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E-Graphs: Bootstrapping Planning
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Abstract—Human environments possess a significant amount
of underlying structure that is under-utilized in motion planning
and mobile manipulation. In domestic environments for example,
walls and shelves are static, large objects such as furniture and
kitchen appliances most of the time do not move and do not
change, and objects are typically placed on a limited number of
support surfaces such as tables, countertops or shelves. Motion
planning for robots operating in such environments should be
able to exploit this structure to improve its performance with each
execution of a task. In this paper, we develop an online motion
planning approach which learns from its planning episodes (expe-
riences) a graph, anExperience Graph. This graph represents the
underlying connectivity of the space required for the execution
of the mundane tasks performed by the robot. The planner uses
the Experience graph to accelerate its planning efforts whenever
possible and gracefully degenerates to planning from scratch
if no previous planning experiences can be reused. On the
theoretical side, we show that planning with Experience graphs
is complete and provides bounds on suboptimality with respect
to the graph that represents the original planning problem.
On the experimental side, we show in simulations and on a
physical robot that our approach is particularly suitable for
higher-dimensional motion planning tasks such as planning for
single-arm manipulation and two armed mobile manipulation.
The approach provides significant speedups over planning from
scratch and generates predictable motion plans: motions planned
from start positions that are close to each other, to goal positions
that are also close to each other, are similar. In addition, we
show how the Experience graphs can incorporate solutions from
other approaches such as human demonstrations, providing an
easy way of bootstrapping motion planning for complex tasks.

I. I NTRODUCTION

Motion planning is essential for robots operating in dynamic
human environments. Tasks like picking and placing objects
and mobile manipulation of larger boxes require the robot to
approach and pick up (or place) objects with minimal collision
with the rest of the environment. Fast performance of motion
planning algorithms in such tasks is critical, to account for
the speed of operation expected by humans and to account for
sudden changes in the environment. This is especially true of
tasks involving higher-dimensional configuration spaces,e.g.
for a two-armed mobile manipulation system ( Figure 1).

At the same time, many of mundane manipulation tasks
such as picking and placing various objects in a kitchen are
highly repetitive. It is therefore expected that robots should
be capable of learning and improving their performance with
every execution of these repetitive tasks. In particular, robots
should be capable of exploiting learned knowledge about the
underlying geometric structure in tasks and human environ-
ments. While human environments can be very dynamic, e.g.
with people walking around, large parts of the environment

Fig. 1. Motion planning is often used to compute motions for repetitive tasks
such as dual-arm mobile manipulation in a kitchen.

are still static for significant periods of time. Similarly,tasks
tend to have some form of spatial structure, e.g. objects are
often found on support surfaces like tables and desks.

This work focuses on learning from experience for motion
planning. Our approach relies on a graph-search method for
planning that builds anExperience Graphonline to represent
the high-level connectivity of the free space used for the
encountered planning tasks. New motion planning requests
reuse this graph as much as possible, accelerating the planning
process significantly by eliminating the need for searching
large portions of the search-space. While previously encoun-
tered motion planning problems can speed up the planner
dramatically, it gracefully falls back to searching the original
search-space, adding the newly generated motion to the Ex-
perience graph. Planning with Experience graphs is therefore
complete. Furthermore, we show that it provides bounds on
sub-optimality with respect to the graph that represents the
original planning problem. Planning with Experience graphs
leads to consistent and predictable solutions for motion plans
requested in similar (but not the same) scenarios, e.g when the
goal states of the robot are close to each other. Our approach
is particularly useful when the tasks are somewhat repeatable
spatially, e.g. in moving a set of dishes off a particular counter
into a dishwasher. Although the start and goal states would be
different for each motion plan, the general motion of moving
a dish from the counter to the washer would essentially be the
same each time.

We provide experimental results demonstrating the use of
our approach both in simulation and on a real robot. A full-
body planner for the PR2 robot was developed for dual-arm
mobile manipulation tasks using a search-based planner. We
show how the use of Experience graphs improves the perfor-
mance of the planner in this high-dimensional state space. We
also present results comparing our planner against a sampling-
based planning approach for tabletop manipulation tasks with
the PR2 robot. Finally, we show a preliminary application of
Experience graphs to learning by demonstration.



