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Abstract—Semantic labeling of RGB-D scenes is very impor-
tant in enabling robots to perform mobile manipulation tasks,
but different tasks may require entirely different sets of labels.
For example, when navigating to an object, we may need only a
single label denoting its class, but to manipulate it, we might need
to identify individual parts. In this work, we present an algorithm
that produces hierarchical labelings of a scene, followings-part-of ~ Step 1: navigate to fridge;
and is-type-ofrelationships. Our model is based on a Conditional !
Random Field that relates pixel-wise and pair-wise observations y
to labels. We encode hierarchical labeling constraints into the
model while keeping inference tractable. Our model thus predicts
different speci cities in labeling based on its con dence—if it is
not sure whether an object isPepsior Sprite it will predict soda
rather than making an arbitrary choice. In extensive experiments, Step 2 idoeodoor: b, fmpie bl
both of ine on standard datasets as well as in online robotic >'P # open fridge-door;
experiments, we show that our model outperforms other state-
of-the-art methods in labeling performance as well as in success

rate for robotic tasks. e A
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I. INTRODUCTION \ Ve
. . . . . Coke Sprite Pepsi
Semantic scene labeling is crucial to many robotic task

allowing a robot to precisely localize objects, build mapfSte]O 3: pick up the Coke.
perform mobile manipulation tasks, and achieve many oth B
goals. In recent work, many algorithms have been develop

to produce such a labeling for RGB-D images (elg.| [37[24, ~ PR2: No Coke,
[14]). However, these approaches produce onlgtalabeling R

of a scene, ignoring important relationships between the lak..

classes. In this work, we present an algorithm whose outpti§. 1: Hierarchical Labels are produced by our algorithm as
is a hierarchical labeling of the scene. required for a robotic task. In the above environment, a robot is

These hierarchical labels are very important for a widesked to fetch a Coke. It needs to perform three sub-tasks: navigate
; it ; ; ta the fridge, open the fridge door, and pick up the Coke (shown
range of robotic applications. Segmenting object parts, SUCh'%%hree rows). For navigation, the robot needs to produce a higher-

|

handles, knobs, and buttons, separately from the body of @ﬁal fridge-door label so that it can approximately navigate close
object is critical to properly afford most household objectse it. Once it gets closer, producing a more detaifédge-handle
Understanding hierarchical object classes can also enablilel is necessary. In the last step, the robot cannot déeks so
robot to make rational substitutions between objects. Considgfétches anothesodainstead. Such a label hierarchy lets a robot
for example, the task of fetching a Coke from a fridge (F]g. 1§:°d9° ts bets.
To open the fridge, the robot must detect and grasp the fridgeConventional at labeling approaches [37,114] might sim-
handle separately from its door. Then, if a Coke is not preseply be applied by attening all the classes in the semantic
in the fridge, it is much more desirable for the robot to returhierarchy, but this sacri ces important information. Mean-
with another soda, such as a Pepsi, than empty-handed. while, image classi cation approaches using semantic hierar-

Using a semantic label hierarchy as shown in Flg. 2 enablesies [10,35], which predict only one label for each image,
these behaviors, which could not be realized using at labelgannot be applied to most robotic tasks that require pixel-level
When labeling with this hierarchy, each pixel belongs to labeling of the entire scene. Properly integrating a semantic
series of increasingly-general labels - for example, a pixel bferarchy into the labeling problem is a major challenge, and
classfridge-handlewould also be of classdadge-door, fridge the main focus of this work.
and electronics This also allows us to represent uncertainty, To this end, we propose a novel approach which uses
using a more general class when the algorithm is not suréxed integer programming to optimize a model isomorphic
which low-level class a pixel should belong to. to a Conditional Random Field (CRF). Our model encodes




furniture (7L clectronic

Kernel Descriptors, highly useful RGB-D feature, and used the
segmentation tree to get contextual information. Gupta et al.
[14] generalized 2D gPb-ucm contour detection to 3D, giving
fridge (6 Coke Sprite Pepsi more effective segmentation. Koppula et al.1[24] and Anand

full
cabinet

cabinet ~ counte et al. [4] used rich contextual information for semantic labeling
chair back chair base fridge handle of 3D point clouds. Jia et al. [19] interpreted objects in a scene

Fig. 2: Semantic hierarchy graph. Each node denotes a class anéay reasomr,]g about blocks, .support, and St_ab”'ty' All these

each directed edge denotes a “belong to' relation. works predict at labels, which are not applicable to many

