
_ they become available, preventing it from re-expandingldn o
A. Full Body Planning path. The results were compared against regular Weighted A*

Planning in higher-dimensional spaces can be challengifih € = 20 so that both approaches would have the same
for search-based planners, e.g. full-body planning witbkeot SUb-optimality bound. _ o
like the PR2 can involve up to 18 degrees of freedom. A full- 1) Warehouse scenaridur first scenario is modeled on an
body planning scenario is thus a good test of the capabilitigdustrial warehouses where the robot must pick up objétts o
developed in this work. Our test scenario involves the PREPallet and move them onto a shelving unit (Figlre 4). The
carrying objects in a large environment. We restrict theotsj goals alte.rnate between pe}llet and shelves. Smc;e ourepjann
to be upright in orientation, a constraint that often preserMProves in performance with repeated attempts in a paaticu
itself in real-world tasks like carrying large objects, ysa spat!al region of space, we first bootstrap it with 45 uniftyrm
or liquid containers. We assume that the two end-effectdiistributed goals (split between the pallet and the shiIVee
are rigidly attached to the object. The state space is pgotstrap goals and the resultaift after processing them are
dimensional: shown in Figurd 4a.
A set of 100 random goals (with varying positions and yaws
(TeyYe, 2es By L, PR, Tty Yoy Oby 25) of the object) alternating between the pallet and the skelve

TABLE | TABLE IV

E-GRAPHS ONWAREHOUSEENVIRONMENT (100GOALS PER SEJ 10% MOST DIFFICULT CASES ONWAREHOUSEENVIRONMENT (10 GOALS
Set | mean time(s)| std dev time(s)| mean expand§ mean cost PER SE
T 1.08 177 103 7933 set 1 2 3 4 5
3 1.53 4.58 178 7804
4 1.80 4.70 221 7775
5 1.16 1.97 142 7351
TABLE I

WEIGHTED A* ON WAREHOUSEENVIRONMENT (100 GOALS PER SEJ
Set | mean time(s)| std dev time(s)| mean expand§ mean cost

1 12.12 35.11 1883 4589
2 8.22 23.14 1211 4321
3 134.12 806.11 21792 4590
4 14.25 70.21 2527 4539
5 9.59 37.67 1495 4221

were then specified to the planner. This entire process we
repeated 5 times with’¢ cleared before running each new set
of 100 goals. The statistics from 5 different sets of 100 cand
goals are shown in Tab[@é I. On average, 94% of the edge
on a path produced by our planner were recycled fiGfn
The mean time to updai&® (add the new path and compute
Floyd-Warshall) was 0.74 seconds.

Statistics for the same 5 sets using Weighted A* (with nc
learning) are shown in Table]ll. The data indicates that tht
average planning time for our approach tends to be an order of
magnitude smaller, and the standard deviation is significan
smaller as well.G¢ tends to have a vertex near a new goal.
Therefore, planning time is mostly dominated by having to 2) Kitchen Environment:A second set of tests was run
plan for matching the yaw of the object at the goal, which tHa a simulated kitchen environment. 50 goals were chosen
heuristic provides no information about. It should be nated in locations where object are often found (e.g. tables, €oun
in Set 3, there was one very difficult goal that the Weightegrtops, cabinets, refrigerator, dishwasher). 10 reptatiee
A* approach struggled to solve. The number of expansions gwals were chosen to bootstrap our planner, which was then
these tables reflects the trend in planning times. Finally, ¢ested against the remaining 40 goals. Fidure 5 sh@Wwsoth
average, the path cost from our approach tends to be highéier bootstrapping and after all the goals have been psedes
than from the Weighted A* approach, but no more than twice Table[M shows the results of our experiments. The average
as expensive. planning time for our approach is significantly lower than