II. RELATED WORK

Initial approaches to motion planning focused on planning
from scratch, i.e. there was no reuse of the information from
previous plans. Recently, there has been more work on reuse
of previous information for motion planning, especially inthe
context of performance optimization for motion planning in
realtime dynamic environments. Lien et. al. [9] presented an
approach that involved constructing roadmaps for obstacles,
storing them in a database, and reusing them during motion
planning. Bruce et. al. [3] extended the traditional RRT
approach to reuse cached plans and bias the search towards
waypoints from older plans. Extensions of this approach can
be found in [17, 5].

In [12], an evolutionary algorithm approach was used to bias
RRT search for replanning in dynamic environments towards
the edges of the explored areas, intended to reduce the time
spent on searching parts of the space that have already been
explored. In [17], workspace probability distributions were
automatically learned for certain classes of motion planning
problems. The distributions attempted to capture a locally-
optimal weighting of workspace features.

Trajectory libraries have seen use for adapting policies for
new situations [15], especially for control of underactuated
systems and high-dimensional systems. In [1], new trajec-
tories in a state space were generated by combining nearby
trajectories, including information about local value function
estimates at waypoints. In [11], a trajectory library was used
in combination with an optimal control method for generating
a balance controller for a two link robot. Transfer of policies
across tasks, where policies designed for a particular taskwere
adapted and reused in a new task, were discussed in [16].

A learning based approach to reuse information from previ-
ous motion plans, the environment, and the types of obstacles
was presented in Jetchev [6]. Here, a high-dimensional feature
vector was used to capture information about the proximity
of the robot to obstacles. After a dimensionality reductionin
the feature space, several learning methods including nearest
neighbor, locally weighted regression and clustering are used
to predict a good path from the database in a new situation.

The work in [7] is most similar to our work and involves
the use of a database of older motion plans. The approach
uses a bi-directional RRT and tries to draw the search towards
a path which is most similar to the new motion planning
problem (based on distances to the start, goal and obstacles).
The problem of culling a database of paths to find a set of
paths that are most robust with respect to unknown obstacle
configurations was treated in [2].

The use of a database of motion plans is a key feature
of our approach. However, we differ from other approaches
in that we attempt to use all the information from previous
searches instead of attempting to pick the most similar or
best path. Our approach can reuse parts of the Experience
Graph even when the start and goal states change. Contrary
to other approaches, our approach also gracefully degenerates
to planning from scratch (with no reused information) to deal

with new scenarios which might be completely different from
the ones in the database. Our approach also does not rely
on object or shape recognition and is thus agnostic to the
representation of the environment, e.g. as a voxel grid or
individual objects represented using meshes. Although our
approach is also comparable to Probabilistic Roadmaps [8],a
crucial difference is that Experience Graphs are generatedfrom
task-based requests instead of sampling the whole space. We
are also able to provide a bound on the quality of the returned
solution, which most sampling-based methods lack. Lastly,as
we will demonstrate using an example, our approach can be
bootstrapped by initial plans generated in different manners,
e.g. using learning from demonstration.

III. A LGORITHM

A. Overview

An Experience Graphor E-Graph is a graph formed from
the solutions found by the planner for previous planning
queries or from demonstrations. We will abbreviate this graph
as GE . The graphGE is incomparably smaller than graph
G used to represent the original planning problem. At the
same time, it is representative of the connectivity of the space
exercised by the previously found motions. The key idea of
planning withGE is therefore to bias the search efforts, using
a specially constructed heuristic function, towards finding a
way to get onto the graphGE and to remain searchingGE

rather thanG as much as possible. This avoids exploring large
portions of the original graphG. In the following we explain
how to do this in a way that guarantees bounds on solution
quality with respect to the original graphG.

B. Definitions and Assumptions

First we will list some definitions and notations that will
help explain our algorithm. We assume the problem is repre-
sented as a graph where a start and goal state are provided
(sstart, sgoal) and the desired output is a path (sequence of
edges) that connect the start to the goal.

• G(V G, EG) is a graph modeling the original motion
planning problem, whereV G is the set of vertices and
EG is the set of edges connecting pairs of vertices in
V G.