) robotic tasks. Instead, our approach outputs a hierarchical
relations both from color/depth features to labels and betwe%rﬁe"ng which aids navigation, object nding and rational

neighboring segments, as well as constraints arising due to fQFQet substitution in robotic applications.
hierarchical nature of labels. It directly integrates hierarchical | it . tic hi hies.O K
information, allowing it to represent ambiguities in perceptio}{'sua recognition using semantic hierarchies.ur wor

by giving more general labels. In fact, our algorithm allows %also related to visual recognition using semantic hierar-

desired speci city of the produced labels, allowing for mor les (9, 39]._O_n§ similar work [j'(.)] .ClaSSi ed large scale
ipages by optimizing accuracy-speci city trade-offs. Ordonez

speci c ones for tasks which need them, and more gene ) . -
b g %tsal. [35] considered predicting labels that people actually use

ones for those that do not. Our approach also combin biect. Both of th ks t ted web i
multiple segmentation trees generated using different metrf shame an object. Both of these works targeted web image

to yield more robust labeling results. We demonstrate th gssi cation, and so predict a single label for each image

all the necessary terms and constraints for our approach oting the m°$t salient objec_t. For many robotu_: taSk.S » We
: : H&ust consider pixel level labeling of multiple objects in a

solvable in under 1.5 seconds per image despite incorporatﬁ“%fnplex scene using a semantic hierarchy.

more information than considered in other labeling algorithmBobotic tasks using vision.There is also a huge body of
We validate the performance of our algorithm in an exworks using vision algorithms to help perform different robotic
tensive series of experiments, both ofine on the NYUD2asks [13] 38[ 16, 30], such as object grasping [42, 11, 29],
dataset[45] and online in a series of robotic experiments usifigvigation [6,[25], trajectory contro[_[44], and activity an-
our PR2 robot equipped with a Microsoft Kinect. Our algoticipation [23]. Many works focused on improving SLAM
rithm produces signi cantly improved results on hierarchicdechniques to better depict an environment for planning and
labeling over the state-of-the-art, increasing performance by n@vigation [34/ 28], such as incremental smoothing and map-
to 15%. In robotic experiments, we demonstrate the usefulng¥gg using the Bayes Treé [21], real-time visual SLAM over
of hierarchical as opposed to at labeling and show tha&rge-scale environments [46], and object level SLAMI [40].
our algorithm can be applied to real-world robotic scenariobilford [33], He and Upcroft [15] proposed a place recog-
achieving an average success rate of 81% over several chéion algorithm for mobile robots. Katz and Brock [22] de-

lenging tasks. Video of some of these is availablitap: veloped interactive segmentation for observing object motion
/lpr.cs.cornell.edu/sceneunderstanding/ ] during manipulation. Pangercic et al. [36] built semantic object
In summary, the main contributions of this work are: maps for manipulation tasks for an autonomous service robot.

We consider a hierarchy of semantic labels when Iabelir\'t;j'nklfa and Edwin[[18] proposed a technique for functionally
RGB-D scenes, which allows the robot to predict taSR:__assﬁy_lng objects using features obtained through physical
relevant labels. simulations.

We design an inference model that incorporates, over a CRF, lIl. OVERVIEW

relations between segment-features and labels, relations be-, | ) i ,

tween neighboring segments, as well as constraints arising '€ INPULt0 our algorithm is a co-registered RGB and Depth

H 3. .
because of the hierarchical nature of the labels. We shgW?9e pairl 2 R™ 7 D 2 R™ 7, wherem;n are the
that it still remains tractable and is solved by constraindd'29€ height and width. Our gof'il IS tOnE)r?]dICt the Iab_el of each
mixed integer programming. pixel and output the label matrix 2 C , WhereC is the

Our model allows a robot to choose varying levels aiet of possible hierarchical semantic labels. We achieve this by
speci city in the labels produced mapping a semantic hierarchy graph to the segmentation tree

We perform extensive evaluation on the NYUD2 dataset gilt on the input image. We will rst introduce the semantic
well as on several different robotic tasks ierarchy graph and the segmentation tree in this section.

Semantic hierarchy graph. For many robotic actions, we
Il. RELATED WORK need semantic labels at different levels of abstraction rather
Scene understandingScene understanding from 2D image$han a simple object level. Therefore, we consider two types
has been widely explored [41, 143,112, 8]. Due to the avaff relations in a semantic hierarchy:
ability of affordable RGB-D sensors, signi cant effort has Is-part-of.For some robotic tasks, we need detailed localiza-
been put into RGB-D scene understanding recently [45, 37tion of speci c object parts. For example, to open a fridge,
24,311,425 14, 20, 19, 17, 127]. Ren et al.|[37] developedit is much better to know exactly where tliedge-handle
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is from the labeling rather than to simply guess based orbatween, the segments. We will introduce the unary term and
higher-levelfridge-door label. a CRF model to label RGB-D images with at-labels in this
Is-type-of.Understanding which objects belong to the sansection. We rst de ne the following notations:
higher-level semantic class allows a robot to make rational ¢, k-th label in the semantic hierarchy graph.
substitutions between such objects. For example, if the robots; j-th segment in the segmentation tree.
is sent to nd aCokebut cannot, it could instead return with v, 2 f 0; 1g. If s; is labeled withc, yik = 1,0.W.yik = 0.
any sodasuch as &epsi a; number of pixels in segmerst.
We represent this semantic hierarchy by a directed acyclica;,, number of pixels of class, in segments;.
graph, called asemantic hierarchy graphwhere the nodes w; = ay =g, fraction of g, class pixels in segmerst.
C = fccgrepresent the possible labels and the edges represégntU ¢ ¢ ‘
one of aforementioned relations. See Fip. 2 for an examplé.” nary term ot a segmen _
Segmentation tree of the RGB-D image\We begin by The unary.term relates the features of a segment to its label.
segmenting the image into small segments. This gives ug(grnel descriptors have’,been proven to be. useful featur.es for
set of candidate segmentts;g to label. If a segment is too RGB-D scene labeling [o?], SO we extract Six such descriptors
small, visual and/or geometric information might be limited; ifrom each segment: gradient, color, local binary pattern, depth

