
Batch Continuous-Time Trajectory Estimation as
Exactly Sparse Gaussian Process Regression

Timothy D. Barfoot
University of Toronto, Canada

<tim.barfoot@utoronto.ca>

Chi Hay Tong
University of Oxford, UK

<chi@robots.ox.ac.uk>

Simo Särkkä
Aalto University, Finland

<simo.sarkka@aalto.fi>

Abstract—In this paper, we revisit batch state estimation
through the lens of Gaussian process (GP) regression. We consider
continuous-discrete estimation problems wherein a trajectory is
viewed as a one-dimensional GP, with time as the independent
variable. Our continuous-time prior can be defined by any linear,
time-varying stochastic differential equation driven by white
noise; this allows the possibility of smoothing our trajectory
estimates using a variety of vehicle dynamics models (e.g.,
‘constant-velocity’). We show that this class of prior results in an
inverse kernel matrix (i.e., covariance matrix between all pairs
of measurement times) that is exactly sparse (block-tridiagonal)
and that this can be exploited to carry out GP regression (and
interpolation) very efficiently. Though the prior is continuous,
we consider measurements to occur at discrete times. When the
measurement model is also linear, this GP approach is equivalent
to classical, discrete-time smoothing (at the measurement times).
When the measurement model is nonlinear, we iterate over
the whole trajectory (as is common in vision and robotics) to
maximize accuracy. We test the approach experimentally on a
simultaneous trajectory estimation and mapping problem using
a mobile robot dataset.

I. INTRODUCTION

Probabilistic state estimation has been a core topic in
mobile robotics since the 1980s [11, 39, 40], often as part of
the simultaneous localization and mapping (SLAM) problem
[2, 10]. Early work in estimation theory focused on recursive
(as opposed to batch) formulations [23], and this was mirrored
in the formulation of SLAM as a filtering problem [40].
However, despite the fact that continuous-time estimation
techniques have been available since the 1960s [20, 24],
trajectory estimation for mobile robots has been formulated
almost exclusively in discrete time.

Lu and Milios [30] showed how to formulate SLAM
as a batch estimation problem incorporating both odometry
measurements (to smooth solutions) as well as landmark
measurements. This can be viewed as a generalization of
bundle adjustment [5, 38], which did not incorporate odometry.
Today, batch approaches in mobile robotics are commonplace
(e.g., GraphSLAM by Thrun and Montemerlo [44]). Kaess
et al. [21] show how batch solutions can be efficiently updated
as new measurements are gathered and Strasdat et al. [43]
show that batch methods are able to achieve higher accuracy
than their filtering counterparts, for the same computational
cost. Most of these results are formulated in discrete time.

Discrete-time representations of robot trajectories are suf-
ficient in many situations, but they do not work well when
estimating motion from certain types of sensors (e.g., rolling-
shutter cameras and scanning laser-rangefinders) and sensor

t1 t2

tM
tM�1

⌧

continuous-time
Gaussian process prior

asynchronous
measurement times

x(t) ⇠ GP (µ(t), K(t, t0))

ti

ti+1· · ·

···

ti�1 ?
query time
x(⌧) =t0

Fig. 1: To carry out batch trajectory estimation, we use GP
regression with a smooth, continuous-time prior and discrete-
time measurements. This allows us to query the trajectory at
any time of interest, τ .

combinations (e.g., high datarate, asynchronous). In these
cases, a smooth, continuous-time representation of the trajec-
tory is more suitable. For example, in the case of estimating
motion from a scanning-while-moving sensor, a discrete-time
approach (with no motion prior) can fail to find a unique
solution; something is needed to tie together the observations
acquired at many unique timestamps. Additional sensors (e.g.,
odometry or inertial measurements) could be introduced to
serve in this role, but this may not always be possible. In
these cases, a motion prior can be used instead (or as well),
which is most naturally expressed in continuous time.

One approach to continuous-time trajectory representation
is to use interpolation (e.g., linear, spline) directly between
nearby discrete poses [3, 4, 9, 15, 19, 29]. Instead, we
choose to represent the trajectory nonparametrically as a one-
dimensional Gaussian process (GP) [33], with time as the
independent variable (see Figure 1). Tong et al. [45, 46] show
that querying the state of the robot at a time of interest can
be viewed as a nonlinear, GP regression problem. While their
approach is very general, allowing a variety of GP priors over
robot trajectories, it is also quite expensive due to the need to
invert a large, dense kernel matrix.

While GPs have also been used in robotic state estimation
to accomplish dimensionality reduction [13, 14, 27] and to
represent the measurement and motion models [7, 25, 26],
these uses are quite different than representing the latent robot
trajectory as a GP [45, 46].

In this paper, we consider a particular class of GPs (gen-
erated by linear, time-varying (LTV) stochastic differential

equations (SDE) driven by white noise) whereupon the inverse
kernel matrix is exactly sparse (block-tridiagonal) and can
be derived in closed form. Concentrating on this class of
covariance functions results in only a minor loss of generality,
because many commonly used covariance functions such the
Matérn class and the squared exponential covariance function
can be exactly or approximately represented as linear SDEs
[17, 37, 41]. We provide an example of this relationship at the
end of this paper. The resulting sparsity allows the approach
of Tong et al. [45, 46] to be implemented very efficiently. The
intuition behind why this is possible is that the state we are
estimating is Markovian for this class of GPs, which implies
that the corresponding precision matrices are sparse [28].

This sparsity property has been exploited in estimation the-
ory to allow recursive methods (both filtering and smoothing)
since the 1960s [23, 24]. The tracking literature, in particular,
has made heavy use of motion priors (in both continuous
and discrete time) and has exploited the Markov property
for efficient solutions [31]. In vision and robotics, discrete-
time batch methods commonly exploit this sparsity property
as well [47]. In this paper, we make the (retrospectively
obvious) observation that this sparsity can also be exploited in
a batch, continuous-time context. The result is that we derive a
principled method to construct trajectory-smoothing terms for
batch optimization (or factors in a factor-graph representation)
based on a class of useful motion models; this paves the way
to incorporate vehicle dynamics models, including exogenous
inputs, to help with trajectory estimation.