• GE(V E , EE) is the E-Graph that our algorithm builds
over time (GE ⊆ G).

• c(u, v) is the cost of the edge from vertexu to vertexv
• cE(u, v) is the cost of the edge from vertexu to vertex

v in graphGE

Edge costs in the graph are allowed to change over time
(including edges being removed and added which happens
when new obstacles appear or old obstacles disappear). The
more static the graph is, the more benefits our algorithm
provides. The algorithm is based on heuristic search and is
therefore assumed to take in a heuristic functionhG(u, v)
estimating the cost fromu to v (u, v ∈ V G). We assumehG

is admissible and consistent. An admissible heuristic never
overestimates the minimum cost from any state to the goal. A



consistent heuristic is one that satisfies the triangle inequality,
hG(s, sgoal) ≤ c(s, s′) + hG(s′, sgoal).

C. Algorithm Detail

The planner maintains two graphs,G andGE . At the high-
level, every time the planner receives a new planning request
the findPathfunction is called. It first updatesGE to account
for edge cost changes and perform some precomputations.
Then it calls thecomputePathfunction, which produces a
path π. This path is then added toGE . The updateEGraph
function works by updating any edge costs inGE that have
changed. If any edges are invalid (e.g. they are now blocked
by obstacles) they are put into a disabled list. Conversely,if
an edge in the disabled list now has finite cost it is re-enabled.
At this point, the graphGE should only contain finite edges.
A precomputeShortcuts function is then called which can be
used to compute shortcut edges before the search begins. Ways
to compute shortcuts are discussed in Section V. Finally, our
heuristichE , which encourages path reuse, is computed.

findPath(sstart, sgoal)
1: updateEGraph(sgoal)
2: π = computePath(sstart, sgoal)

3: GE = GE ∪ π

updateEGraph(sgoal)
1: updateChangedCosts()
2: disable edges that are now invalid
3: re-enable disabled edges that are now valid
4: precomputeShortcuts()

5: compute heuristichE according to Equation 1

Our algorithm’s speed-up comes from being able to reuse
parts of old paths and avoid searching large portions of
graphG. To accomplish this we introduce a heuristic which
intelligently guides the search towardGE when it looks like
following parts of old paths will help the search get close to
the goal. We define a new heuristichE in terms of the given
heuristichG and edges inGE .

hE(s0) = min
π

N−1∑

i=0

min{εEhG(si, si+1), c
E(si, si+1)} (1)

whereπ is a path〈s0 . . . sN−1〉 and sN−1 = sgoal and εE is
a scalar≥ 1.

Equation 1 is a minimization over a sequence of segments
such that each segment is a pair of arbitrary statessa, sb ∈ G
and the cost of this segment is given by the minimum of two
things: eitherεEhG(sa, sb), the original heuristic inflated by
εE , or the cost of an actual least-cost path inGE , provided
that sa, sb ∈ GE .

In Figure 2, the pathπ that minimizes the heuristic contains
a sequence of alternating segments. In realityπ can alternate
betweenhG and GE segments as many or as few times as
needed to produce the minimalπ. When there is aGE segment
we can have many statessi on the segment to connect two

Fig. 2. A visualization of Equation 1. Solid lines are composed of edges
from GE , while dashed lines are distances according tohG. Note thathG

segments are always only two points long, whileGE segments can be an
arbitrary number of points.

(a) εE = 1 (b) εE = 2

(c) εE → ∞

Fig. 3. Shortestπ according tohE asεE changes. The dark solid lines are
paths inGE while the dark dashed lines are the heuristic’s pathπ. Note as
εE increases, the heuristic prefers to travel onGE . The light gray circles and
lines show the graphG and the filled in gray circles represent the expanded
states under the guidance of the heuristic.

states, while when on ahG segment a single pair of points
suffices since no real edge between two states is needed for
hG to be defined.

The largerεE is, the more we avoid exploringG and focus
on traveling on paths inGE . Figure 3 demonstrates how this
works. AsεE increases, it becomes more expensive to travel
off of GE causing the heuristic to guide the search along parts
of GE . In Figure 3a, the heuristic ignores the graphGE because
without inflating hG at all, following real edges costs (like
those inGE ) will never be the cheaper option. In the other
parts of Figure 3 we can see asεE increase, the heuristic uses
more and more ofGE . This figure also shows how during the
search, by following old paths, we can avoid obstacles and
have far fewer expansions. The expanded states are shown as
filled in gray circles, which change based on how thehE is
biased byεE .

