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Abstract—Semantic labeling of RGB-D scenes is very impor-
tant in enabling robots to perform mobile manipulation tasks,
but different tasks may require entirely different sets of labels.
For example, when navigating to an object, we may need only a
single label denoting its class, but to manipulate it, we might need
to identify individual parts. In this work, we present an algorithm
that produces hierarchical labelings of a scene, followingis-part-of
and is-type-of relationships. Our model is based on a Conditional
Random Field that relates pixel-wise and pair-wise observations
to labels. We encode hierarchical labeling constraints into the
model while keeping inference tractable. Our model thus predicts
different speci�cities in labeling based on its con�dence—if it is
not sure whether an object isPepsior Sprite, it will predict soda
rather than making an arbitrary choice. In extensive experiments,
both of�ine on standard datasets as well as in online robotic
experiments, we show that our model outperforms other state-
of-the-art methods in labeling performance as well as in success
rate for robotic tasks.

I. I NTRODUCTION

Semantic scene labeling is crucial to many robotic tasks,
allowing a robot to precisely localize objects, build maps,
perform mobile manipulation tasks, and achieve many other
goals. In recent work, many algorithms have been developed
to produce such a labeling for RGB-D images (e.g., [37, 24, 4,
14]). However, these approaches produce only a�at labeling
of a scene, ignoring important relationships between the label
classes. In this work, we present an algorithm whose output
is a hierarchical labeling of the scene.

These hierarchical labels are very important for a wide
range of robotic applications. Segmenting object parts, such as
handles, knobs, and buttons, separately from the body of the
object is critical to properly afford most household objects.
Understanding hierarchical object classes can also enable a
robot to make rational substitutions between objects. Consider,
for example, the task of fetching a Coke from a fridge (Fig. 1).
To open the fridge, the robot must detect and grasp the fridge
handle separately from its door. Then, if a Coke is not present
in the fridge, it is much more desirable for the robot to return
with another soda, such as a Pepsi, than empty-handed.

Using a semantic label hierarchy as shown in Fig. 2 enables
these behaviors, which could not be realized using �at labels.
When labeling with this hierarchy, each pixel belongs to a
series of increasingly-general labels - for example, a pixel of
classfridge-handlewould also be of classesfridge-door, fridge
and electronics. This also allows us to represent uncertainty,
using a more general class when the algorithm is not sure
which low-level class a pixel should belong to.

Fig. 1: Hierarchical Labels are produced by our algorithm as
required for a robotic task. In the above environment, a robot is
asked to fetch a Coke. It needs to perform three sub-tasks: navigate
to the fridge, open the fridge door, and pick up the Coke (shown
in three rows). For navigation, the robot needs to produce a higher-
level fridge-door label so that it can approximately navigate close
to it. Once it gets closer, producing a more detailedfridge-handle
label is necessary. In the last step, the robot cannot detectCoke, so
it fetches anothersoda instead. Such a label hierarchy lets a robot
hedge its bets.

Conventional �at labeling approaches [37, 14] might sim-
ply be applied by �attening all the classes in the semantic
hierarchy, but this sacri�ces important information. Mean-
while, image classi�cation approaches using semantic hierar-
chies [10, 35], which predict only one label for each image,
cannot be applied to most robotic tasks that require pixel-level
labeling of the entire scene. Properly integrating a semantic
hierarchy into the labeling problem is a major challenge, and
the main focus of this work.

To this end, we propose a novel approach which uses
mixed integer programming to optimize a model isomorphic
to a Conditional Random Field (CRF). Our model encodes



Fig. 2: Semantic hierarchy graph. Each node denotes a class and
each directed edge denotes a `belong to' relation.

relations both from color/depth features to labels and between
neighboring segments, as well as constraints arising due to the
hierarchical nature of labels. It directly integrates hierarchical
information, allowing it to represent ambiguities in perception
by giving more general labels. In fact, our algorithm allows a
desired speci�city of the produced labels, allowing for more
speci�c ones for tasks which need them, and more general
ones for those that do not. Our approach also combines
multiple segmentation trees generated using different metrics
to yield more robust labeling results. We demonstrate that
all the necessary terms and constraints for our approach can
be combined into a model which remains parsimonious and
solvable in under 1.5 seconds per image despite incorporating
more information than considered in other labeling algorithms.

We validate the performance of our algorithm in an ex-
tensive series of experiments, both of�ine on the NYUD2
dataset [45] and online in a series of robotic experiments using
our PR2 robot equipped with a Microsoft Kinect. Our algo-
rithm produces signi�cantly improved results on hierarchical
labeling over the state-of-the-art, increasing performance by up
to 15%. In robotic experiments, we demonstrate the usefulness
of hierarchical as opposed to �at labeling and show that
our algorithm can be applied to real-world robotic scenarios,
achieving an average success rate of 81% over several chal-
lenging tasks. Video of some of these is available athttp:
//pr.cs.cornell.edu/sceneunderstanding/ .