Therefore, our main contribution is to emphasize the strong
connection between classical estimation theory and machine
learning via GP regression. We use the fact that the inverse
kernel matrix is sparse for a class of useful GP priors [28, 37]
in a new way to efficiently implement nonlinear, GP regression
for batch, continuous-time trajectory estimation. We also show
that this naturally leads to a subtle generalization of SLAM
that we call simultaneous trajectory estimation and mapping
(STEAM), with the difference being that chains of discrete
poses are replaced with Markovian trajectories in order to
incorporate continuous-time motion priors in an efficient way.
Finally, by using this GP paradigm, we are able to exploit the
classic GP interpolation approach to query the trajectory at
any time of interest in an efficient manner.

This ability to query the trajectory at any time of interest
in a principled way could be useful in a variety of situations.
For example, Newman et al. [32] mapped a large urban area
using a combination of stereo vision and laser rangefinders; the
motion was estimated using the camera and the laser data were
subsequently placed into a three-dimensional map based on
this estimated motion. Our method could provide a seamless
means to (i) estimate the camera trajectory and then (ii) query
this trajectory at every laser acquisition time.

The paper is organized as follows. Section II summarizes the
general approach to batch state estimation via GP regression.
Section III describes the particular class of GPs we use and
elaborates on our main result concerning sparsity. Section IV
demonstrates this main result on a mobile robot example using

a ‘constant-velocity’ prior and compares the computational
cost to methods that do not exploit the sparsity. Section V
provides some discussion and Section VI concludes the paper.

II. GAUSSIAN PROCESS REGRESSION

We take a Gaussian-process-regression approach to state
estimation. This allows us to (i) represent trajectories in
continuous time (and therefore query the solution at any time
of interest), and (ii) optimize our solution by iterating over
the entire trajectory (recursive methods typically iterate at a
single timestep).

We will consider systems with a continuous-time, GP pro-
cess model and a discrete-time, nonlinear measurement model:

x(t) ∼ GP(µ(t),K(t, t′)), t0 < t, t′ (1)
yi = g(x(ti)) + ni, t1 < · · · < tM , (2)

where x(t) is the state, µ(t) is the mean function, K(t, t′) is
the covariance function, yi are measurements, ni ∼ N (0,Ri)
is Gaussian measurement noise, g(·) is a nonlinear measure-
ment model, and t1 < . . . < tM is a sequence of measurement
times. For the moment, we do not consider the STEAM
problem (i.e., the state does not include landmarks), but we
will return to this case in our example later.

We follow the approach of Tong et al. [46] to set up our
batch, GP state estimation problem. We will first assume
that we want to query the state at the measurement times,
and will return to querying at other times later on. We
start with an initial guess, x̄, for the trajectory that will be
improved iteratively. At each iteration, we solve for the optimal
perturbation, δx?, to our guess using GP regression, with our
measurement model linearized about the current best guess.

If we let x = x̄ + δx, the joint likelihood between the state
perturbation and the measurements (both at the measurement
times) is

p

([
δx
y

])
= N

([
µ− x̄

g + C(µ− x̄)

]
,

[K KCT

CKT CKCT + R

])
,

(3)
where

δx =

 δx(t0)
...

δx(tM)

 , x̄ =

 x̄(t0)
...

x̄(tM)

 , µ =

 µ(t0)
...

µ(tM)

 ,
y =

 y1

...
yM

 , g =

 g(x̄(t1))
...

g(x̄(tM))

 , C =
∂g
∂x

∣∣∣∣
x̄
,

R = diag (R1, . . . ,RM) , K =
[
K(ti, tj)

]
ij
.

Note, we have linearized the measurement model about our
best guess so far. We then have that

p(δx|y) = N
((K−1 + CTR−1C

)−1 (K−1(µ− x̄)

+ CTR−1(y− g)
)
,
(K−1 + CTR−1C

)−1)
, (4)

or, by rearranging the mean expression using the Sherman-
Morrison-Woodbury identity, we have a linear system for δx?

(the mean of the perturbation):(K−1 + CTR−1C
)
δx? = K−1(µ− x̄)+CTR−1(y−g), (5)

which can be viewed as the solution to the associated maxi-
mum a posteriori (MAP) problem. We know that the CTR−1C
term in (5) is block-diagonal (assuming each measurement
depends on the state at a single time), but in general K−1
could be dense, depending on the choice of GP prior. At each
iteration, we solve for δx? and then update the guess according
to x̄← x̄+δx?. This is effectively Gauss-Newton optimization
over the whole trajectory.

We may want to also query the state at some other time(s)
of interest (in addition to the measurement times). Though
we could jointly estimate the trajectory at the measurement
and query times, a better idea is to use GP interpolation after
the solution at the measurement times converges [33, 46] (see
Section III-D for more details). GP interpolation automatically
picks the correct interpolation scheme for a given prior; it
arrives at the same answer as the joint approach (in the linear
case), but at lower computational cost.

In general, this GP approach has complexity O(M3 +
M2N), where M is the number of measurement times and N
is the number of query times (the initial solve is O(M3) and
the query is O(M2N)). This is quite expensive, and therefore
we will seek to improve the cost by exploiting the structure
of the matrices involved under a particular class of GP priors.

III. A CLASS OF EXACTLY SPARSE GP PRIORS

A. Linear, Time-Varying Stochastic Differential Equations

We now show that the inverse kernel matrix is exactly sparse
for a particular class of useful GP priors. We consider GPs
generated by linear, time-varying (LTV) stochastic differential
equations (SDE) of the form

ẋ(t) = A(t)x(t) + v(t) + F(t)w(t), (6)

where x(t) is the state, v(t) is a (known) exogenous input,
w(t) is white process noise, and A(t), F(t) are time-varying
system matrices. The process noise is given by

w(t) ∼ GP(0,QC δ(t− t′)), (7)

a (stationary) zero-mean Gaussian process (GP) with (sym-
metric, positive-definite) power-spectral density matrix, QC ,
and δ(·) is the Dirac delta function.