Table[ll compares the two approaches further by examinitige Weighted A* approach and again, has a lower standard
the ratio between planning times for Weighted A* and theeviation. This is also reflected in the average number of
E-Graph approach. The data indicates that E-Graph plann@xpansions. Our planner also provides a speed-up of about
times are almost 20 times faster (except in Set 3). TR&.0. The paths from our approach are only a little longen tha
expansion ratio is higher than the planning time ratio,ere that those in the Weighted A*. On average, 82% of the edges
time per expand is spent in the E-Graph approach, since it If4ka path produced by our planner were recycled f@@mThe
to compute shortcut and snap successors. mean time to updat@g (add the new path and compute Floyd-

Table[I¥ compares the 10% hardest goals (the ones tiy¥grshall) was 0.35 _seconds. Finally, the average Weighted A
took the Weighted A* the longest to solve) showing that odf E-Graph time ratio on the 10% hardest cases was 84.53.
approach is over 100 times faster on such difficult goals.

(c) G¢ after test goals (d) G¢ after test goals

Fig. 5. Full-body planning in a kitchen scenario

B. Learning by Demonstration

The high dimensionality of the full-body domain makes it
TABLE llI very easy for the planner to get stuck in large local minima.

WEIGHTED A* TO E-GRAPH RATIOS ON WAREHOUSEENVIRONMENT Thjs s especially true when the heuristic is misleadinghsu
(100GOALS PER SEJ

Set | mean time(s)| std dev time(s)| mean expandg mean cost
1 18.40 39.94 206 0.63 TABLE V
2 17.74 51.24 231 0.60 RESULTS ONKITCHEN ENVIRONMENT (40 GOALS)
3 224.83 1674.12 1562 0.63 mean time(s)| std dev fime(s)] mean expand§ mean cost
4 24.30 155.42 142 0.64 E-Graphs (E) 2.12 6.55 351 5646
5 16.69 72.41 193 0.62 Weighted A* (W) 11.54 20.74 2639 4236
Ratio (W/E) 22.29 38.09 357 0.79

(a) Grasping pipeline setugh) G¢ partway through the
experiment

(a) A demonstrated path (b) G¢ after 12 goals

Fig. 6. Learning by demonstration in a more difficult warehossenario Fig. 7. Tabletop manipulation experiments

TABLE VI TABLE VI

RESULTS ONLEARNING BY DEMONSTRATION (12 GOALS) RESULTS ONTABLETOP MANIPULATION (411GOALS)

mean time(s)| std dev ime(s)| mean expandg mean cost ECEE meag lti:;ne(s) std dg"ogme(s) mea”pra”dS mlel':‘;”gzgSt
E-Graph 1.08 0.63 40 6465 Weighted A* (W) 0.26 0.10 145 109297
SBL (5) 0.24 0.09 N/A N/A
L . . Ratio (W/E) 2.50 123 66 1.03
as when the heuristic implies that the carried object cas pas ratio (SE) 2.44 1.50 N/A N/A

between 2 objects, but the robot's body won't fit throught
this space. Figure_Ba shows an example scenario where, af{¢fihe robot's arms (individually).

picking up an object at the pallet, the goal is to move it 10 | the course of the experiments, statistics for 411 plaginin
a shel_f. The heuristic tries to guide the search faround tf@quests were recorded using Weighted A*, our approach, and
right side of the pole, but the robot's body can't fit througlh yangomized planner (SBL [14]). The results are shown in
and therefore, the search will take incredibly long. Withau Tapie [v1] and Figure7b show&r€ part-way through the
path getting past the pole, our algorithm will not be able Bxperiment. We set® = 2 and=€ = 50 for a sub-optimality
remedy this problem (in our experiments, the regular planngy ,nd of 100. We ran the regular Weighted A* planner with
was unable to solve this scenario in 20 minutes). 0 — 100.