In summary, the main contributions of this work are:
� We consider a hierarchy of semantic labels when labeling

RGB-D scenes, which allows the robot to predict task-
relevant labels.

� We design an inference model that incorporates, over a CRF,
relations between segment-features and labels, relations be-
tween neighboring segments, as well as constraints arising
because of the hierarchical nature of the labels. We show
that it still remains tractable and is solved by constrained
mixed integer programming.

� Our model allows a robot to choose varying levels of
speci�city in the labels produced.

� We perform extensive evaluation on the NYUD2 dataset as
well as on several different robotic tasks.

II. RELATED WORK

Scene understanding.Scene understanding from 2D images
has been widely explored [41, 43, 12, 8]. Due to the avail-
ability of affordable RGB-D sensors, signi�cant effort has
been put into RGB-D scene understanding recently [45, 37,
24, 31, 4, 25, 14, 20, 19, 17, 27]. Ren et al. [37] developed

Kernel Descriptors, highly useful RGB-D feature, and used the
segmentation tree to get contextual information. Gupta et al.
[14] generalized 2D gPb-ucm contour detection to 3D, giving
more effective segmentation. Koppula et al. [24] and Anand
et al. [4] used rich contextual information for semantic labeling
of 3D point clouds. Jia et al. [19] interpreted objects in a scene
by reasoning about blocks, support, and stability. All these
works predict �at labels, which are not applicable to many
robotic tasks. Instead, our approach outputs a hierarchical
labeling, which aids navigation, object �nding and rational
target substitution in robotic applications.

Visual recognition using semantic hierarchies.Our work
is also related to visual recognition using semantic hierar-
chies [9, 39]. One similar work [10] classi�ed large scale
images by optimizing accuracy-speci�city trade-offs. Ordonez
et al. [35] considered predicting labels that people actually use
to name an object. Both of these works targeted web image
classi�cation, and so predict a single label for each image
denoting the most salient object. For many robotic tasks, we
must consider pixel level labeling of multiple objects in a
complex scene using a semantic hierarchy.

Robotic tasks using vision.There is also a huge body of
works using vision algorithms to help perform different robotic
tasks [13, 38, 16, 30], such as object grasping [42, 11, 29],
navigation [6, 26], trajectory control [44], and activity an-
ticipation [23]. Many works focused on improving SLAM
techniques to better depict an environment for planning and
navigation [34, 28], such as incremental smoothing and map-
ping using the Bayes Tree [21], real-time visual SLAM over
large-scale environments [46], and object level SLAM [40].
Milford [33], He and Upcroft [15] proposed a place recog-
nition algorithm for mobile robots. Katz and Brock [22] de-
veloped interactive segmentation for observing object motion
during manipulation. Pangercic et al. [36] built semantic object
maps for manipulation tasks for an autonomous service robot.
Hinkle and Edwin [18] proposed a technique for functionally
classifying objects using features obtained through physical
simulations.

III. OVERVIEW

The input to our algorithm is a co-registered RGB and Depth
image pairI 2 Rm � n � 3; D 2 Rm � n , where m; n are the
image height and width. Our goal is to predict the label of each
pixel and output the label matrixL 2 Cm � n , whereC is the
set of possible hierarchical semantic labels. We achieve this by
mapping a semantic hierarchy graph to the segmentation tree
built on the input image. We will �rst introduce the semantic
hierarchy graph and the segmentation tree in this section.

Semantic hierarchy graph. For many robotic actions, we
need semantic labels at different levels of abstraction rather
than a simple object level. Therefore, we consider two types
of relations in a semantic hierarchy:

� Is-part-of.For some robotic tasks, we need detailed localiza-
tion of speci�c object parts. For example, to open a fridge,
it is much better to know exactly where thefridge-handle
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is from the labeling rather than to simply guess based on a
higher-levelfridge-door label.

� Is-type-of.Understanding which objects belong to the same
higher-level semantic class allows a robot to make rational
substitutions between such objects. For example, if the robot
is sent to �nd aCokebut cannot, it could instead return with
any sodasuch as aPepsi.
We represent this semantic hierarchy by a directed acyclic

graph, called asemantic hierarchy graph, where the nodes
C = f ck g represent the possible labels and the edges represent
one of aforementioned relations. See Fig. 2 for an example.
Segmentation tree of the RGB-D image.We begin by
segmenting the image into small segments. This gives us a
set of candidate segmentsf si g to label. If a segment is too
small, visual and/or geometric information might be limited; if
it is too large, it might straddle a class boundary. We therefore
build a segmentation tree and label over this tree. In detail,
we �rst obtain leaf node over-segmentations using a gPb-
ucm approach extended for RGB-D images [14]. Second, we
merge the most similar pairs of nodes step-by-step based on
a similarity measure (the gPb-ucm boundary value)1, forming
a tree as shown in Fig. 3.