The general solution to this LTV SDE [31, 42] is

x(t) = Φ(t, t0)x(t0)+

∫ t

t0

Φ(t, s) (v(s) + F(s)w(s)) ds, (8)

where Φ(t, s) is known as the transition matrix. From this
model, we seek the mean and covariance functions for x(t).

B. Mean Function

For the mean function, we take the expected value of (8):

µ(t) = E[x(t)] = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)v(s) ds, (9)

where µ0 = µ(t0) is the initial value of the mean. If we now
have a sequence of measurement times, t0 < t1 < t2 < · · · <
tM , then we can write the mean at these times in lifted form
as

µ = Av, (10)

where

µ =

µ(t0)
µ(t1)

...
µ(tM)

 , v =

µ0

v1

...
vM

 , vi =

∫ ti

ti−1

Φ(ti, s)v(s) ds,

(11)

A =

1 0 · · · 0 0
Φ(t1, t0) 1 · · · 0 0

Φ(t2, t0) Φ(t2, t1)
. . .

...
...

...
...

. . . 0 0
Φ(tM−1, t0) Φ(tM−1, t1) · · · 1 0
Φ(tM , t0) Φ(tM , t1) · · · Φ(tM , tM−1) 1

.

Note that A, the lifted transition matrix, is lower-triangular.
We arrive at this form by simply splitting up (9) into a sum
of integrals between each pair of measurement times.

C. Covariance Function
For the covariance function, we take the second moment

of (8) to arrive at

K(t, t′) = E
[
(x(t) − µ(t))(x(t′) − µ(t′))T

]
(12)

= Φ(t, t0)K0Φ(t′, t0)T

+

∫ min(t,t′)

t0

Φ(t, s)F(s)QCF(s)TΦ(t′, s)T ds,

where K0 is the initial covariance at t0 and we have assumed
E[x(t0)w(t)T] = 0. Using a sequence of measurement times,
t0 < t1 < t2 < · · · < tM , we can write the covariance
between two times as

K(ti, tj) =

Φ(ti, tj)

(∑j
n=0 Φ(tj , tn)QnΦ(tj , tn)T

)
tj < ti∑i

n=0 Φ(ti, tn)QnΦ(ti, tn)T ti = tj(∑i
n=0 Φ(ti, tn)QnΦ(ti, tn)T

)
Φ(tj , ti)

T ti < tj
(13)

where

Qi =

∫ ti

ti−1

Φ(ti, s)F(s)QCF(s)TΦ(ti, s)
T ds, (14)

for i = 1 . . .M and Q0 = K0 (to keep the notation simple).
Given this preparation, we are now ready to state the main
sparsity result that we will exploit in the rest of the paper.

Lemma 1. Let t0 < t1 < t2 < · · · < tM be a monotonically
increasing sequence of time values. Using (13), we define the
(M + 1)× (M + 1) kernel matrix (i.e., the prior covariance
matrix between all pairs of times), K = [K(ti, tj)]ij . Then,
we can factor K according to a lower-diagonal-upper decom-
position,

K = AQAT , (15)

where A is the lower-triangular matrix given in (11) and Q =
diag (K0,Q1, . . . ,QM) with Qi given in (14).

Proof: Straightforward to verify by substitution.

Theorem 1. The inverse of the kernel matrix constructed in
Lemma 1, K−1, is exactly sparse (block-tridiagonal).

Proof: The decomposition of K in Lemma 1 provides

K−1 = (AQAT)−1 = A−TQ−1A−1. (16)

where the inverse of the lifted transition matrix is

A−1 =

1 0 · · · 0 0
−Φ(t1, t0) 1 · · · 0 0

0 −Φ(t2, t1)
. . .

...
...

0 0
. . . 0 0

...
... · · · 1 0

0 0 · · · −Φ(tM , tM−1) 1

,

(17)
and Q−1 is block-diagonal. The block-tridiagonal property of
K−1 follows by substitution and multiplication.

While the block-tridiagonal property stated in Theorem 1
has been exploited in vision and robotics for a long time
[30, 47, 44], the usual route to this point is to begin by
converting the continuous-time motion model to discrete time
and then to directly formulate a maximum a posteriori opti-
mization problem; this bypasses writing out the full expression
for K and jumps to an expression for K−1. However, we
require expressions for both K and K−1 to carry out our
GP reinterpretation and facilitate querying the trajectory at
an arbitrary time (through interpolation). That said, it is also
worth noting we have not needed to convert the motion model
to discrete time and have made no approximations thus far.

Given the above results, the prior over the state (at the
measurement times) can be written as

x ∼ N (µ,K) = N
(
Av,AQAT

)
. (18)

More importantly, using the result of Theorem 1 in (5) gives

(block-tridiagonal︷ ︸︸ ︷
A−TQ−1A−1 + CTR−1C

)
δx?

= A−TQ−1(v− A−1x̄) + CTR−1(y− g). (19)

which can be solved in O(M) time (at each iteration), using
a sparse solver (e.g., sparse Cholesky decomposition then
forward-backward passes). In fact, although we do not have
space to show it, in the case of a linear measurement model,
one such solver is the classical, forward-backward smoother
(i.e., Kalman or Rauch–Tung–Striebel smoother). Put another
way, the forward-backward smoother is possible because
of the sparse structure of (19). For nonlinear measurement
models, our scheme iterates over the whole trajectory; it is
therefore related to, but not the same as, the ‘extended’ version
of the forward-backward smoother [35, 36, 37].