it is too large, it might straddle a class boundary. We therefo adient, spin, SL;rface normgls(,j and K:CA/se\R‘/—sir?]ilarity. The
build a segmentation tree and label over this tree. In det [Eature vector of segmenst Is denoted as;. We then use

we rst obtain leaf node over-segmentations using a gP e fraction of¢, class pixels m_segmentwik = dk=g as
con dence score fos; belonging tock. Since each pixel

ongs to several ground-truth classes in the hierarchy such
aschair-back chair, sittable furniture, we treat this as a linear
regression problem rather than a classi cation problem as in
previous work [[37]. In detail, ridge linear regression is used
to train the linear prediction functiowy = [ z;.

ucm approach extended for RGB-D images| [14]. Second, We
merge the most similar pairs of nodes step-by-step based
a similarity measure (the gPb-ucm boundary vﬂu&)rming

a tree as shown in Fig] 3.

(Ss51)  (852)  (853) --- (S54) ! . ) .
(S A A, NN S B. Lab.ellng RGB-D Images with Flat Labels o
_____ ///\ Previous work by Anand et all [[4] started by dividing the
(s23) 24 (s . (s» . RGB-D image into small segments, with the goal of labeling
---------------- /\ A each segment from a_at label sk, g. They then used a CRF
cofo N /oo /N -o---/-2\..  to model the unary terms of and pair-wise relations between
W @SS susgsvzz the segments. Since each segment is allowed to belong to only

one class, we have the constraint, yix =1. The objective
function is as follows:

Fig. 3: lllustration of segmentation tree. Pixels are grouped into FlatSeg -FlatLabel , (W; ) :
small segments which are then merged to form a segmentation tree.

Note that mapping the semantic hierarchy graph to the %J('ﬂ'}fef{ Z—s edge}ferms {
segmentation tree is challenging, because both labels and max i Wy + yieYik (Siis)i (1)
segments are hierarchical rather than at as in previous works. y g‘(;ck (sisj)2Nick
For example, for a parent segment with two child segments, ot Vi =1 8s: yi 20 1g:

it is possible to label them with parent-child labels such as
labeling the parent ashair and the children aghair-back . . ) _
and chair-base or to only label the children as two unrelatedtere the unary .term i, the edge'term Is( sis) =
classes such a8V and cabinet Thus, we need to take into exp(  gPb(si;s))), in W_h'Cthd_S"Si) is the gPb-ucm
account appropriate constraints in designing our CRF-bas ndary weight betwees;s;, and ;  are .tWO w«_alghtmg
objective function. For many robotic applications, it is als arameters. The edge term encourages neighboring segments
desirable to be able to select the degree of speci city of t gi’sj) 2 N with small boundaries to take the same label.
produced labels in the semantic hierarchy. Integrating all these V. OUR APPROACH

desiderata into a parsimonious model is challenging.

Ck

In this section, we will describe an improved CRF model
IV. PRELIMINARIES with constraints which allow labeling over semantic trees using
Our approach is based on a Conditional Random Fiefderarchical labels. We rst de ne the following notations:
(CRF), modeling the unary terms of, and pair-wise relations (v) a function that takes a vertexin a directed graph

1 . . . . and returns the set of its ancestors, including itself.
In order to improve the chances of obtaining desirably-sized segments

for labeling, we actually build multiple segmentation trees based on different (V) the set of ancestors Withomitself: (v) f_ vg.
similarity measures [32]: the gPb-ucm boundary value (ucm tree), the simi- 5y |-th leaf node segment in the segmentation tree.

larities between the normals of two neighboring segments (normal tree), andHI hierarchical relation graph of the ancestor sés)).
the semantic similarities of any two segments (category tree). These diverse

trees provide rich candidate segments for the labeling stage. Qi t-th maximal independent set of graph.