Fig. 3: Illustration of segmentation tree. Pixels are grouped into
small segments which are then merged to form a segmentation tree.

Note that mapping the semantic hierarchy graph to the
segmentation tree is challenging, because both labels and
segments are hierarchical rather than �at as in previous works.
For example, for a parent segment with two child segments,
it is possible to label them with parent-child labels such as
labeling the parent aschair and the children aschair-back
andchair-base, or to only label the children as two unrelated
classes such asTV and cabinet. Thus, we need to take into
account appropriate constraints in designing our CRF-based
objective function. For many robotic applications, it is also
desirable to be able to select the degree of speci�city of the
produced labels in the semantic hierarchy. Integrating all these
desiderata into a parsimonious model is challenging.

IV. PRELIMINARIES

Our approach is based on a Conditional Random Field
(CRF), modeling the unary terms of, and pair-wise relations

1 In order to improve the chances of obtaining desirably-sized segments
for labeling, we actually build multiple segmentation trees based on different
similarity measures [32]: the gPb-ucm boundary value (ucm tree), the simi-
larities between the normals of two neighboring segments (normal tree), and
the semantic similarities of any two segments (category tree). These diverse
trees provide rich candidate segments for the labeling stage.

between, the segments. We will introduce the unary term and
a CRF model to label RGB-D images with �at-labels in this
section. We �rst de�ne the following notations:

ck k-th label in the semantic hierarchy graph.
si i -th segment in the segmentation tree.
yik 2 f 0; 1g. If si is labeled withck , yik = 1 ,o.w.yik = 0 .
ai number of pixels in segmentsi .
aik number of pixels of classck in segmentsi .
wik = aik =ai , fraction of ck class pixels in segmentsi .

A. Unary term of a segment
The unary term relates the features of a segment to its label.

Kernel descriptors have been proven to be useful features for
RGB-D scene labeling [37], so we extract six such descriptors
from each segment: gradient, color, local binary pattern, depth
gradient, spin, surface normals, and KPCA/self-similarity. The
feature vector of segmentsi is denoted aszi . We then use
the fraction ofck class pixels in segment :w�

ik = aik =ai as
a con�dence score forsi belonging tock . Since each pixel
belongs to several ground-truth classes in the hierarchy such
aschair-back, chair, sittable, furniture, we treat this as a linear
regression problem rather than a classi�cation problem as in
previous work [37]. In detail, ridge linear regression is used
to train the linear prediction function̂wik = � >

k zi .

B. Labeling RGB-D Images with Flat Labels
Previous work by Anand et al. [4] started by dividing the

RGB-D image into small segments, with the goal of labeling
each segment from a �at label setf ck g. They then used a CRF
to model the unary terms of and pair-wise relations between
the segments. Since each segment is allowed to belong to only
one class, we have the constraint

P
ck

yik = 1 . The objective
function is as follows:

FlatSeg -FlatLabel y (ŵ ; �) :

max
y

unary terms
z }| {X

si ;ck

yik ŵik +

edge terms
z }| {X

(si ;s j )2 N;ck

yik yjk �( si ; sj );

s:t:
X

ck

yik = 1 8si ; yik 2 f 0; 1g:

(1)

Here the unary term iŝwik , the edge term is�( si ; sj ) =
� exp(� � gP b(si ; sj )) , in which gP b(si ; sj ) is the gPb-ucm
boundary weight betweensi ; sj , and �; � are two weighting
parameters. The edge term encourages neighboring segments
(si ; sj ) 2 N with small boundaries to take the same label.

V. OUR APPROACH

In this section, we will describe an improved CRF model
with constraints which allow labeling over semantic trees using
hierarchical labels. We �rst de�ne the following notations:

� (v) a function that takes a vertexv in a directed graph
and returns the set of its ancestors, including itself.

_� (v) the set of ancestors withoutv itself: � (v) � f vg.
�sl l -th leaf node segment in the segmentation tree.
H l hierarchical relation graph of the ancestor set� (�sl ).
Qlt t-th maximal independent set of graphH l .



A. Labeling Segmentation Trees with Flat Labels
Now we describe how we label a segmentation tree, where

�at segments are merged to form a tree as in Fig. 3. As some
segments in the tree overlap, we �rst need to select which
ones to label, and second predict their labels. We achieve this
by enforcing that, for each leaf node segment, only one of its
ancestors (including itself) is labeled. This is because a pixel
can have only one label in a �at labeling scheme while these
segments are overlapping. So following constraints are added.