Perhaps the most interesting outcome of Theorem 1 is that,
although we are using a continuous-time prior to smooth
our trajectory, at implementation we require only M + 1
smoothing terms in the associated MAP optimization problem:
M between consecutive pairs of measurement times plus 1 at

t1 t2

tM
tM�1

ti

ti+1· · ·
···

ti�1

Ji =
1

2
eT

i Q�1
i ei

ei = vi � x(ti) + �(ti, ti�1)x(ti�1)

e0 = µ0 � x(t0)

t0

J0 =
1

2
eT
0 K�1

0 e0

Fig. 2: Although we began with a continuous-time prior to
smooth our trajectory, the class of exactly sparse GPs results in
only M+1 smoothing terms, Ji, in the associated optimization
problem, the solution of which is (19). We can depict these
graphically as factors (black dots) in a factor-graph represen-
tation of the prior [8]. The triangles are trajectory states, the
nature of which depends on the choice of prior.

the initial time (unless we are also estimating a map). As men-
tioned before, this is the same form that we would have arrived
at had we started by converting our motion model to discrete
time at the beginning [30, 47, 44]. This equivalence has been
noticed before for recursive solutions to estimation problems
with a continuous-time state and discrete-time measurements
[34], but not in the batch scenario. Figure 2 depicts the M+1
smoothing terms in a factor-graph representation of the prior
[8, 22].

However, while the form of the smoothing terms/factors is
similar to the original discrete-time form introduced by Lu and
Milios [30], our approach provides a principled method for
their construction, starting from the continuous-time motion
model. Critically, we stress that the state being estimated
must be Markovian in order to obtain the desirable sparse
structure. In the experiment section, we will investigate a com-
mon GP prior, namely the ‘constant-velocity’ or white-noise-
on-acceleration model: p̈(t) = w(t), where p(t) represents
position. For this model, p(t) is not Markovian, but

x(t) =

[
p(t)
ṗ(t)

]
, (20)

is. This implies that, if we want to use the ‘constant-velocity’
prior and enjoy the sparse structure without approximation, we
must estimate a stacked state with both position and velocity.
Marginalizing out the velocity variables fills in the inverse
kernel matrix, thereby destroying the sparsity.

If all we cared about was estimating the value of the state at
the measurement times, our GP paradigm arguably offers little
beyond a reinterpretation of the usual discrete-time approach
to batch estimation. However, by taking the time to set up the
problem in this manner, we can now query the trajectory at
any time of interest using the classic interpolation scheme that
is inherent to GP regression [46].

D. Querying the Trajectory

As discussed in Section II, after we solve for the trajectory
at the measurement times, we may want to query it at other
times of interest. This operation also benefits greatly from the
sparse structure. To keep things simple, we consider a single
query time, ti ≤ τ < ti+1 (see Figure 1). The standard linear

GP interpolation formula [33, 46] is

x̄(τ) = µ(τ) + K(τ)K−1(x̄− µ), (21)

where K(τ) =
[K(τ, t0) · · · K(τ, tM)

]
.

For the mean function at the query time, we simply have

µ(τ) = Φ(τ, ti)µi +

∫ τ

ti

Φ(τ, s)v(s) ds, (22)

which can be evaluated in O(1) time.
The computational savings come from the sparsity of the

product K(τ)K−1, which represents the burden of the cost in
the interpolation formula. After some effort, it turns out we
can write K(τ) as

K(τ) = V(τ)AT , (23)

where A was defined before,

V(τ) =
[
Φ(τ, ti)Φ(ti, t0)K0 Φ(τ, ti)Φ(ti, t1)Q1 · · ·

· · · Φ(τ, ti)Φ(ti, ti−1)Qi−1 Φ(τ, ti)Qi · · ·
· · · QτΦ(ti+1, τ)T 0 · · · 0

]
, (24)

and

Qτ =

∫ τ

ti

Φ(τ, s)F(s)QCF(s)TΦ(τ, s)T ds. (25)

Returning to the desired product, we have

K(τ)K−1 = V(τ) ATA−T︸ ︷︷ ︸
1

Q−1A−1 = V(τ)Q−1A−1. (26)

Since Q−1 is block-diagonal, and A−1 has only the main
diagonal and the one below it non-zero, we can evaluate
the product very efficiently. The result can be seen in Equa-
tion (27) at the bottom of the page, which has exactly two
non-zero block-columns. Inserting this into (21), we have

x̄(τ) = µ(τ) + Λ(τ)(x̄i − µi) + Ψ(τ)(x̄i+1 − µi+1), (28)

which is a linear combination of just the two terms from ti
and ti+1. If the query time is beyond the last measurement
time, tM < τ , the expression will involve only the term at
tM and represents extrapolation/prediction rather than inter-
polation/smoothing. In summary, to query the trajectory at a
single time of interest is O(1) complexity.

E. Training the Hyperparameters

As with any GP regression, we have hyperparameters
associated with our covariance function, namely QC , which
affect the smoothness and length scale of the class of functions
we are considering as motion priors. The covariances of the
measurement noises can also be unknown or uncertain. The
standard approach to selecting these parameters is to use a

training dataset (with groundtruth), and perform optimization
using the log marginal likelihood (log-evidence) or its ap-
proximation as the objective function [33]. Fortunately, in the
present case, the computation of the log marginal likelihood
can also be done efficiently due to the sparseness of the inverse
kernel matrix (not shown).

Alternatively, since these parameters have physical meaning,
they can be computed directly from the training data. In our
experiments, we obtained QC by modelling it as a diagonal
matrix, and fitting Gaussians to the state accelerations. The
measurement noise properties were determined from the train-
ing data in a similar manner.

F. Complexity

We conclude this section with a brief discussion of the
time complexity of the overall algorithm when exploiting the
sparse structure. If we have M measurement times and want
to query the trajectory at N additional times of interest, the
complexity of the resulting algorithm using GP regression with
any linear, time-varying process model driven by white noise
will be O(M + N). This is broken into the two major steps
as follows. The initial solution to find x̄ (at the measurement
times) can be done in O(M) time (per iteration) owing to the
block-tridiagonal structure discussed earlier. Then, the queries
at N other times of interest is O(N) since each individual
query is O(1). Clearly, O(M +N) is a big improvement over
the O(M3 +M2N) cost when we did not exploit the sparse
structure of the problem.

We could consider lumping all the measurement and query
times together into a larger set during the initial solve to
avoid querying the trajectory after the fact; this would also be
O(M +N). Tong et al. [46] also discuss a scheme to remove
some of the measurement times from the initial solve, which
could further reduce cost but with some loss of accuracy.
Some further experimentation is necessary to better understand
which approach is best in which situation.