A. Labeling Segmentation Trees with Flat Labels Algorithm 1 RGB-D Hierarchical Semantic Labeling.

Now we describe how we label a segmentation tree, wherelnput: RGB and Depth image matrilx D .
at segments are merged to form a tree as in Flg. 3. As someOutput: Pixel-level label matrix .
segments in the tree overlap, we rst need to select which 1. Obtain segment sét; g by building the segmentation
ones to label, and second predict their labels. We achieve this tree onl;D (Sectior1T]);
by enforcing that, for each leaf node segment, only one of its2. Extract feature; from each segmers; (Sectior{ TV-A);
ancestors (including itself) is labeled. This is because a pixel3. Compute termsy ; Wi ; F; in
can have only one label in a at labeling scheme while these OpTreeSegHierLabel . (W;a;r; ) Eq.@:
segments are overlapping. So following constraints are added. Wi = ¢ zi,f = r,; ( si;Sj)= exp( gPb(si;sj))
Non-overlapping congiraints (NO-CT). We replace the (Section TV-4,[IV-B, [V-B); _
gum-to-one constraint  yx = 1:8s in Eq. with 4, O.btam. ances.tor-set(s[) for each leaf r?odem,

&2 (s)c Yk =1;8s1. Since all leaf nodes are considered, 6. F'”_d h|er.arc.h|c.al relations for.eacf(s|). .
every pixel is labeled with exactly one label. We also needto ' = f(siisiioiC)icz 2 (a)isi 2 _(si);
ensure that the area of the child segment vs. the parent segment _ . 8Si:Si 2 (81);:8G; GG, (Section V-B (1));
is accounted for in the objective function. We therefore weight /- Build hierarchical relation grapH, = (Vi; E):
eachw; by the total number of pixels; of the segmens;. Vi=1yi:8si 2 (si);8cag,
The objective function then becomes: Ei = f(Yik:Yiz);8(Si:8j;C;C2) 2 1G;

e (Section V-B (2));

TreeSegFlatLabel y(#;a;): 8. Enumerate maximal independent €t on eachH
unary, terms edge, ferms i @ .
% i {2 A ¢ 9 (SS(()EISE?) Tree(832’HierLabeI (W;a;r; ) E

myax Yik Wik & + ik Yik ( Si;s); .(Sectiorpw])' 9 yi A q'ﬁ
. s 2N; 2 - . ,
o NOL-CT (siisi )2 Nick 2) 10. Label each pixeb with the most speci ¢ label from
Z O}| { the setfcjp2 s; & Yk =1g:
st yik =1 8s;; yi 2f0;10: L, = argmaxc, r¢ subjecttop2 s; & yx =1.

si2 (si)ick

) ) . ) ) Otherwise, at most one can be set to one following the

B. Labeling Segmentation Trees with Hierarchical Labels non-overlapping constraint. To give ef cient and suf cient

When hierarchical labels are introduced, the following in- constraints, we constrain the sum ofyall in each maximal
teresting property emerges: even if a child node is labeled,independent set (the set of vertices, no pair of which
its ancestors can be labeled with its ancestor classes. Thigre adjacent) to be not greater than one. The problem
complicates the speci cation of constraints in the model, S0 We then becomes to enumerate all maximal independerfl sets
add following hierarchical relation constraints. We summarize fQu:t = 1;:::9 of Hy. In practice, we will introduce a
our RGB-D hierarchical semantic labeling approach in fg. 1. parsimonious model (S€c. V1), leading to a sparse gtiph
Hierarchical relation constraints (HR-CT). Now, we allow thus more ef cient constraipt- nding. After nding these
labeling more than one segment ir(s;) with hierarchical sets, we add the constraintsy‘k 20, Yi 1;8¢;t. To
labels, such as labeling the parent nodelzar and the child further ensure that all pixels tque labeled, we add the
aschair-back To achieve this, we do the following: completeness constraints (CM-CT)g 5 (5., Yik 18l
1) Find hierarchical relations. We rst dene a tuple  to ensure at least one segment in ea¢f) to be labeled.

(Si;S;C;C,), called hierarchical relation if it follows 4) Overlapping unary correctionTo give even weighting

¢, 2 _(&);s; 2 _(si). This allows the pair of segments for each pixel, we also modify the unary term for the

(si;s)) 2 (s1) to be labeled with(ck; c,) respectively, as  overlapping pixels when both parent and child segments are

their order is consistent in both the segmentation tree andlabeled. Ifyy andy;, are both set td, yiky;; =1, when

the semantic hierarchy graph. All such tuples comprise a(Si;Sj;C;C;) 2 |, we would rather label their overlapping

set | for each (s)). pixelsa; with the more speci ¢ labety. So, the summation
2) Build hierarchical relation graph.In order to nd all of the unary term would b& & + Wz (8  &). Then,

the constraints in each ancestor-sés) considering both  the objective function relating these two terms changes to

the non-overlapping and hierarchical labeling properties, Yik Wik & + Yjz Wiz & Vi Yjz Wjz &

we build a undirected graph; = (Vi;E), called hi-  Note that considering these hierarchical relations and con-

erarchical relation graph of which the vertices are all

pOSSIbIQ aSS|gnment$1| = Tyi:8s, 2. (S|);$Ckg an(?' 2To enumerate maximal independent setsof we rst divide H; into a

edges link vertices if they follow the hierarchical relationsypgraph(v,;;), wherev, are all isolated vertices ih;, ; is the empty