Non-overlapping constraints (NO-CT). We replace the
sum-to-one constraint

P
ck

yik = 1 ; 8si in Eq. 1 withP
si 2 � (�sl ) ;ck

yik = 1 ; 8�sl . Since all leaf nodes are considered,
every pixel is labeled with exactly one label. We also need to
ensure that the area of the child segment vs. the parent segment
is accounted for in the objective function. We therefore weight
eachŵik by the total number of pixelsai of the segmentsi .
The objective function then becomes:

TreeSeg-FlatLabel y (ŵ ; a; �) :

max
y

unary terms
z }| {X

si ;ck

yik ŵik ai +

edge terms
z }| {X

(si ;s j )2 N;ck

yik yjk �( si ; sj );

s:t:

NO -CT
z }| {X

si 2 � (�sl ) ;ck

yik = 1 8�sl ; yik 2 f 0; 1g:

(2)

B. Labeling Segmentation Trees with Hierarchical Labels
When hierarchical labels are introduced, the following in-

teresting property emerges: even if a child node is labeled,
its ancestors can be labeled with its ancestor classes. This
complicates the speci�cation of constraints in the model, so we
add following hierarchical relation constraints. We summarize
our RGB-D hierarchical semantic labeling approach in Alg. 1.

Hierarchical relation constraints (HR-CT). Now, we allow
labeling more than one segment in� (�sl ) with hierarchical
labels, such as labeling the parent node aschair and the child
aschair-back. To achieve this, we do the following:
1) Find hierarchical relations. We �rst de�ne a tuple

(si ; sj ; ck ; cz ), called hierarchical relation if it follows
cz 2 _� (ck ); sj 2 _� (si ). This allows the pair of segments
(si ; sj ) 2 � (�sl ) to be labeled with(ck ; cz ) respectively, as
their order is consistent in both the segmentation tree and
the semantic hierarchy graph. All such tuples comprise a
set 
 l for each� (�sl ).

2) Build hierarchical relation graph.In order to �nd all
the constraints in each ancestor-set� (�sl ) considering both
the non-overlapping and hierarchical labeling properties,
we build a undirected graphH l = ( V l ; El ), called hi-
erarchical relation graph, of which the vertices are all
possible assignments:V l = f yik ; 8si 2 � (�sl ); 8ck g and
edges link vertices if they follow the hierarchical relation:
El = f (yik ; yjz ); 8(si ; sj ; ck ; cz ) 2 
 l g.

3) Find constraints on the hierarchical relation graph.Fol-
lowing the hierarchical relation, if two vertices(yik ; yjz )
on H l are linked by an edge, they can be both set to one.

Algorithm 1 RGB-D Hierarchical Semantic Labeling.

Input: RGB and Depth image matrixI; D .
Output: Pixel-level label matrixL .
1. Obtain segment setf si g by building the segmentation

tree onI; D (Section III);
2. Extract featurezi from each segmentsi (Section IV-A);
3. Compute termsai ; ŵik ; ~r k ; � in

OpTreeSeg-HierLabel y ;� (ŵ ; a; ~r ; �) Eq. 5:
ŵik = � >

k zi , ~r k = r �
k ; �( si ; sj ) = � exp(� � gP b(si ; sj ))

(Section IV-A, IV-B, V-B);
4. Obtain ancestor-set� (�sl ) for each leaf node�sl ;
6. Find hierarchical relations for each� (�sl ):


 l = f (si ; sj ; ck ; cz )jcz 2 _� (ck ); sj 2 _� (si );
8si ; sj 2 � (�sl ); 8ck ; czg; (Section V-B (1));

7. Build hierarchical relation graphH l = ( V l ; El ):
V l = f yik ; 8si 2 � (�sl ); 8ck g,
El = f (yik ; yjz ); 8(si ; sj ; ck ; cz ) 2 
 l g;
(Section V-B (2));

8. Enumerate maximal independent setQlt on eachH l

(Section V-B (3));
9. SolveOpTreeSeg-HierLabel y ;� (ŵ ; a; ~r ; �) Eq. 5

(Section VI);
10. Label each pixelp with the most speci�c label from

the setf ck jp 2 si & yik = 1g:
L p = arg max ck r k subject to p 2 si & yik = 1 .

Otherwise, at most one can be set to one following the
non-overlapping constraint. To give ef�cient and suf�cient
constraints, we constrain the sum of allyik in each maximal
independent set (the set of vertices, no pair of which
are adjacent) to be not greater than one. The problem
then becomes to enumerate all maximal independent sets2

f Qlt ; t = 1 ; : : :g of H l . In practice, we will introduce a
parsimonious model (Sec. VI), leading to a sparse graphH l

thus more ef�cient constraint-�nding. After �nding these
sets, we add the constraints

P
y ik 2 Qlt

yik � 1; 8cl ; t. To
further ensure that all pixels to be labeled, we add the
completeness constraints (CM-CT)

P
si 2 � (�sl ) ;ck

yik � 1; 8l
to ensure at least one segment in each� (�sl ) to be labeled.