The computePathfunction runs weighted A* without re-
expansions [13, 10]. Weighted A* uses a parameterεw >
1 to inflate the heuristic used by A*. The solution cost is
guaranteed to be no worse thanεw times the cost of the optimal
solution and in practice it runs dramatically faster than A*.
The main modification to Weighted A*, is that in addition to
using the edges thatG already provides (getSuccessors), we
add two additional types of successors:shortcutsand snap
motions. The only other change is that instead of using the



heuristichG, we use our new heuristichE .

computePath(sstart, sgoal)
1: OPEN = ∅

2: CLOSED = ∅

3: g(sstart) = 0
4: f(sstart) = εwhE(sstart)
5: insertsstart into OPEN with f(sstart)
6: while sgoal is not expandeddo
7: removes with the smallestf -value fromOPEN
8: inserts in CLOSED
9: S = getSuccessors(s) ∪ shortcuts(s) ∪ snap(s)

10: for all s′ ∈ S do
11: if s′ was not visited beforethen
12: f(s′) = g(s′) = ∞

13: end if
14: if g(s′) > g(s) + c(s, s′) ands′ /∈ CLOSED then
15: g(s′) = g(s) + c(s, s′)
16: f(s′) = g(s′) + εwhE(s′)
17: inserts′ into OPEN with f(s′)
18: end if
19: end for

20: end while

Shortcut successors are generated when expanding a state
s ∈ GE . A shortcut successor usesGE to jump to a place
much closer tosgoal (closer according to the heuristic). This
shortcut may use many edges from various previous paths.
The shortcuts allow the planner to quickly get near the goal
without having to re-generate paths it has produced before.
Possible shortcuts are discussed in Section V.

Finally, for environments that can support it, we introduce
snap motions. Sometimes, the heuristic may lead the search
to a minimum at the “closest” point toGE with respect to
the heuristic, but it may not be a state onGE . For example,
in (x, y, θ) navigation, a 2D(x, y) heuristic will create a
minimum for 2 states with the same x,y but differentθ.
A problem then arises because there isn’t a useful heuristic
gradient to follow, and therefore, many states will be expanded
blindly. We borrow the idea ofadaptive motion primitives[4]
to generate a new action which can snap to a state onGE

whenever statessi, sj have hG(si, sj) = 0 and sj ∈ GE

and si /∈ GE . The action is only used if it is valid with
respect to the current planning problem (e.g. doesn’t collide
with obstacles). As with any other action, it has a cost that is
taken into account during the search.

IV. T HEORETICAL ANALYSIS

Our planner provides a guarantee on completeness with
respect toG (the original graph representation of the planning
problem).

Theorem 1. For a finite graph G, our planner terminates and
finds a path inG that connects thesstart and sgoal if one
exists.

Since no edges are removed from the graph (we only
add) and we are searching the graph with Weighted A* (a
complete planner), if a solution exists on the original graph,
our algorithm will find it.

Our planner provides a bound on the sub-optimality of
the solution cost. The proof for this bound depends on our
heuristic functionhE beingεE -consistent.

Lemma 1. If the original heuristic functionhG is admissible,
then the heuristic functionhE is εE -consistent.

From Equation 1

hE(s) ≤ min{εEhG(s, s′), cE(s, s′)}+ hE(s′)

hE(s) ≤ εEhG(s, s′) + hE(s′)

hE(s) ≤ εEc(s, s′) + hE(s′)

The last step follows fromhG being admissible. Therefore,
hE is εE -consistent.

Theorem 2. For a finite graphG, the planner terminates, and
the solution it returns is guaranteed to be no worse thanεw ·εE

times the optimal solution cost in graphG.

Considerh′(s) = hE(s)/εE . h′(s) is clearly consistent.
Then, εwhE(s) = εw · εEh′(s). The proof thatεw · εEh′(s)
leads to Weighted A* (without re-expansions) returning paths
bounded byεw · εE times the optimal solution cost follows
from [10].