IV. MOBILE ROBOT EXAMPLE

A. Constant-Velocity GP Prior

We will demonstrate the advantages of the sparse structure
through an example employing the ‘constant-velocity’ prior,
p̈(t) = w(t). This can be expressed as a linear, time-invariant
SDE of the form in (6) with

x(t) =

[
p(t)
ṗ(t)

]
, A(t) =

[
0 1
0 0

]
, v(t) = 0, F(t) =

[
0
1

]
,

(29)
where p(t) =

[
x(t) y(t) θ(t)

]T
is the pose and ṗ(t) is the

pose rate. In this case, the transition function is

Φ(t, s) =

[
1 (t− s)1
0 1

]
, (30)

K(τ)K−1 =
[

0 · · · 0 Φ(τ, ti)−QτΦ(ti+1, τ)TQ−1i+1Φ(ti+1, ti)︸ ︷︷ ︸
Λ(τ), block column i

QτΦ(ti+1, τ)TQ−1i+1︸ ︷︷ ︸
Ψ(τ), block column i+ 1

0 · · · 0
]
, (27)

which can be used to construct A (or A−1 directly). As we
will be doing a STEAM example, we will constrain the first
trajectory state to be x(t0) = 0 and so will have no need for
µ0 and K0. For i = 1 . . .M , we have vi = 0 and

Qi =

[
1
3∆t3iQC

1
2∆t2iQC

1
2∆t2iQC ∆tiQC

]
, (31)

with ∆ti = ti − ti−1. The inverse blocks are

Q−1i =

[
12∆t−3i Q−1C −6∆t−2i Q−1C
−6∆t−2i Q−1C 4∆t−1i Q−1C

]
, (32)

so we can build Q−1 directly. We now have everything we
need to represent the prior: A−1, Q−1, and v = 0, which can
be used to construct K−1.

We will also augment the trajectory with a set of L
landmarks, `, into a combined state, z, in order to consider
the STEAM problem:

z =

[
x
`

]
, ` =

`1...
`L

 , `j =

[
xj
yj

]
. (33)

While others have folded velocity estimation into discrete-
time, filter-based SLAM [6] and even discrete-time, batch
SLAM [16], we are actually proposing something more gen-
eral than this: the choice of prior tells us what to use for
the trajectory states. And, although we solve for the state at
a discrete number of measurement times, our setup is based
on an underlying continuous-time prior, meaning that we can
query it at any time of interest in a principled way.

B. Measurement Models

We will use two types of measurements: range/bearing to
landmarks (using a laser rangefinder) and wheel odometry
(in the form of robot-oriented velocity). The range/bearing
measurement model takes the form

yij = grb(x(ti), `j) + nij

=

[√
(xj − x(ti))2 + (yj − y(ti))

atan2(yj − y(ti), xj − x(ti))

]
+ nij , (34)

and the wheel odometry measurement model takes the form

yi = gwo(x(ti)) + ni =

[
cos θ(ti) sin θ(ti) 0

0 0 1

]
ṗ(ti) + ni,

(35)
which gives the longitudinal and rotational speeds of the robot.
Note that the velocity information is extracted easily from the
state since we are estimating it directly. In the interest of space,
we omit the associated Jacobians.

C. Exploiting Sparsity

Figure 3 shows an illustration of the STEAM problem we
are considering. In terms of linear algebra, at each iteration
we need to solve a linear system of the form[

Wxx WT
`x

W`x W``

]
︸ ︷︷ ︸

W

[
δx?
δ`?

]
︸ ︷︷ ︸
δz?

=

[
bx
b`

]
︸ ︷︷ ︸

b

, (36)

which retains exploitable structure despite introducing the
landmarks. In particular, Wxx is block-tridiagonal (due to our
GP prior) and W`` is block-diagonal [5]; the sparsity of the
off-diagonal block, W`x, depends on the specific landmark
observations. We reiterate the fact that if we marginalize
out the ṗ(ti) variables and keep only the p(ti) variables to
represent the trajectory, the Wxx block becomes dense (for
this prior); this is precisely the approach of Tong et al. [46].

To solve (36) efficiently, we can begin by either exploiting
the sparsity of Wxx or of W``. Since each trajectory vari-
able represents a unique measurement time (range/bearing or
odometry), there are potentially a lot more trajectory variables
than landmark variables, L�M , so we will exploit Wxx.

We use a sparse (lower-upper) Cholesky decomposition:[
Vxx 0
V`x V``

]
︸ ︷︷ ︸

V

[
VTxx VT`x

0 VT``

]
︸ ︷︷ ︸

VT

=

[
Wxx WT

`x

W`x W``

]
︸ ︷︷ ︸

W

(37)

We first decompose VxxVTxx = Wxx, which can be done in
O(M) time owing to the block-tridiagonal sparsity. The result-
ing Vxx will have only the main block-diagonal and the one
below it non-zero. This means we can solve V`xVTxx = W`x

for V`x in O(LM) time. Finally, we decompose V``VT`` =
W``−V`xVT`x, which we can do in O(L3 +L2M) time. This
completes the decomposition in O(L3 +L2M) time. We then
perform the standard forward-backward passes, ensuring to
exploit the sparsity: first solve Vd = b for d, then VT δz? = d
for δz?, both in O(L2 +LM) time. Note, this approach does
not marginalize out any variables during the solve, as this can
ruin the sparsity (i.e., we avoid inverting Wxx). The whole
solve is O(L3 + L2M).

At each iteration, we update the state according to z̄ ←
z̄ + δz? and iterate to convergence. Finally, we query the
trajectory at N other times of interest using the GP in-
terpolation discussed earlier. The whole procedure is then
O(L3 + L2M +N), including the extra queries.