4) Overlapping unary correction.To give even weighting
for each pixel, we also modify the unary term for the
overlapping pixels when both parent and child segments are
labeled. Ifyik andyjz are both set to1, yik yjz = 1 , when
(si ; sj ; ck ; cz ) 2 
 l , we would rather label their overlapping
pixelsai with the more speci�c labelck . So, the summation
of the unary term would bêwik ai + ŵjz (aj � ai ). Then,
the objective function relating these two terms changes to
yik ŵik ai + yjz ŵjz aj � yik yjz ŵjz ai .

Note that considering these hierarchical relations and con-

2To enumerate maximal independent sets ofH l , we �rst divide H l into a
subgraph( ~V l ; ; ), where ~V l are all isolated vertices inH l , ; is the empty
edge set, and another subgraph~H l = ( V l � ~V l ; El ). Then we enumerate
all maximal independent setsf ~Qlt ; t = 1 ; � � � g of ~H l by enumerating all
cliques of its complementary graph, which is a well-studied problem in
graph theory [2, 7] and is solved by the Bron-Kerbosch algorithm [7] in
our approach. Finally,Qlt = ~Qlt [ ~V l .



(a) Ground truth. (b) Estimated score. (c) NO-CT. (d) NO-CT, HR-CT.

Fig. 4: An illustration of the bene�t of adding HR-CT. In the
example, (a) shows the ground-truth labels of the segments. (b)
gives the highest estimated con�dence scoreŵ, its corresponding
estimated label and the areaa of each node. (c) considers non-
overlapping segments selection leading to two possible selections and
(d) further considers the hierarchical relation leading to one more
possible selection. According to the sum of scores, (c) fails to label
the right child node while (d) gives a reasonable labeling, because
the (chair,chair-back) relation strengthens each other avoiding the
possible error incurred by the poor estimatedŵ.

straints allows the model to avoid possible errors caused by
poor local estimates of̂w (see an example in Fig. 4).
Choosing the degree of speci�city for hierarchical labels.
For many robotic applications, it is also desirable to be able to
decide the degree of speci�city of the produced labels. Here
we use the information gainr k to represent the speci�city of
each class as in [10]:

r k = log 2 jCj � log2

X

cz 2 C

I (ck 2 � (cz )) ; (3)

where the �rst term is the total number of classes and the
second term gives the number ofck 's child nodes. We can
seer k is larger for lower level classes and smaller for higher
levels in the semantic hierarchy. We weight the unary term
ŵik by ~r k = r �

k , where� is the parameter deciding the degree
of speci�city of prediction.3

In summary, the�nal objective functionbecomes:
TreeSeg-HierLabel y (ŵ ; a; ~r ; �) :

max
y

unary terms
z }| {X

si ;ck

yik ŵik ~r k ai �

overlapping correction terms
z }| {X

�sl ;(si ;s j ;ck ;cz )2 
 l

yik yjz ŵjz ~r zai

+

edge terms
z }| {X

(si ;s j )2 N;ck

yik yjk �( si ; sj );

s:t:

NO -CT ; HR -CT
z }| {X

y ik 2 Qlt

yik � 1 8�sl ; t;

CM -CT
z }| {X

si 2 � (�sl ) ;ck

yik � 1 8�sl ;

yik 2 f 0; 1g:
(4)

After solving this, we label each pixelp with the most speci�c
label from the set:f ck jp 2 si & yik = 1g.

VI. EFFICIENT OPTIMIZATION

The quadratic term in the objective function makes op-
timization dif�cult. So, we equivalently formulate it by re-
placing quadratic termyik yjz with an auxiliary variable� kz

ij

3With larger � , the relative weight for more speci�c class:(r i =r j ) � ; r i >
r j is larger, thus prediction is more speci�c. The prediction is balanced when
� = 0 .

leading to a linear objective which can be solved by a mixed
integer programming (MIP) solver [1]:

OpTreeSeg-HierLabel y ;� (ŵ ; a; ~r ; �) :

max
y ;�

unary terms
z }| {X

si ;ck

yik ŵik ~r k ai �

overlapping correction terms
z }| {X

�sl ;(si ;s j ;ck ;cz )2 
 l

� kz
ij ŵjz ~r zai

+

edge terms
z }| {X

(si ;s j )2 N;ck

� kk
ij �( si ; sj );

s:t:

NO -CT ; HR -CT
z }| {X

y ik 2 Qlt

yik � 1 8�sl ; t;

CM -CT
z }| {X

si 2 � (�sl ) ;ck

yik � 1 8�sl ;

� kz
ij � yik ; � kz

ij � yjz ; yik + yjz � � kz
ij + 1 ; 8si ; ck

yik 2 f 0; 1g; � kz
ij 2 f 0; 1g;

(5)

Parsimonious Model.We observe that there is some redun-
dancy in the above objective, and introduce a parsimonious
model to avoid this.

First, we do not need to consider all possible classes for
each segment. Classes with low unary termsŵik ~r k ai can be
omitted for si . We consider only the top� classes, leaving
only � possibleyik for eachsi .