However, if a path were demonstrated, and then added ©Opgp|eyT] shows that we have a speed increase of about
G, our approach could harness this information to reach 8lls 5yer hoth methods. The heuristic computation time §0.1s

the desired goals. We demonstrated such a path through t@lgminates the planning times for both our approach and the
operation in the simulated world. We added this demonsiratweighted A* approach, resulting in a smaller speedup than

path toG¢ by having each recorded waypoint be a vertex Witgxpected by t

a cost represented by the cost function used in our approag, ges on a path produced by our planner were recycled from

Figure[6& shows7* containing this one demonstrated path. ¢ The mean time to updaté€ (add the new path and
After the demonstration, our approach was able to plan to E‘Empute Floyd-Warshall) was 0.12 seconds.

12 goals quickly, as shown in TalfelVI. The resulting graph rhese results show that our approach is competitive with

P g
G© is shown in Figure_8b. On average, 71% of the €dg@§mpjing-based method in terms of planning times. How-
on a path produced by our planner were recycled fiGfn

s P ever, our approach provides explicit cost minimization and
The mean time to updaté* (add the new path and Compmetherefore, some notion of consistency (for similar goals we
Floyd-Warshall) was 0.44 seconds. provide similar paths). FigurE Ba shows the paths of the

While learning by demonstration is not the focus of thigng effector for 40 paths that had similar starts and goals
work, these preliminary results show it as a promising ap-

plication. It is also interesting to note that any path can be
demonstrated regardless of how sub-optimal the qualitus.
planner will use parts of it if possible and return a solution
with a bound on the resulting solution quality.

C. Single Arm Planning e o]
The planner's performance was also tested for tabletop .. ‘

manipulation using the PR2 robot (Figlre 7a). A searchdase * o = s

planner [4] generates safe paths for each of the PR2's 7-DOF P S u

| \
arm.s. SeParateIY' The. goals for the planner are SpeCIﬂeraS th (a) 40 end effector trajectories with (b) One visualized path
position and orientation of the end-effector. Our impletaén gimjjar starts and goals. Our ap-
tion builds on the ROS grasping pipeline to pick up and put proach is in black, while the sam-
down objects on the table in front of the robot. Our approach P'ing approach is in dotted green.
is used during both the pick and place motions to plan paths Fig. 8. E-Graphs provide similar solutions to similar problems

he ratio of expansions. On average, 95% of the

TABLE VI

LENGTH OF40 SIMILAR QUERIES IN TABLETOP MANIPULATION gorithms. |n|_EEE International Conference on Robotics
mean length (m)[std dev length (m) and Automation2008.
E-Graphs 1.378 0.012 [3] J. Bruce and M. Veloso. Real-time randomized path
SBL 1.211 0.178

planning for robot navigation. IEEEE/RSJ International

- Conference on Intelligent Robots and Syste2@92.
(within a 3x3x3cm cube). The dotted green paths are from th %] B.J. Cohen, G. Subramanian, S. Chitta, and

randomized approach while the black are from our approach. M. Likhachev. Planning for manipulation with

Notice that the randomized approach produces highly varyin adaptive motion primitives. IiRobotics and Automation
paths even after shortcutting. On the other hand our approac (ICRA), 2011 IEEE International Conference, @011
consistently provides almost the same path each time (we aITS] D Ferduson N. Kalra. and A. T. Stenz Repla,mning.with

appligq a simple shortcutter to eliminate artifacts frore th rrts. In IEEE International Conference on Robotics and
discritized environment). Table"V]Il shows that our appmtoa Automation May 2006.

h?S only a slight!y I_o'nger path length (for the .en.d effect_or[] Nikolay Jetchev and Marc Toussaint. Trajectory predic-
distance) but a significantly lower standard deviation. Whil tion: Learning to map situations to robot trajectories. In

our planner’s cost function is actually trying to minimizeet IEEE International Conference on Robotics and Automa-
change in joint angles, our average end effector path leisgth tion. 2010

IS:t.'” relelz compet|t|vfeﬂ\1/wth thetsamphn?-b?jsgd erpmr:j. ¢ h?] Xiaoxi Jiang and Marcelo Kallmann. Learning humanoid
IgureLeh snows one of these paths visualized in more detaf. reaching tasks in dynamic environments.|BEE Inter-
VIl. CONCLUSION national Conference on Intelligent Robots and Systems