E = f(Yk;:Yiz);8(si;s;C;C) 2 10 edge set, and another subgraffh = (V| ¥|;E). Then we enumerate

3) Find constraints on the hierarchical relation graplfol- all maximal independent sefsQ ;t =1; g of H; by enumerating all
cligues of its complementary graph, which is a well-studied problem in

lowing the .hierarchical relation, if two verticeyix ;in) graph theory[[2[17] and is solved by the Bron-Kerbosch algorithim [7] in
on H, are linked by an edge, they can be both set to ongur approach. FinallyQ, = Q [ V.



leading to a linear objective which can be solved by a mixed

. chair o
chair 311%57,.\ : 4 integer programming (MIP) solver][1]:
w W ‘ . \ OpTreeSegHierLabel . (#;a;r; ):

‘{)I;ig %gzg Ch&i}'g%Ck ‘:ﬁb(;edf 0.5x10=5, 0.5%10=5, unary. ferms overlapping coirection terms

a: s a3 *0.5%(10-5510.7%5=6. Z } { z .S | - {
(@) Ground truth. (b) Estimated score. (c) NO-CT. (d) NO-CT, HR-CT. max Yik Wik Ficai ij Wiz F2 &
Fig. 4: An illustration of the benet of adding HR-CT. In the SiiCk s1i(sisjiCkicz)2 |
example, (a) shows the ground-truth labels of the segments. (b) 5 edge}lterms {
gives the highest estimated con dence scavgits corresponding 7A "
estimated label and the areaof each node. (c) considers non- + i ( si;s);
overlapping segments selection leading to two possible selections and (si1s;)2 Nick
(d) further considers the hierarchical relation leading to one more NO -CT. HR -CT CcM-CT
possible selection. According to the sum of scores, (c) fails to label Zag H { z— N}| {
the right child node while (d) gives a reasonable labeling, because st Vik 1 8s:t: vk 1 8s:
the (chair,chair-bacl relation strengthens each other avoiding the o y 20 ! Y 2 (o) ! ’

ik It Si S1):Ck

possible error incurred by the poor estimated
1(2 . }_(Z Vi 4+ }'(Z +18S

straints allows the model to avoid possible errors caused by i Yk ky‘z Yk Yz O G
yik 2f0;1g; * 210;1g;

poor local estimates off (see an example in Fig] 4).

Choosing the degree of speci city for hierarchical labels.

For many robotic applications, it is also desirable to be able to

decide the degree of speci city of the produced labels. Hefgdrsimonious Model. We observe that there is some redun-
we use the information gairy to represent the speci city of dancy in the above objective, and introduce a parsimonious

each class as i [10]: X model to avoid this.
re =10g,jCj log, (2 (c)); ©) First, we do not need to consider all possible classes for
6, 2C each segment. Classes with low unary tesnpsrga; can be

where the rst term is the total number of classes and ttgmitted fors;. We consider only the top classes, leaving

second term gives the number gf's child nodes. We can Only —possibleyi for eachs;.

seery is larger for lower level classes and smaller for higher Second, in constraint- nding, some hierarchical relations

levels in the semantic hierarchy. We weight the unary terfsi;s;;c;c;) 2 | are mutually exclusi. So we also

Wi« by /e = 1y, where is the parameter deciding the degreeonsiderwi rxa in each hierarchical relation, reducing the

of speci city of predictiorﬂ number of relations by greedily selecting the top ones with no
In summary, thenal objective functionbecomes: con i_cts. In detail, we rst rank all the possible hierarchica_l
TreeSegHierLabel  (W;a;r; ) : relations(s; ; s ; &; ¢;) by the sum of unary terms of each pair

Wik Fe@ + Wiz iz, all of which consist a candidate relation

(®)

unary, terms overlapping cojfrection terms R X . X
il { z— i { list. We select the one with the highest score from the list,
max Yik Wik Fcay Yik Yjz Wiz Fz & link the corresponding edge in graph, and remove all its
Y s S13(Si38) itk i€2)2 violating relations from the list. We repeat this selection until
edge}rerms no relations remain in the list. As a result, the graldh
Z—x { becomes sparse with many isolated vertices, since only most
+ Yik Yik ( Siisj); con dent relations are considered.
(s ;S")ZN;CK. The most time consuming step in Algl 1 is to enumerate
z NO'CT}| HR—CT { z— CN}[CT { the maximal independent sets in st&dn the worst case it is
8 ~ O(ny3" =3), wheren, is th ber of leaf nodes of
st vk 1 8s:t vk 1 8s: . (n . ), wheren; is e number of leaf nodes o ahg
Vi 20 $i2 (s1)ic is the height of the segmentation tree, ants the number of
vie 2f0;1g; top considered classes. Though the worst-case running time
| ) .

is non-polynomial, the Bron-Kerbosch algorithm runs much
faster in practice[[3]. In our experiments on the NYUD2
dataset, it only takes an average @84 and 0:49 seconds
per image respectively to nd the constraints and optimize the
VI. EFFICIENT OPTIMIZATION objective using our parsimonious model.