Second, in constraint-�nding, some hierarchical relations
(si ; sj ; ck ; cz ) 2 
 l are mutually exclusive.4 So we also
considerŵik ~r k ai in each hierarchical relation, reducing the
number of relations by greedily selecting the top ones with no
con�icts. In detail, we �rst rank all the possible hierarchical
relations(si ; sj ; ck ; cz ) by the sum of unary terms of each pair
wik ~r k ai + wjz ~r zaj , all of which consist a candidate relation
list. We select the one with the highest score from the list,
link the corresponding edge in graphH l , and remove all its
violating relations from the list. We repeat this selection until
no relations remain in the list. As a result, the graphH l

becomes sparse with many isolated vertices, since only most
con�dent relations are considered.

The most time consuming step in Alg. 1 is to enumerate
the maximal independent sets in step8. In the worst case it is
O(nl 3h s � �= 3), wherenl is the number of leaf nodes of andhs

is the height of the segmentation tree, and� is the number of
top considered classes. Though the worst-case running time
is non-polynomial, the Bron-Kerbosch algorithm runs much
faster in practice [3]. In our experiments on the NYUD2
dataset, it only takes an average of0:84 and 0:49 seconds
per image respectively to �nd the constraints and optimize the
objective using our parsimonious model.

4For example, consider(s1 ; s3 ; c1 ; c2 ) and (s2 ; s4 ; c3 ; c4 ), wheres2 2
_� (s1 ); s3 2 _� (s2 ); s4 2 _� (s3 ); c2 2 _� (c1 ); c3 2 _� (c2 ); c4 2 _� (c3 ). They
are both belong to hierarchical relations according to the de�nition. However,
they are mutually exclusive because wheny1;1=1; y3;2=1, y2;3 cannot be1
as the segments2 is within segmentss1 ; s3 while classc3 is higher than
classesc1 ; c2 .



TABLE I: Average class recall of each class level on NYUD2 dataset.

Recall(%) class level0 class level1 class level2 class level3

[37] 24.77 30.52 36.02 41.66
[14]+[37] 28.96 34.14 41.69 46.29

Ours(bs+bc) 30.08 36.09 45.96 51.80
Ours(ts+bc) 32.78 41.38 49.26 55.48
Ours(ts+hc) 33.35 44.46 51.79 61.51

VII. SCENE LABELING EXPERIMENTS

Data. We evaluate our approach on a hierarchically-labeled
subset of the NYUD2 dataset [45], which consists of RGB-D
images from a wide variety of environments. We manually
labeled a subset of500 images using a hierarchy. We used
20 most common object classes and onebackgroundclass,
and additionally labeled12 object-part classes and generalized
10 higher level classes. In total, we have43 classes in the
semantic hierarchy. We use the standard split of the NYUD2
dataset, giving269 training images and231 test images.

Implementation details. In our experiments, we used six
RGB-D kernel descriptors to represent segments for both [37]
and our approach. We kept the same setting as in [37] to run
their approach: �rst, we ran gPb-ucm algorithm [5] on both
the RGB and depth images separately and linearly combine
them to get the gPb-ucm values, then built one segmentation
tree by using different values to threshold these values. To
make a fair comparison, we also ran the 3D gPm-ucm [14]
algorithm to get the gPb-ucm value for both approach [37]
and ours. So we denote the approach [37] based on original
gPb-ucm as [37] and based on 3D gPb-ucm as [14]+[37].

Evaluation metric. We use three metrics for evaluating scene
labeling performance:cumulative pixel accuracy, average in-
formation gainandaverage class recall. We label each scene
image at the pixel level and consider it correct to label a pixel
with its ground truth label or any of its ancestors,e.g., a pixel
of classchair-backis also of classchair. If L̂ p is a prediction
of a pixel label andL �

i is its ground truth leaf node label, the
cumulative pixel accuracy over the whole dataset is de�ned
as:

P
p I (L̂ p 2 � (L �

p))=np, whereI (:) is an indicator function
andnp is the number of pixels in the whole dataset,� (L �

p) is
the set of all possible correct predictions includingL �

p and all
its ancestors in the semantic hierarchy.

With hierarchical labels, an algorithm can always predict
the top-level parent classes and get higher performance, e.g.,
it is easier to labelfurniture vs table-leg. Therefore, following
[10], we evaluate the degree of speci�city for prediction.
Speci�cally, we compute the information gain (Eq. 3) of each
predicted class as de�ned earlier and compute the average.

Recall for classc is de�ned as:(
P

p I (L̂ p 2 ch(c) & L̂ p 2
� (L �

p))) =(
P

p I (c 2 � (L �
p))) , wherech(c) represent the class

set of all c's children plusc itself in the semantic hierarchy.
So, the numerator is the number of correctly predicted pixels
for classc, and the denominator is the number of pixels with
c as ground truth label.