D. Experiment

For experimental validation, we employed the same mobile
robot dataset as used by Tong et al. [46]. This dataset consists

ewo,i = yi � gwo(x(ti))

Jwo,i =
1

2
eT
wo,iQ

�1
wo,iewo,i

Jrb,ij =
1

2
eT
rb,ijQ

�1
rb,ijerb,ij

erb,ij = yij � grb(x(ti), `j)

Fig. 3: Factor-graph representation of our STEAM problem.
There are factors (black dots) for (i) the prior (binary), (ii) the
landmark measurements (binary), and (iii) the wheel odometry
measurements (unary). Triangles are trajectory states (position
and velocity, for this prior); the first trajectory state is locked.
Hollow circles are landmarks.

Fig. 4: The smooth and continuous trajectory and 3σ co-
variance envelope estimates produced by the GP-Traj-Sparse
estimator for a short segment of the dataset.

of a mobile robot equipped with a laser rangefinder driving in
an indoor, planar environment amongst a forest of 17 plastic-
tube landmarks. The odometry and landmark measurements
are provided at a rate of 1Hz, and additional trajectory queries
are computed at a rate of 10Hz after estimator convergence.
Groundtruth for the robot trajectory and landmark positions is
provided by a Vicon motion capture system.

We implemented three estimators for comparison. The first
was the algorithm described by Tong et al. [46], GP-Pose-
Dense, the second was a naive version of our estimator, GP-
Traj-Dense, that simply estimated a stacked state but did not
exploit sparsity, and the third was a full implementation of our
estimator, GP-Traj-Sparse, that exploited the sparsity structure
as described in this paper.

Though the focus of this section is to demonstrate the sig-
nificant reductions in computational cost, we provide Figure 4
to illustrate the smooth trajectory estimates we obtained from
the continuous-time formulation. While the three algorithms
differed in the number of degrees of freedom of their estimated
states, their overall accuracies were similar for this dataset.

To evaluate the computational savings, we implemented
all three algorithms in Matlab on a MacBook Pro with a
2.7GHz i7 processor and 16GB of 1600MHz DDR3 RAM,
and timed the computation for segments of the dataset of
varying lengths. These results are shown in Figure 5, where we
provide the computation time for the individual operations that
benefit most from the sparse structure, as well as the overall
processing time.

We see that the GP-Traj-Dense algorithm is much slower
than the original GP-Pose-Dense algorithm of Tong et al. [46].
This is because we have reintroduced the velocity part of the
state, thereby doubling the number of variables associated with
the trajectory. However, once we start exploiting the sparsity
with GP-Traj-Sparse, the increase in number of variables pays
off.

For GP-Traj-Sparse, we see in Figure 5(a) that the kernel
matrix construction was linear in the number of estimated
states. This can be attributed to the fact that we constructed the
sparse K−1 directly. As predicted, the optimization time per

T
im

e
 [

s
]

0 200 400 600 800 1000 1200
0

0.5

Dataset Length [s]

10
0

10
2

10
4

GP−Pose−Dense

GP−Traj−Dense

GP−Traj−Sparse

(a) Kernel matrix construction time.

T
im

e
 [

s
]

0 200 400 600 800 1000 1200
0

0.5

Dataset Length [s]

10
0

10
1

GP−Pose−Dense

GP−Traj−Dense

GP−Traj−Sparse

(b) Optimization time per iteration.

T
im

e
 [

s
]

0 200 400 600 800 1000 1200
0

0.005

Dataset Length [s]

10
−2

10
0

10
2

GP−Pose−Dense

GP−Traj−Dense

GP−Traj−Sparse

(c) Interpolation time per additional query time.

T
im

e
 [

s
]

0 200 400 600 800 1000 1200
0

50

Dataset Length [s]

10
2

10
4

GP−Pose−Dense

GP−Traj−Dense

GP−Traj−Sparse

(d) Total computation time.

Fig. 5: Plots comparing the compute time (as a function of
trajectory length) for the GP-Pose-Dense algorithm described
by Tong et al. [46] and two versions of our approach: GP-Traj-
Dense (does not exploit sparsity) and GP-Traj-Sparse (exploits
sparsity). The plots confirm the predicted computational com-
plexities of the various methods; notably, GP-Traj-Sparse has
linear cost in trajectory length. Please note the change from a
linear to a log scale in the upper part of each plot.

iteration was also linear in Figure 5(b), and the interpolation
time per additional query was constant regardless of state
size in Figure 5(c). Finally, Figure 5(d) shows that the total
compute time was also linear.

We also note that the number of iterations for optimization
convergence varied for each algorithm. In particular, we found
that the GP-Traj-Sparse implementation converged in fewer
iterations than the other implementations due to the fact
that we constructed the inverse kernel matrix directly, which
resulted in greater numerical stability. The GP-Traj-Sparse
approach clearly outperforms the other algorithms in terms
of computational cost.

V. DISCUSSION AND FUTURE WORK

It is worth elaborating on a few issues. The main reason that
the Wxx block is sparse in our approach, as compared to Tong
et al. [46], is that we reintroduced velocity variables that had
effectively been marginalized out. This idea of reintroducing
variables to regain exact sparsity has been used before by
Eustice et al. [12] in the delayed state filter and by Walter
et al. [48] in the extended information filter. This is a good
lesson to heed: the underlying structure of a problem may be
exactly sparse, but by marginalizing out variables it appears
dense. For us this means we need to use a Markovian trajectory
state that is appropriate to our prior.

In much of mobile robotics, odometry measurements are
treated more like inputs to the mean of the prior than pure
measurements. We believe this is a confusing thing to do as it
conflates two sources of uncertainty: the prior over trajectories
and the odometry measurement noise. In our framework, we
have deliberately separated these two functions and believe
this is easier to work with and understand. We can see these
two functions directly in Figure 3, where the prior is made
up of binary factors joining consecutive trajectory states, and
odometry measurements are unary factors attached to some
of the trajectory states (we could have used binary odometry
factors but chose to set things up this way due to the fact that
we were explicitly estimating velocity).