V. I MPLEMENTATION DETAIL

In this section we discuss how various parts of the algorithm
could be implemented.

A. Heuristic

Some heuristicshG are derived using dynamic program-
ming in a lower dimensional state space, such as a 2D Dijkstra
search for an (x, y, θ) navigation problem. Alternatively, some
heuristicshG can be computed in O(1) upon request (e.g.
euclidean distance).

In the first case, we can computehE by running a Dijkstra
search on the low-dimensional projection ofG, with additional
edges fromGE connecting the low-dimensional projection of
the states inGE . This can be computed with similar efficiency
to the original heuristichG, so it doesn’t hurt the planning
times (this is what we used in our experiments).

In the second case, thehE can be computed by constructing
a fully connected graph in the state space ofG with hG edges
between them all as well as the edges fromGE and then
running Dijkstra’s algorithm on it.

In our implementation, we compute the heuristichE in an
on-demand fashion. Our computation runs Dijkstra’s algorithm
just up until the heuristic of the requested state is computed
and then suspends until another un-computed heuristic is
requested.

B. Shortcuts

Shortcuts accelerate the search by allowing the search to
bypass retracing an old path (re-expanding the states on it)
in GE . The algorithm works with or without the shortcuts.
Basically, the shortcuts are pre-computed edges that connect
all states inGE to a very small set of states inGE . Shortcut



successors can only be generated when expanding a state
s ∈ GE . There are several obvious choices for choosing this
subset. For example, it can contain all states s inGE that are
closest to the goal within each connected component ofGE .
The closeness can be defined byhG or hE . In our experiments
we usedhG. Other ways can also be used to compute this
subset of states. It is future work to explore these options.

C. Pre-Computations

Some of the computations onGE can be done before the
goal is known. In particular, there are several places in our
algorithm where we need to know the costs of least-cost paths
between a pair of states inGE . One example isshortcuts(s)
(line 9 ofcomputePath). If stateu ∈ GE is being expanded and
has a shortcut to the statev on the same component inGE then
we need to assign an edge costc(u, v). In order to do that we
need to know the cost of a least-cost path onGE from u to v.
These costs can be computed before knowing the goal by using
an all-pairs shortest path algorithm like Floyd-Warshall.This
can be done in a separate thread between planning queries (as
well as adding the path from the previous query intoGE ). To
make Floyd-Warshall run faster and to save memory, we can
also exploit the fact that most of the paths inGE don’t intersect
each other in many places. We can therefore compress it into a
much smaller graph containing only vertices of degree6= 2 and
run Floyd-Warshall on it. Then, the cost of a path between any
pairx, y ∈ GE is given bymin

xi,yi

{c(x, xi)+c(xi, yi)+c(yi, y)}.

Wherexi ∈ {x1, x2} andyi ∈ {y1, y2}. x1 andx2 are states
with degree6= 2 that contain the path on which x resides.y1
andy2 are defined similarly.

VI. EXPERIMENTAL RESULTS

A variety of experiments were run in multiple domains to
verify the performance gains produced by our algorithm. We
compared our approach against Weighted A* without using
GE as well as with a randomized planner [14]. The domains
in which this approach was tested includes planning for a 7
degree of freedom arm as well as full-body planning for the
PR2 robot (two arms, the telescoping spine and the navigation
motion of the base).

A. Full Body Planning

Planning in higher-dimensional spaces can be challenging
for search-based planners, e.g. full-body planning with a robot
like the PR2 can involve up to 18 degrees of freedom. A full-
body planning scenario is thus a good test of the capabilities
developed in this work. Our test scenario involves the PR2
carrying objects in a large environment. We restrict the objects
to be upright in orientation, a constraint that often presents
itself in real-world tasks like carrying large objects, trays,
or liquid containers. We assume that the two end-effectors
are rigidly attached to the object. The state space is 10
dimensional:

〈xe, ye, ze, θe, φL, φR, xb, yb, θb, zs〉

(a) Bootstrap goals (b) One of the test sets

Fig. 4. Full-body planning in a warehouse

Here xe, ye, ze, θe define the position and yaw of the object
in a frame attached to the robot. The planner operates directly
in this workspace (instead of joint space) and uses inverse
kinematics to map plans or paths back onto the joint angles
of both arms.φ represents the redundant degree of freedom
in each arm. In the PR2, choosing this redundant degree of
freedom as the upper arm roll joint angle restricts the number
of valid inverse kinematics solutions for a givenφ to one.
xb, yb, θb define the robot’s position and yaw in the map frame
andzs represents the extension of the telescoping spine.