Fig. 5: Results on NYUD2 dataset. For the same degree of
speci�city for prediction (i.e., same information gain, left) and recall
(right), our algorithm performs better.

A. Results
We �rst evaluate the average class recall on four levels of

the semantic hierarchy. Table. I summarizes the results. Class
level0 contains the base classes, the most speci�c classes in
the tree,e.g. object parts and low-level object classes. Higher
levels are obtained by merging nodes in each previous level,
leading to more general classes. Fig. 7 shows all classes for
each level.

In this experiment, we train and predict labels on the base
classes for �at labeling approaches [37],[14]+[37]. For our
approach, we train and predict labels using leaf node segments
on the base classes (Ours(ls+bc)), the segmentation tree on
the base classes (Ours(ts+bc)) and the segmentation tree on
the test class level and all classes below them in the semantic
hierarchy (Ours(ts+hc)), with� = 0 for balanced prediction.
These results reveal a number of interesting points as follows:
� The proposed approach Ours(ts+hc) shows the best results at

each level, even though predicting more hierarchical labels
is harder than the task of the other compared approaches,
which only predict the base classes. This is because our
approach effectively considers the mapping of the semantic
hierarchy to the segmentation tree.

� Labeling on segmentation trees,e.g. Ours(ts+bc) and
Ours(ts+hc), outperform methods labeling on �at segmen-
tations. In [37], they considered hierarchical segmentation
by packing all semantic features together in a tree path.
However, they still label on the �at leaf node segmentations,
losing some visual information.

� Prediction becomes easier when classes are more general.
Thus, for tasks where speci�city is not strictly required, we
can predict more general labels to achieve higher accuracy.
To further evaluate the labeling performance using our

semantic hierarchy, we plot average information gain vs.
accuracy curves (Fig. 5-left) and average class recall vs.
accuracy curves (Fig. 5-right) by varying the degree of
speci�city for prediction parameter� . We compare ap-
proaches [37], [14]+[37] and our approaches using single
ucm tree (Ours(ucm)), single normal tree (Ours(normal)),
single semantic tree (Ours(category)) and using all three trees
(Ours(full)). For the �at labeling approach [37], [14]+[37],
we treat each class in the hierarchy as an arbitrary class
without considering the hierarchy and train a one-vs-all SVM
as in [37]. From these results, we can see that our approaches
outperform the �at labeling approaches by a large margin,
since the semantic hierarchy is considered. For the same de-



(a) Input Image (b) Ground Truth (c) [14]+[37] (d) Ours

Fig. 6: Some samples of the resultson NYD2 dataset (small areas are not shown with label names for clarity). In the �rst row,sofa back
is labeled correctly since semantic hierarchy (sofa,sofa back) is considered. In the second row, our algorithm labeled the higher level classes
desk, basic constructioninstead ofdesk surface, wall to avoid possible mistakes with the help of semantic hierarchy.

Fig. 7: Multi-level confusion matrix of our �nal results on NYUD2 dataset. From left to right, the confusion matrix zooms in to see more
speci�c results in the next level below. In each confusion matrix, the red border square gives the classes merged in the next level up.

gree of speci�city, our algorithms give higher accuracy. Using
multiple segmentation trees also improves the performance.

We give two visual examples of labeling results in Fig. 6.
In the �rst example, we can see that our algorithm yields a
better labeling because semantic hierarchical relations such as
(sofa,sofa back) are considered. The second example shows
that the hierarchical labeling can use higher level classes
to avoid possible mistakes, such as usingdesk or basic
constructionrather thandesk surfaceor wall.

To further study the labeling results of our algorithm, we
illustrate a multi-level confusion matrix in Fig. 7. We can
see that some between-class labeling errors occur within one
general class such assofa, chair, stood on, most of which
vanish in the next-higher level. However, some classes are hard
to discriminate at any levels, such asdoor andwall, door and
hanging. Our algorithm performed poorly for the background
classothersas it contains large variations in visual appearance.

VIII. R OBOTIC EXPERIMENTS

We evaluated our approach on three robotic tasks: ob-
ject search, retrieval, and placement. We used a PR2 robot
equipped with a Microsoft Kinect as our robotic platform.
Table II shows a summary of the results, listing the perception
accuracy (`perc') and end-to-end execution (`exec') separately.

A. Object Search Experiments
Here the goal for the robot is to locate a particular object in

a room by moving around.5 We compare our approach to [37].
For repeatable experiments, we pre-recorded a search tree at
20 discrete locations, each with a corresponding RGB-D frame
(not in the training set).

We ran four separate trials for each algorithm, with the goal
of searching for achair back, fridge handle, mug handle, and
baseball. To evaluate performance, the robot to takes a �xed
number of steps, and then reports the location at which it had
the highest con�dence of �nding the given object. We score
the algorithm's performance based on the overlap ratio of the
reported and ground-truth pixels of the target class for that
frame, i.e.jpd \ pg j=jpd [ pg j, wherepd; pg are the detected
object pixels and ground-truth object pixels.