While our analysis appears to be restricted to a small class
of covariance functions, we have only framed our discussions
in the context of robotics. Recent developments from machine
learning [17] and signal processing [37] have shown that it
is possible to generate other well-known covariance functions
using a LTV SDE (some exactly and some approximately).
This means they can be used with our framework. One case
is the Matérn covariance family [33],

Km(t, t′) = σ2 21−ν

Γ(ν)

(√
2ν

`
|t− t′|

)ν
Kν

(√
2ν

`
|t− t′|

)
1

(38)
where σ, ν, ` > 0 are magnitude, smoothness, and length-
scale parameters, Γ(·) is the gamma function, and Kν(·) is
the modified Bessel function. For example, if we let

x(t) =

[
p(t)
ṗ(t)

]
, (39)

with ν = p+ 1
2 with p = 1 and use the following SDE:

ẋ(t) =

[
0 1
−λ21 −2λ1

]
x(t) +

[
0
1

]
w(t), (40)

where λ =
√

2ν/` and w(t) ∼ GP (0,QC δ(t− t′)) (our usual
white noise) with power spectral density matrix,

QC =
2σ2π

1
2λ2p+1Γ(p+ 1)

Γ(p+ 1
2)

1, (41)

then we have that p(t) is distributed according to the Matérn
covariance family: p(t) ∼ GP(0,Km(t, t′)) with p = 1.
Another way to look at this is that passing white noise through

LTV SDEs produces particular coloured-noise priors (i.e., not
flat across all frequencies).

In terms of future work, we are currently concentrating on
extending our results to GP priors generated by nonlinear
stochastic differential equations. We believe this will be fruit-
ful in terms of incorporating the dynamics (i.e., kinematics
plus Newtonian mechanics) of a robot platform into the
trajectory prior. Real sensors do not move arbitrarily through
the world as they are usually attached to massive robots
and this serves to constrain the motion. Another idea is to
incorporate latent force models into our GP priors (e.g., see
Alvarez et al. [1] or Hartikainen et al. [18]). We also plan
to look further at the sparsity of STEAM and integrate our
work with modern solvers to tackle large-scale problems; this
should allow us to exploit more than just the primary sparsity
of the problem and do so in an online manner.

VI. CONCLUSION

We have considered continuous-discrete estimation prob-
lems where a trajectory is viewed as a one-dimensional
Gaussian process (GP), with time as the independent variable
and measurements acquired at discrete times. Querying the
trajectory can be viewed as nonlinear, GP regression. Our
main contribution in this paper is to show that this querying
can be accomplished very efficiently. To do this, we exploited
the Markov property of our GP priors (generated by linear,
time-varying stochastic differential equations driven by white
noise) to construct an inverse kernel matrix that is sparse.
This makes it fast to solve for the state at the measurement
times (as is commonly done in vision and robotics) but also
at any other time(s) of interest through GP interpolation. We
also considered a slight generalization of the SLAM problem,
simultaneous trajectory estimation and mapping (STEAM),
which makes use of a continuous-time trajectory prior and al-
lows us to query the state at any time of interest in an efficient
manner. We hope this paper serves to deepen the connection
between classical state estimation theory and recent machine
learning methods by viewing batch estimation through the lens
of Gaussian process regression.

ACKNOWLEDGMENTS

Thanks to Dr. Alastair Harrison at Oxford who asked the
all-important question: how can the GP estimation approach
[46] be related to factor graphs? This work was supported by
the Canada Research Chair Program, the Natural Sciences and
Engineering Research Council of Canada, and the Academy
of Finland.

REFERENCES

[1] M Alvarez, D Luengo, and N Lawrence. Latent force models.
In Proceedings of the Int. Conf. on Artificial Intelligence and
Statistics (AISTATS), 2009.

[2] T Bailey and H Durrant-Whyte. SLAM: Part II State of the art.
IEEE RAM, 13(3):108–117, 2006.

[3] C Bibby and I D Reid. A hybrid SLAM representation for
dynamic marine environments. In Proc. ICRA, 2010.

[4] M Bosse and R Zlot. Continuous 3D scan-matching with a
spinning 2D laser. In Proc. ICRA, 2009.

[5] D C Brown. A solution to the general problem of multiple
station analytical stereotriangulation. RCA-MTP data reduction
tech. report no. 43, Patrick Airforce Base, 1958.

[6] A J Davison, I D Reid, N D Molton, and O Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE T. PAMI, 29(6):1052–
1067, 2007.

[7] M P Deisenroth, R Turner, M Huber, U D Hanebeck, and
C E Rasmussen. Robust filtering and smoothing with Gaussian
processes. IEEE T. Automatic Control, 57:1865–1871, 2012.

[8] F Dellaert and M Kaess. Square Root SAM: Simultaneous lo-
calization and mapping via square root information smoothing.
IJRR, 25(12):1181–1204, 2006.

[9] H J Dong and T D Barfoot. Lighting-invariant visual odometry
using lidar intensity imagery and pose interpolation. In Proc.
Field and Service Robotics, 2012.

[10] H Durrant-Whyte and T Bailey. SLAM: Part I Essential
algorithms. IEEE RAM, 11(3):99–110, 2006.

[11] H F Durrant-Whyte. Uncertain geometry in robotics. IEEE
Journal of Robotics and Automation, 4(1):23–31, 1988.

[12] R M Eustice, H Singh, and J J Leonard. Exactly sparse delayed-
state filters for view-based SLAM. IEEE TRO, 22(6):1100–
1114, 2006.

[13] B Ferris, D Hähnel, and D Fox. Gaussian processes for signal
strength-based localization. In Proc. RSS, 2006.

[14] B Ferris, D Fox, and N Lawrence. Wifi-SLAM using Gaussian
process latent variable models. In Proc. IJCAI, 2007.

[15] P T Furgale, T D Barfoot, and G Sibley. Continuous-time batch
estimation using temporal basis functions. In Proc. ICRA, 2012.

[16] O Grau and J Pansiot. Motion and velocity estimation of rolling
shutter cameras. In Proceedings of the 9th European Conference
on Visual Media Production, pages 94–98, 2012.

[17] J Hartikainen and S Särkkä. Kalman filtering and smoothing
solutions to temporal Gaussian process regression models. In
Proc. of the IEEE Int. Work. on Machine Learning for Signal
Processing, 2010.