A 3D Dijkstra heuristic is used to plan (backwards) for a
sphere inscribed in the carried object from its goal position
to the start position (this is the low-dimensional projection
for the heuristic). The heuristic is useful in that it accounts
for collisions between the object and obstacles. However, it
does not handle the complex kinematic constraints on the
motion of the object due to the arms, spine,and base and does
not account for collisions between the body of the robot and
the environment. In all experiments,εw = 2 and εE = 10
resulting in a sub-optimality bound of 20. We chose these
values for the parameters (manually) as they provided a good
combination of speed-up and sub-optimality bound. In future
work, we will look into ways to automatically reduce the sub-
optimality bound as planning time allows. SettingεE to 10
greatly encourages the search to go toGE if it looks like
following it can get it closer to the goal. Settingεw to 2 inflates
the whole heuristic including the part of thehE using paths in
GE . This encourages the planner to use shortcuts as soon as
they become available, preventing it from re-expanding an old
path. The results were compared against regular Weighted A*
with εw = 20 so that both approaches would have the same
sub-optimality bound.

1) Warehouse scenario:Our first scenario is modeled on an
industrial warehouses where the robot must pick up objects off
a pallet and move them onto a shelving unit (Figure 4). The
goals alternate between pallet and shelves. Since our planner
improves in performance with repeated attempts in a particular
spatial region of space, we first bootstrap it with 45 uniformly
distributed goals (split between the pallet and the shelves). The
bootstrap goals and the resultantGE after processing them are
shown in Figure 4a.

A set of 100 random goals (with varying positions and yaws
of the object) alternating between the pallet and the shelves



TABLE I
E-GRAPHS ONWAREHOUSEENVIRONMENT (100 GOALS PER SET)

Set mean time(s) std dev time(s) mean expands mean cost
1 1.08 1.77 103 7933
2 1.26 3.18 150 7806
3 1.53 4.58 178 7804
4 1.80 4.70 221 7775
5 1.16 1.97 142 7351

TABLE II
WEIGHTED A* ON WAREHOUSEENVIRONMENT (100 GOALS PER SET)

Set mean time(s) std dev time(s) mean expands mean cost
1 12.12 35.11 1883 4589
2 8.22 23.14 1211 4321
3 134.12 806.11 21792 4590
4 14.25 70.21 2527 4539
5 9.59 37.67 1495 4221

were then specified to the planner. This entire process was
repeated 5 times withGE cleared before running each new set
of 100 goals. The statistics from 5 different sets of 100 random
goals are shown in Table I. On average, 94% of the edges
on a path produced by our planner were recycled fromGE .
The mean time to updateGE (add the new path and compute
Floyd-Warshall) was 0.74 seconds.

Statistics for the same 5 sets using Weighted A* (with no
learning) are shown in Table II. The data indicates that the
average planning time for our approach tends to be an order of
magnitude smaller, and the standard deviation is significantly
smaller as well.GE tends to have a vertex near a new goal.
Therefore, planning time is mostly dominated by having to
plan for matching the yaw of the object at the goal, which the
heuristic provides no information about. It should be notedthat
in Set 3, there was one very difficult goal that the Weighted
A* approach struggled to solve. The number of expansions in
these tables reflects the trend in planning times. Finally, on
average, the path cost from our approach tends to be higher
than from the Weighted A* approach, but no more than twice
as expensive.

Table III compares the two approaches further by examining
the ratio between planning times for Weighted A* and the
E-Graph approach. The data indicates that E-Graph planning
times are almost 20 times faster (except in Set 3). The
expansion ratio is higher than the planning time ratio, i.e.more
time per expand is spent in the E-Graph approach, since it has
to compute shortcut and snap successors.