The quadratic term in the objective function makes op-

timization dif cult. So, we equivalently formulate it by re- , ,
. . . . . Kz For example, considefss;s3;C1;C2) and(Sz;Sa;C3;Ca), Wheresy 2
placing quadratic ternyicy;; with an auxiliary variable §* (5 /y.s.'> "(s;);'sa 2 (s3)ice 2 (C1)ic3 2 (Ca)ica 2 (Ca). They
are both belong to hierarchical relations according to the de nition. However,
SWith larger , the relative weight for more speci ¢ clasgi=rj) ;ri > they are mutually exclusive because wham =1;ys;2=1, y2;3 cannot bel

rj is larger, thus prediction is more speci c. The prediction is balanced whexs the segmend: is within segments;;s3 while classcs is higher than
=0. classe<; co.

4)
After solving this, we label each pixelwith the most speci ¢
label from the setfccjp2 si & yx =10.



e[37]

TABLE I: Average class recall of each class level on NYUD2 datasec 1 ST 0.45

So. *[14}4[37] = 04 *{1414(37)
Recall(%) [ class levelO class levell class level2 class levelzg +Ours(ucm) 3 +Ours(ucm)
208 *Ours(normal) ¢ 0.35 *Ours(normal)
B71 2477 30.52 36.02 41.66 EO 7 B\ _AO0urs(category) z 0.3 AOurs(category)
[L4)+[37] 28.96 34.14 41.69 4629 2 ' 50.25 N il
Ours(bs+bc 30.08 36.09 45.96 51.80 é ’ % 0.2
Ours(ts+hc 32.78 41.38 49.26 55.48  §05 80,15
ours(ts+hc 33.35 44.46 51.79 6151 204 ~ oA
045 05 055 06 065 07 045 05 055 06 065 0.7
Accuracy Accuracy
VIl. SCENE LABELING EXPERIMENTS Fig. 5: Results on NYUD2 dataset For the same degree of

speci city for prediction (i.e., same information gain, left) and recall
(right), our algorithm performs better.

Data. We evaluate our approach on a hierarchically-labeled resuyits
subset of the NYUD2 dataset [45], which consists of RGB-D

images from a wide variety of environments. We manualSﬁe semantic hierarchy. Tab[é. | summarizes the results. Class

labeled a subset 060_0 images using a hierarchy. We use evel0 contains the base classes, the most speci c classes in
20 most common object classes and dweckgroundclass, Fle,l

We rst evaluate the average class recall on four levels of

d additionallv labeled? obiect-oart cl q " the tree,e.g object parts and low-level object classes. Higher
and adaditionally labeled.z object-part classes and generalizeg, o\ are gptained by merging nodes in each previous level,
10 higher level classes. In total, we ha4@ classes in the

L ) ading to more general classes. . 7 shows all classes for
semantic hierarchy. We use the standard split of the NYUEg g g i

dataset. ivind69 training i @31 test i ch level.
ataset, giving?69 training images an estimages. In this experiment, we train and predict labels on the base

Implementation details. In our experiments, we used sixclasses for at labeling approaches [37].[14]+[37]. For our
RGB-D kernel descriptors to represent segments for hoth [3gpProach, we train and predict labels using leaf node segments
and our approach. We kept the same setting a5 in [37] to rOR the base classes (Ours(Is+bc)), the segmentation tree on
their approach: rst, we ran gPb-ucm algorithii [5] on botfihe base classes (Ours(ts+bc)) and the segmentation tree on
the RGB and depth images separately and linearly combithe test class level and all classes below them in the semantic
them to get the gPb-ucm values, then built one segmentatfigrarchy (Ours(ts+hc)), with = 0 for balanced prediction.
tree by using different values to threshold these values. T&ese results reveal a number of interesting points as follows:
make a fair comparison, we also ran the 3D gPm-ucm [14]The proposed approach Ours(ts+hc) shows the best results at
algorithm to get the gPb-ucm value for both approgch [37]each level, even though predicting more hierarchical labels
and ours. So we denote the approdch [37] based on originak harder than the task of the other compared approaches,
gPb-ucm as[[37] and based on 3D gPb-ucmlas [[4]+[37]. which only predict the base classes. This is because our
approach effectively considers the mapping of the semantic
hierarchy to the segmentation tree.
Labeling on segmentation tree®.g Ours(ts+bc) and
Ours(ts+hc), outperform methods labeling on at segmen-
tations. In [37], they considered hierarchical segmentation
by packing all semantic features together in a tree path.
However, they still label on the at leaf node segmentations,
losing some visual information.
Prediction becomes easier when classes are more general.
Thus, for tasks where speci city is not strictly required, we
can predict more general labels to achieve higher accuracy.
its ancestors in the semantic hierarchy. To fu_rthe_r evaluate the labeling per_formanc_e using our
i ) : i .semantic hierarchy, we plot average information gain vs.
With hierarchical labels, an algorithm can always pmd'%fccuracy curves (Figf] 5-left) and average class recall vs.