Fig. 10 shows that for any �xed number of steps, our
algorithm was able to outperform the approach from [37] for
this task. Our algorithm was able to achieve an average overlap
ratio of 0:4 after only 6 steps, while [37] took 15, showing
that our approach does a better job of informing the search.

5Experimental setup details:The robot moves in discrete steps through the
room, effectively moving through a search tree spanning the room. At each
node in the tree, it turns to face each potential next location to move to,
recording and labeling an RGB-D image for each. The robot will then move
to the next location with the highest con�dence score for containing the target
object. If there are no unvisited neighboring locations, or this score is below
some threshold, the robot will instead backtrack.



Fig. 8: Fetching a drink with our robot. A few snapshots of our algorithm running on
our PR2 robot for the task of fetching a drink. From left to right: the robot starts some
distance from the fridge, navigates to it using our labeling, detects the handle, and grasps
it. It then opens the fridge, and �nally retrieves a soda from it.

Fig. 9: Placing a cushion.No sofa was present,
but the robot used our hierarchy to determine that
the chair was anothersittable object and thus a
reasonable place for the cushion.

Fig. 10: Robot Object Search results.Figure shows the accuracy
vs the number of movement steps taken by the robot.

TABLE II: Robotic experiment results. Success rates for perception
(`perch') and actual robotic execution (`exec') of each task.

Search Retrieval Placement Average
@20 steps Soda Bowl Cushion
perc exec perc exec perc exec perc exec perc exec

Flat 44 44 33 33 38 38 50 50 42 42
Hierar. (ours) 64 64 90 80 80 80 100 100 84 81

After 20 steps, both algorithms converged, and ours achieves
an average overlap ratio of 0.64 versus the 0.44 ratio from the
baseline approach, thus also improving long-term accuracy.

B. Object Retrieval Experiments
In this experiment, the robot has to perform a series of

perception and motion/manipulation steps for retrieving an
object—to fetch a drink from a fridge, and to fetch a bowl
from a kitchen counter. The robot �rst detects and navigates
to a semantically appropriate area to �nd the object in, then
locates the target object, grasps it, and brings it back.

In some cases, the desired object may not be available, and
the robot is then allowed to retrieve an appropriate substitute.
We de�ne this as some other descendant of a class's parent in
the semantic hierarchy - for example,Pepsiis a substitute for
Cokebecause both have the parent classsoda. A �at labeling
scheme is incapable of determining such substitutes, and will
report failure if the target class is not found.

From Table II, we can see that our algorithm achieves
a very high rate of success for the complex drink-retrieval
task shown in Fig. 8. Even though this task requires three
separate phases of perception, our perception algorithm failed
only once in ten trials, failing to �nd the fridge handle,
giving a 90% perception success rate. One more execution
failure was due to the fridge door swinging closed before

the robot could hold it open, giving an 80% overall success
rate. Results for the bowl retrieval experiment were similar.
Video of some of these experiments is available at:http:
//pr.cs.cornell.edu/sceneunderstanding/ .

At long distances, neither ours nor the baseline labeling
algorithms were able to distinguish the handle from the door of
the fridge, but our hierarchy informed the robot that the handle
was part of the door. The �at labeling approach, meanwhile,
lacked this information and simply failed if it could not
identify the handle. In fact, the robot was only able to open
the fridge 50% of the times using �at labels. Once opened, it
could not identify proper substitutes if the desired drink was
not present, leading to a mere 33% perception success rate.

C. Object Placement Experiments
We also performed a series of experiments in which the

robot's goal was object placement rather than retrieval. In
particular, we considered the task of placing a cushion on a
sofa, or on some othersittableobject such as achair if a sofa
is not present. In every experiment performed, our algorithm
was able to successfully locate the sofa, or a substitute if there
was no sofa. One example of the robot successfully placing
a cushion is shown in Fig. 9. By contrast, when using a �at
labeling approach, the robot did not understand to place the
cushion on anothersittablesurface if the sofa was not present,
and thus succeeded only in the 50% of cases.

IX. CONCLUSION

Objects in human environments can be classi�ed into a
meaningful hierarchy, both because these objects are com-
posed of parts (e.g. fridge-fridge door-fridge handle) and
because of different levels of abstraction (e.g. drink-soda-
Coke). Modeling this is very important in enabling a robot
to perform many tasks in these environments. In this work,
we developed an approach to labeling a segmentation tree with
such hierarchical semantic labels. We presented a model based
on a Conditional Random Field which incorporated several
constraints to allow labeling using this hierarchy. Our model
allows for different levels of speci�city in labeling, while
still remaining tractable for inference. We showed that our
method outperforms state-of-the-art scene labeling approaches
on a standard dataset (NYUD2), and demonstrated its use on
several robotic tasks.
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