Robotics: Science and Systems X

Articulated Pose Estimation via Over-parametrization and Noise Projection

Jonathan Brookshire, Seth Teller


We describe an algorithm to estimate the pose of a generic articulated object. Our algorithm takes as input a description of the object and a potentially incomplete series of observations; it outputs an on-line estimate of the object's configuration. This task is challenging because: (1) the distribution of object states is often multi-modal; (2) the object is not assumed to be under our control, limiting our ability to predict its motion; and (3) rotational joints make the state space highly non-linear. The proposed method represents three principal contributions to address these challenges. First, we use a particle filter implementation which is unique in that it does not require a reliable state transition model. Instead, the method relies primarily on observations during particle proposal, using the state transition model only at singularities. Second, our particle filter formulation explicitly handles missing observations via a novel proposal mechanism. Although existing particle filters can handle missing observations, they do so only by relying on good state transition models. Finally, our method evaluates noise in the observation space, rather than state space. This reduces the variability in performance due to choice of parametrization, and effectively handles non-linearities caused by rotational joints. We compare our method to a baseline implementation without these techniques and demonstrate, for a fixed error, more than an order-of-magnitude reduction in the number of required particles, an increase in the number of effective particles, and an increase in frame rate. Source code for the method is available at



    AUTHOR    = {Jonathan Brookshire AND Seth Teller}, 
    TITLE     = {Articulated Pose Estimation via Over-parametrization and Noise Projection}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2014}, 
    ADDRESS   = {Berkeley, USA}, 
    MONTH     = {July},
    DOI       = {10.15607/RSS.2014.X.009}