the top-level parent classes and get higher performance, ea%curacy curves (Fig[]5-right) by varying the degree of

it is easier to labefurniture vs table-leg Ther_efore, foIIovylng specicity for prediction parameter . We compare ap-
[10], we evaluate the degree of specicity for prediction

roaches [[37], [[14]+[37] and our approaches using single
Speci cally, we compute the information gain (Hd. 3) of eaclE 371, [[141+137] PP d g

dicted o q q i q H cm tree (Ours(ucm)), single normal tree (Ours(normal)),
predicted class as de ned earlier and compute the averagey; e semantic tree (Ours(category)) and using all three trees

Recall for class is de ned as:(P ol (Cp 2 ch(c) & I'_\p 2 (Ours(full)). For the at labeling approach [37]_TL4]+[37],
(L) =( pI(c2 (L)), wherech(c) represent the classwe treat each class in the hierarchy as an arbitrary class
set of allc's children plusc itself in the semantic hierarchy. without considering the hierarchy and train a one-vs-all SVM
So, the numerator is the number of correctly predicted pixeds in [37]. From these results, we can see that our approaches
for classc, and the denominator is the number of pixels witlutperform the at labeling approaches by a large margin,
¢ as ground truth label. since the semantic hierarchy is considered. For the same de-

Evaluation metric. We use three metrics for evaluating scene
labeling performancecumulative pixel accuragyaverage in-
formation gainandaverage class recalWe label each scene
image at the pixel level and consider it correct to label a pixel
with its ground truth label or any of its ancestoesy, a pixel

of classchair-backis also of classhair. If L, is a prediction

of a pixel label and_; is its ground truth leaf node label, the
curpulative pixel accuracy over the whole dataset is de ned
as: I (Cp 2 (Ly))=np, wherel (:) is an indicator function
andny is the number of pixels in the whole datasefl ) is

the set of all possible correct predictions including and all



(a) Input Image (b) Ground Truth (c) [14]+[37] (d) Ours

Fig. 6: Some samples of the resulten NYD2 dataset (small areas are not shown with label names for clarity). In the rstsoda,back
is labeled correctly since semantic hierarchgf@,sofa backis considered. In the second row, our algorithm labeled the higher level classes
desk basic constructiorinstead ofdesk surfacewall to avoid possible mistakes with the help of semantic hierarchy.

Fig. 7: Multi-level confusion matrix of our nal results on NYUD2 dataset. From left to right, the confusion matrix zooms in to see more
speci ¢ results in the next level below. In each confusion matrix, the red border square gives the classes merged in the next level up.

gree of speci city, our algorithms give higher accuracy. Using.. Object Search Experiments

multiple segmentation trees also improves the performance. Here the goal for the robot is to locate a particular object in
We give two visual examples of labeling results in Fi§j. 6a room by moving arour{ﬂWe compare our approach {o [37].

In the rst example, we can see that our algorithm yields Bor repeatable experiments, we pre-recorded a search tree at

better labeling because semantic hierarchical relations suct8sliscrete locations, each with a corresponding RGB-D frame

(sofa,sofa badkare considered. The second example shoWsot in the training set).

that the hierarchical labeling can use higher level classesWe ran four separate trials for each algorithm, with the goal

to avoid possible mistakes, such as usidgsk or basic of searching for ahair back fridge handle mug handleand

constructionrather thandesk surfacer wall. baseball To evaluate performance, the robot to takes a xed

To further study the labeling results of our algorithm, w&umber of steps, and then reports the location at which it had
illustrate a multi-level confusion matrix in Fig] 7. We carfhe highest con dence of nding the given object. We score
see that some between-class labeling errors occur within dhe algorithm's performance based on the overlap ratio of the
general class such a®fa chair, stood on most of which reported and ground-truth pixels of the target class for that
vanish in the next-higher level. However, some classes are hH@&me, i..jpa \ Pgj=jpa [ Py, Wherepy; py are the detected
to discriminate at any levels, such @sor andwall, door and Object pixels and ground-truth object pixels.
hanging Our algorithm performed poorly for the background Fig. [IQ shows that for any xed number of steps, our
classothersas it contains large variations in visual appearancalgorithm was able to outperform the approach from [37] for

this task. Our algorithm was able to achieve an average overlap
ratio of 0:4 after only 6 steps, while [37] took 15, showing
VIIl. ROBOTIC EXPERIMENTS that our approach does a better job of informing the search.