2007.
In this paper we have presented planning with Experiencgy; | £ kayraki, P. Svestka, J.-C Latombe, and M. H. Over-

Graphs, a ge_neral searqh-based planning method for reu;ing mars. Probabilistic roadmaps for path planning in high-
parts of previous paths in order to speed up future planning g4imensional configuration spacd&EE Transactions on
requests. Our approach is able to do this while still pragdi Robotics and Automatiori2(4):566-580, 1996.
theoretical guarantees on completeness and a bound on g 5 |ien and Y. Lu. Planning motion in environments with

solution quality. The paths our planner uses can be fed back™ gmijar opstacles. IProceedings of the Robotics, Science
from each planning episode in an online fashion to allow 4 Systems Conferenc005.

the planner to get better over time. The paths can also [ti"t’) M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime
demonstrated by a human (or other planner) to allow our = A« \ith provable bounds on sub-optimality. idvances

planner to improve (while still providing a bound on solutio in Neural Information Processing Systems (NIPS) 16
quality). We provided experiments in the robotics domains Cambridge, MA: MIT Press, 2003.

of planning for a 7 DoF arm in tabletop manipulation taskﬁl] C. Liu and C. G. Atkeson.

and full-body planning for the PR2 robot performing mobile using a trajectory library. INEEE/RSJ International
manipulation tasks in warehouse and kitchen scenarios. OUr ~qference on Intelligent Robots and Syste2@99.

comparison against the same search-based planning Metiod g \artin, S. Wright, and J. Sheppard. Offline and online
without E-Graphs showed a speed-up of 1 to 2 orders of © ¢\ tionary bi-directional rrt algorithms for efficiers-r
magnitude. Our comparison against a state of the art sagnplin planning in environments with moving obstacles. In
based approach showed that we are competitive in terms of |EEE Conference on Automation Science and Engineer-
speed, but we yield more consistent paths. ing, 2007.

As future work, we would like to introduce some heuristic?l?,] I. Pohl. First results on the effect of error in heuxsti
for pruning G¢ as it gets large, as well as taking a deeper search.Machine Intelligence5:219-236, 1970.
look at applications in the field of learning by demonstnatio 14] Gildardo Sanchez and Jean claude Latombe. A single-
We are also interested in making this into an anytime search query bi-directional probabilistic roadmap planner with
so that the solution could approach optimality as more tisne i lazy collision checking. Irinternational Symposium on
allowed. Robotics Researct2001.
[15] M. Stolle and C. Atkeson. Policies based on trajectory

)) libraries. InIEEE International Conference on Robotics
[1] C. Atkeson and J. Morimoto. Nonparametric representa- gnq Automation2006.

tion of policies and value functions: A trajectory-baseghg] M. Stolle, H. Tappeiner, J. Chestnutt, and C. Atkeson.
approach. IMdvances in Neural Information Processing — Transfer of policies based on trajectory libraries. In

Systems (NIPSP003. IEEE/RSJ International Conference on Intelligent Robots
[2] Michael S. Branicky, Ross A. Knepper, and James J. gng System2007.

Kuffner. Path and trajectory diversity: Theory and ali17] M. zucker, J. Kuffner, and M. Branicky. Multipartitetsr

. . . _ for rapid replanning in dynamic environments. IEBEE
We thank Willow Garage for their support of this work. Thisearch was | . | Conf Roboti d A .
also sponsored by ARL, under the Robotics CTA program grani M- nternational Conterence on Robotics and Automation

10-2-0016. 2007.

Standing balance control

REFERENCES

	Introduction
	Related Work
	Algorithm
	Overview
	Definitions and Assumptions
	Algorithm Detail

	Theoretical Analysis
	Implementation Detail
	Heuristic
	Shortcuts
	Pre-Computations

	Experimental Results
	Full Body Planning
	Warehouse scenario
	Kitchen Environment

	Learning by Demonstration
	Single Arm Planning

	Conclusion