[18] J Hartikainen, M Seppänen, and S Särkkä. State-space inference
for non-linear latent force models with application to satellite
orbit prediction. In Proc. ICML, 2012.

[19] J Hedborg, P Forssén, M Felsberg, and E Ringaby. Rolling
shutter bundle adjustment. In Proc. CVPR, 2012.

[20] A H Jazwinski. Stochastic Processes and Filtering Theory.
Academic, New York, 1970.

[21] M Kaess, A Ranganathan, and R Dellaert. iSAM: Incremental
smoothing and mapping. IEEE TRO, 24(6):1365–1378, 2008.

[22] M Kaess, H Johannsson, R Roberts, V Ila, J J Leonard, and
F Dellaert. iSAM2: Incremental smoothing and mapping using
the Bayes tree. IJRR, 31(2):217–236, 2012.

[23] R E Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engi-
neering, 82(Series D):35–45, 1960.

[24] R E Kalman and R S Bucy. New results in linear filtering and
prediction theory. Transactions of the ASME–Journal of Basic
Engineering, 83(3):95–108, 1961.

[25] J Ko and D Fox. GP-BayesFilters: Bayesian filtering using
Gaussian process prediction and observation models. Au-
tonomous Robots, 27(1):75–90, July 2009.

[26] J Ko and D Fox. Learning GP-BayesFilters via Gaussian process
latent variable models. Auton. Robots, 30(1):3–23, 2011.

[27] N Lawrence. Gaussian process latent variable models for
visualization of high dimensional data. In Proc. NIPS, 2003.

[28] F Lindgren, H Rue, and J Lindström. An explicit link be-
tween Gaussian fields and Gaussian Markov random fields: the
stochastic partial differential equation approach. J. of the Royal
Stat. Society: Series B, 73(4):423–498, 2011.

[29] S Lovegrove, A Patron-Perez, and G Sibley. Spline fusion:
A continuous-time representation for visual-inertial fusion with
application to rolling shutter cameras. In Proc. BMVC, 2013.

[30] F Lu and E Milios. Globally consistent range scan alignment
for environment mapping. Auton. Robots, 4(4):333–349, 1997.

[31] P S Maybeck. Stochastic Models, Estimation, and Control, vol-
ume 141 of Mathematics in Science and Engineering. Academic
Press Inc., 1979.

[32] P Newman, G Sibley, M Smith, M Cummins, A Harrison,
C Mei, I Posner, R Shade, D Schroeter, L Murphy, W Churchill,
D Cole, and I Reid. Navigating, recognising and describing
urban spaces with vision and laser. IJRR, 28(11-12):1406–1433,
2009.

[33] C E Rasmussen and C K I Williams. Gaussian Processes for
Machine Learning. MIT Press, Cambridge, MA, 2006.

[34] S Särkkä. Recursive Bayesian Inference on Stochastic Differen-
tial Equations. PhD thesis, Helsinki Uni. of Technology, 2006.

[35] S Särkkä. Bayesian Filtering and Smoothing. Cambridge
University Press, 2013.

[36] S Särkkä and J Sarmavuori. Gaussian filtering and smoothing
for continuous-discrete dynamic systems. Signal Processing, 93
(2):500–510, 2013.

[37] S Särkkä, A Solin, and J Hartikainen. Spatiotemporal learning
via infinite-dimensional Bayesian filtering and smoothing: A
look at Gaussian process regression through Kalman filtering.
IEEE Signal Processing Magazine, 30(4):51–61, 2013.

[38] G Sibley, L Matthies, and G Sukhatme. Sliding window filter
with application to planetary landing. Journal of Field Robotics,
27(5):587–608, 2010.

[39] R C Smith and P Cheeseman. On the representation and
estimation of spatial uncertainty. IJRR, 5(4):56–68, 1986.

[40] R C Smith, M Self, and P Cheeseman. Estimating uncertain
spatial relationships in robotics. In Ingemar J. Cox and
Gordon T. Wilfong, editors, Autonomous Robot Vehicles, pages
167–193. Springer Verlag, New York, 1990.

[41] A Solin and S Särkkä. Explicit link between periodic covariance
functions and state space models. In Proceedings of the Int.
Conf. on Artificial Intelligence and Statistics (AISTATS), 2014.

[42] R F Stengel. Optimal Control and Estimation. Dover Publica-
tions Inc., 1994.

[43] H Strasdat, J M M Montiel, and A J Davison. Real-time
monocular SLAM: Why filter? In Proc. ICRA, 2010.

[44] S Thrun and M Montemerlo. The graph SLAM algorithm with
applications to large-scale mapping of urban structures. IJRR,
25(5-6):403–429, 2006.

[45] C H Tong, P Furgale, and T D Barfoot. Gaussian process Gauss-
Newton: Non-parametric state estimation. In Proc. of the 9th
Conf. on Computer and Robot Vision, pages 206–213, 2012.

[46] C H Tong, P T Furgale, and T D Barfoot. Gaussian process
Gauss-Newton for non-parametric simultaneous localization and
mapping. IJRR, 32(5):507–525, 2013.

[47] B Triggs, P McLauchlan, R Hartley, and A Fitzgibbon. Bundle
adjustment — A modern synthesis. In B Triggs, A Zisserman,
and R Szeliski, editors, Vision Algorithms: Theory and Practice,
volume 1883 of Lecture Notes in Computer Science, pages 298–
372. Springer Berlin Heidelberg, 2000.

[48] M R Walter, R M Eustice, and J J Leonard. Exactly sparse
extended information filters for feature-based SLAM. IJRR, 26
(4):335–359, 2007.

	Introduction
	Gaussian Process Regression
	A Class of Exactly Sparse GP Priors
	Linear, Time-Varying Stochastic Differential Equations
	Mean Function
	Covariance Function
	Querying the Trajectory
	Training the Hyperparameters
	Complexity

	Mobile Robot Example
	Constant-Velocity GP Prior
	Measurement Models
	Exploiting Sparsity
	Experiment

	Discussion and Future Work
	Conclusion