Table IV compares the 10% hardest goals (the ones that
took the Weighted A* the longest to solve) showing that our
approach is over 100 times faster on such difficult goals.

TABLE III
WEIGHTED A* TO E-GRAPH RATIOS ON WAREHOUSEENVIRONMENT

(100 GOALS PER SET)

Set mean time(s) std dev time(s) mean expands mean cost
1 18.40 39.94 206 0.63
2 17.74 51.24 231 0.60
3 224.83 1674.12 1562 0.63
4 24.30 155.42 142 0.64
5 16.69 72.41 193 0.62

TABLE IV
10% MOST DIFFICULT CASES ONWAREHOUSEENVIRONMENT (10 GOALS

PER SET)
Set 1 2 3 4 5

Mean Time Ratio 122.68 128.12 2157.14 200.80 112.17

(a) GE after bootstrap goals (b) GE after bootstrap goals

(c) GE after test goals (d) GE after test goals

Fig. 5. Full-body planning in a kitchen scenario

2) Kitchen Environment:A second set of tests was run
in a simulated kitchen environment. 50 goals were chosen
in locations where object are often found (e.g. tables, coun-
tertops, cabinets, refrigerator, dishwasher). 10 representative
goals were chosen to bootstrap our planner, which was then
tested against the remaining 40 goals. Figure 5 showsGE both
after bootstrapping and after all the goals have been processed.

Table V shows the results of our experiments. The average
planning time for our approach is significantly lower than
the Weighted A* approach and again, has a lower standard
deviation. This is also reflected in the average number of
expansions. Our planner also provides a speed-up of about
20.0. The paths from our approach are only a little longer than
that those in the Weighted A*. On average, 82% of the edges
on a path produced by our planner were recycled fromGE . The
mean time to updateGE (add the new path and compute Floyd-
Warshall) was 0.35 seconds. Finally, the average Weighted A*
to E-Graph time ratio on the 10% hardest cases was 84.53.

B. Learning by Demonstration

The high dimensionality of the full-body domain makes it
very easy for the planner to get stuck in large local minima.
This is especially true when the heuristic is misleading, such

TABLE V
RESULTS ONK ITCHEN ENVIRONMENT (40 GOALS)

mean time(s) std dev time(s) mean expands mean cost
E-Graphs (E) 2.12 6.55 351 5646

Weighted A* (W) 11.54 20.74 2639 4236
Ratio (W/E) 22.29 38.09 357 0.79



(a) A demonstrated path (b) GE after 12 goals

Fig. 6. Learning by demonstration in a more difficult warehousescenario

TABLE VI
RESULTS ONLEARNING BY DEMONSTRATION (12 GOALS)

mean time(s) std dev time(s) mean expands mean cost
E-Graph 1.08 0.63 40 6465

as when the heuristic implies that the carried object can pass
between 2 objects, but the robot’s body won’t fit throught
this space. Figure 6a shows an example scenario where, after
picking up an object at the pallet, the goal is to move it to
a shelf. The heuristic tries to guide the search around the
right side of the pole, but the robot’s body can’t fit through
and therefore, the search will take incredibly long. Without a
path getting past the pole, our algorithm will not be able to
remedy this problem (in our experiments, the regular planner
was unable to solve this scenario in 20 minutes).

However, if a path were demonstrated, and then added to
GE , our approach could harness this information to reach all
the desired goals. We demonstrated such a path through tele-
operation in the simulated world. We added this demonstrated
path toGE by having each recorded waypoint be a vertex with
a cost represented by the cost function used in our approach.
Figure 6a showsGE containing this one demonstrated path.

After the demonstration, our approach was able to plan to all
12 goals quickly, as shown in Table VI. The resulting graph
GE is shown in Figure 6b. On average, 71% of the edges
on a path produced by our planner were recycled fromGE .
The mean time to updateGE (add the new path and compute
Floyd-Warshall) was 0.44 seconds.

While learning by demonstration is not the focus of this
work, these preliminary results show it as a promising ap-
plication. It is also interesting to note that any path can be
demonstrated regardless of how sub-optimal the quality is.Our
planner will use parts of it if possible and return a solution
with a bound on the resulting solution quality.