; . SExperimental setup detailhe robot moves in discrete steps through the
We evaluated our approach on three robotic tasks: Orlaf)m, effectively moving through a search tree spanning the room. At each

ject search, retrieval, and placement. We used a PR2 rolRgde in the tree, it turns to face each potential next location to move to,

equipped with a Microsoft Kinect as our robotic p|atform[ecording and labeling an RGB-D image for each. The robot will then move
the next location with the highest con dence score for containing the target

Tablem shows a summary of the results, listing the perceptlé(hject. If there are no unvisited neighboring locations, or this score is below

accuracy ("perc'’) and end-to-end execution (‘exec') separatelyme threshold, the robot will instead backtrack.



Fig. 8: Fetching a drink with our robot. A few snapshots of our algorithm running orfFig. 9: Placing a cushion.No sofa was present,
our PR2 robot for the task of fetching a drink. From left to right: the robot starts sobwé the robot used our hierarchy to determine that
distance from the fridge, navigates to it using our labeling, detects the handle, and gtagpghair was anothesittable object and thus a

it. It then opens the fridge, and nally retrieves a soda from it. reasonable place for the cushion.

the robot could hold it open, giving an 80% overall success
rate. Results for the bowl retrieval experiment were similar.
Video of some of these experiments is available Heitp:
[lpr.cs.cornell.edu/sceneunderstanding/ .

At long distances, neither ours nor the baseline labeling
algorithms were able to distinguish the handle from the door of
the fridge, but our hierarchy informed the robot that the handle
was part of the door. The at labeling approach, meanwhile,
lacked this information and simply failed if it could not

Fig. 10: Robot Object Search results.Figure shows the accuracy jdentify the handle. In fact, the robot was only able to open
vs the number of movement steps taken by the robot. the fridge 50% of the times using at labels. Once opened, it
TABLE II: Robotic experiment results Success rates for perceptioncould not identify proper substitutes if the desired drink was
(‘perch’) and actual robotic execution (‘exec’) of each task. not present, leading to a mere 33% perception success rate.

Search Retrieval Placemenf| Average C. Object Placement Experiments
@20 steps| Soda Bowl Cushion

perc exeg|perc exegperc exed|perc exed|perc exec We also performed a series of experiments in which the
Flat 4444133 33| 38 38 50 50| 42 42 rohot's goal was object placement rather than retrieval. In

Hierar. (ours) 64 64]] 90 80| 80 80]] 100 100] 8 81  oicylar, we considered the task of placing a cushion on a

sofg or on some othesittable object such as ahair if a sofa

After 20 steps, both algorithms converged, and ours achievgdiot present. In every experiment performed, our algorithm

an average overlap ratio of 0.64 versus the 0.44 ratio from tw@s able to successfully locate the sofa, or a substitute if there

baseline approach, thus also improving long-term accuracywas no sofa. One example of the robot successfully placing
) ) ) a cushion is shown in Fig. 9. By contrast, when using a at

B. Object Retrieval Experiments labeling approach, the robot did not understand to place the
In this experiment, the robot has to perform a series gfishion on anothesittablesurface if the sofa was not present,

perception and motion/manipulation steps for retrieving ahd thus succeeded only in the 50% of cases.
object—to fetch a drink from a fridge, and to fetch a bowl

from a kitchen counter. The robot rst detects and navigates IX. CONCLUSION
to a semantically appropriate area to nd the object in, then Objects in human environments can be classied into a
locates the target object, grasps it, and brings it back. meaningful hierarchy, both because these objects are com-
In some cases, the desired object may not be available, #@ged of parts &g fridge-fridge door-fridge handle) and
the robot is then allowed to retrieve an appropriate substituReécause of different levels of abstractioe.( drink-soda-
We de ne this as some other descendant of a class's parenfifike). Modeling this is very important in enabling a robot
the semantic hierarchy - for exampRepsiis a substitute for t0 perform many tasks in these environments. In this work,
Cokebecause both have the parent clasda A at labeling We developed an approach to labeling a segmentation tree with
scheme is incapable of determining such substitutes, and vetch hierarchical semantic labels. We presented a model based
report failure if the target class is not found. on a Conditional Random Field which incorporated several
From Table Il, we can see that our algorithm achieve&®nstraints to allow labeling using this hierarchy. Our model
a very high rate of success for the complex drink-retrievailows for different levels of specicity in labeling, while
task shown in Fig. 8. Even though this task requires threéll remaining tractable for inference. We showed that our
separate phases of perception, our perception algorithm failégthod outperforms state-of-the-art scene labeling approaches
only once in ten trials, failing to nd the fridge handle,On @ standard dataset (NYUD2), and demonstrated its use on
giving a 90% perception success rate. One more execut®fiyeral robotic tasks.
failure was due to the fridge door swinging closed before
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