C. Single Arm Planning

The planner’s performance was also tested for tabletop
manipulation using the PR2 robot (Figure 7a). A search-based
planner [4] generates safe paths for each of the PR2’s 7-DOF
arms separately. The goals for the planner are specified as the
position and orientation of the end-effector. Our implementa-
tion builds on the ROS grasping pipeline to pick up and put
down objects on the table in front of the robot. Our approach
is used during both the pick and place motions to plan paths

(a) Grasping pipeline setup(b) GE partway through the
experiment

Fig. 7. Tabletop manipulation experiments

TABLE VII
RESULTS ONTABLETOP MANIPULATION (411 GOALS)

mean time(s) std dev time(s) mean expands mean cost
E-Graphs (E) 0.13 0.07 4 117349

Weighted A* (W) 0.26 0.10 145 109297
SBL (S) 0.24 0.09 N/A N/A

Ratio (W/E) 2.50 1.23 66 1.03
Ratio (S/E) 2.44 1.50 N/A N/A

for the robot’s arms (individually).
In the course of the experiments, statistics for 411 planning

requests were recorded using Weighted A*, our approach, and
a randomized planner (SBL [14]). The results are shown in
Table VII and Figure 7b showsGE part-way through the
experiment. We setεw = 2 andεE = 50 for a sub-optimality
bound of 100. We ran the regular Weighted A* planner with
εw = 100.

Table VII shows that we have a speed increase of about
2.5 over both methods. The heuristic computation time (0.1s)
dominates the planning times for both our approach and the
Weighted A* approach, resulting in a smaller speedup than
expected by the ratio of expansions. On average, 95% of the
edges on a path produced by our planner were recycled from
GE . The mean time to updateGE (add the new path and
compute Floyd-Warshall) was 0.12 seconds.

These results show that our approach is competitive with
sampling-based method in terms of planning times. How-
ever, our approach provides explicit cost minimization and
therefore, some notion of consistency (for similar goals we
provide similar paths). Figure 8a shows the paths of the
end effector for 40 paths that had similar starts and goals

(a) 40 end effector trajectories with
similar starts and goals. Our ap-
proach is in black, while the sam-
pling approach is in dotted green.

(b) One visualized path

Fig. 8. E-Graphs provide similar solutions to similar problems



TABLE VIII
LENGTH OF40 SIMILAR QUERIES IN TABLETOP MANIPULATION

mean length (m) std dev length (m)
E-Graphs 1.378 0.012

SBL 1.211 0.178

(within a 3x3x3cm cube). The dotted green paths are from the
randomized approach while the black are from our approach.
Notice that the randomized approach produces highly varying
paths even after shortcutting. On the other hand our approach
consistently provides almost the same path each time (we also
applied a simple shortcutter to eliminate artifacts from the
discritized environment). Table VIII shows that our approach
has only a slightly longer path length (for the end effector
distance) but a significantly lower standard deviation. While
our planner’s cost function is actually trying to minimize the
change in joint angles, our average end effector path lengthis
still relatively competitive with the sampling-based approach.
Figure 8b shows one of these paths visualized in more detail.

VII. C ONCLUSION

In this paper we have presented planning with Experience
Graphs, a general search-based planning method for reusing
parts of previous paths in order to speed up future planning
requests. Our approach is able to do this while still providing
theoretical guarantees on completeness and a bound on the
solution quality. The paths our planner uses can be fed back
from each planning episode in an online fashion to allow
the planner to get better over time. The paths can also be
demonstrated by a human (or other planner) to allow our
planner to improve (while still providing a bound on solution
quality). We provided experiments in the robotics domains
of planning for a 7 DoF arm in tabletop manipulation tasks
and full-body planning for the PR2 robot performing mobile
manipulation tasks in warehouse and kitchen scenarios. Our
comparison against the same search-based planning method
without E-Graphs showed a speed-up of 1 to 2 orders of
magnitude. Our comparison against a state of the art sampling
based approach showed that we are competitive in terms of
speed, but we yield more consistent paths.

As future work, we would like to introduce some heuristics
for pruning GE as it gets large, as well as taking a deeper
look at applications in the field of learning by demonstration.
We are also interested in making this into an anytime search
so that the solution could approach optimality as more time is
allowed.
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