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Abstract—This paper shows how to define quantitative mea- point or a general rolling contact. Instructions for cadtirg
sures of a robot’s ability to balance itself actively on a sigle point  these gains are presented, and the case of balancing on an
of support. These measures are expressed as ratios of Velts, 565 contact is also considered. The paper concludes with

and are called velocity gains. This paper builds on earlier wrk ¢ | hich illustrate th f veloci T
in this area by showing how these gains can be defined and wo examples, which lllustrate the use of velocity gains in

calculated for the case of a general planar robot balancingo the design of a planar triple pendulum and the analysis of a
a general rolling-contact point in the plane, and the case of hydraulic quadruped.

a general spatial robot balancing on a general rolling-coract

point in 3D space. The case of balancing on a contact area with Il. VELOCITY GAIN

compliance is also considered. The paper concludes with two  Figure[1 shows a simple planar self-balancing robot con-
examples showing how to use velocity gains in the design of agiqiing of a lower link (link 1), which makes contact with
triple pendulum and the analysis of a hydraulic quadruped. . ' . . .

a supporting surface (the ground) at a single point, and is

. INTRODUCTION connected to an upper link (link 2) via an actuated revolute

The ability to balance actively on a single point or line of0int (joint 2, with joint variable gz). For the purpose of
support, or on a small area of support, is something that \walculating the velocity gain, it is assumed that the ground
take for granted in the natural world [5./12]. Robots used i§ flat and horizontal, and that the lower link rolls without
lack this skill, but this is no longer the case. In the comriare SIIPPINg or losing contact with the ground. _
realm, there is the Segway Personal Transporier [9] and _arﬁlthou_gh the Iowe_r link has been drawn as a Igg with a foot,
increasing number of low-cost telepresence robots sucheas if could just as easily be a wheel. Any shape is acceptable,
Double [1]. In the research laboratories there is the Baffip Ncluding sharp points, so long as the portion of the link tha
the AcroBOX [8], the Cubli[[4], the spatial double invertednakes contact with the _ground is strictly convex, so that it
pendulum|[12], the Acrobot [6], and many more. always makes contact with the ground at a single point.

Robotic balancing presents us with an interesting control This rolling contact between the lower link and the ground

problem, but this has led to an imbalance in the way the togi€fectively a one-degree-of-freedom (DoF) joint, whigin

has been treated: too much attention on the control syst@ff) characterized by a single joint variable denoting aneangl
and not enough on the plant. For example, how good are f#int 1, with joint variableg, in the diagram). If the robot is
above robot mechanisms at balancing? Could they be bettBfancing on a sharp point then the rolling contact simpslifie
This is a separate issue from the performance of the conti®[@ revolute joint at the contact point. ,

system, and has received relatively little attention. The vectore, haV|,ng components, and c,, gives the

In an attempt to redress this imbalance, Featherstdne P\%smon of_ the robot’s centre_ of mass _(Col_\/l) relative _to the
studied the physical ability to balance of a planar doubfg?Ntact point; and the angiggives the direction ot relative
pendulum, and devised a quantitative measure of this péatic ©© thez axis. The vectob is described later.
robot’s ability to balance, which he called tiwelocity gain
It was defined as the ratio of a step change in the velocity
of the actuated joint to a step change in the velocity of the
centre of mass relative to the support point, both stepsgbein
caused by an impulse at the actuated joint. In effect, the
velocity gain measures the amount of active movement that
is physically necessary in order to correct a balance effror o
a given magnitude: the higher the gain, the less movement is
required.

This paper builds on the work of Featherstone by extend-
ing the definition of velocity gain, first to a general planar
mechanism and then to a general spatial mechanism, so that
a velocity gain can be defined for almost any system that
balances on a single point of support, which can be a sharfg. 1. Definition of velocity gain (based on Fig. 1 in Featftene [3])




The objective of a balance controller is either to driyeto Given these functions, the gains can be calculated in two
zero, or to driveg to 90°, by motions of the actuated joint. steps. In the first step, we use the impulsive equation ofanoti
Therefore, from the point of view of the balance controlletp calculate the velocity step changes caused by an impulse
the robot can be regarded as a plant in which the outpeyt is (iota) at the actuated joint. The equation is

or ¢ and the input isj;. So one could define the gain as Hu Hil [A¢] [0 .
_ Ocx G - 99 L Hy  Haya| [Ade| |t 3
02 0> SettingAgs = 1 gives

The larger the magnitudes of these gains, the greater the _H
influence of the actuated joint over the motion of the CoM, Aj = —2. (4)
and therefore the better the robot is at balancing. Hi

However, it is not immediately obvious how to evaluate the In the second step, we calculateand A¢ using
partial derivatives in Eq.]1, so a better way to express tlesga Ag
is . [e, A¢] = cmpv(rob, q, Ag) with Ag= { 11] . (5

Aé, A
Gy = Ado and Gu = Ado @ The gains are then calculated as follows:

in which the quantitiesAém,'Agz'S and Ag. all denote step G, = Aé, and G, =A¢= b-Ac (6)
changes in the velocities,, ¢ and ¢, caused by an impulse |c]
applied at the actuated joint. As the gains are now express@ereb is a unit vector at right-angles te in the direction
as ratios of velocities, they are callgdlocity gains of increasingg, and is given byb = [—c¢, c.]"/|c].

The subscripts andw indicate linear and angular velocity )
gains, respectively. (Featherstohk [3] defines only theilang SOMe Properties
velocity gain, but calls itG,.) The choice of which gain to  Several properties of7, are listed in Featherstone! [3],
use depends on circumstances. For exan@gleis not defined including the fact that it is a ratio of two angular velocije
when |¢| = 0, so it is not appropriate in situations whereand therefore a dimensionless quantity. This means @hat
the CoM could coincide with the contact point. Likewigg, is independent of both the overall mass and the overall size
does not distinguish betwees) > 0 andc, < 0, and can run of the robot.GG, is also independent of overall mass, but not
into difficulty when ¢, = 0, so it might not be appropriate overall size. The mass-independence property carriesioier
in applications like swing-up control, where the CoM start8D, and also to the case of robots with more than one actuator.
below the support point but must finish above it. The scale-invariance property 6f, also carries over into 3D,
but it carries over into the multiple-actuator case onlyllifod

Calculation Method the actuators used for balancing have joint variables that a
The equations below show how to calculaie and G, gngles.

for the .spe<.:i_al case of a sharp contact point, in which the As mentioned earliexz,, is not defined whem = 0. It can
robot simplifies to a planar 2R mechanism. The case gfso be shown that neithé¥, nor G, is defined where there
general rolling contact is covered in Sectioh V. To calailais 5 step change in the local curvature at the contact point,
the velocity gains, we assume that the following items ance a step change in curvature causes a step change in the
available: values of the velocity gains. If the gains have opposite sign
1) a data structureob containing a dynamic model of theon each side of the step, then it is impossible to balance the
robot (kinematic and inertia parameters, connectivity anlechanism at that configuration because the controllemas t
joint type data); ways to correct a balance error in one direction and no way
2) afunctionH = jsim(rob, q) to calculate the joint-spaceto correct an error in the other direction. Balancing is also
inertia. matrix H of the mechanism described byb practical impossibility within a neighbourhood of a comtirus
in the configuration described by the vector of joingero crossing.
position variablesy; and Featherstonel [3] also points out that mass can be redis-
3) a function|c,, ¢,] = cmpv(rob,q,q) to calculate the tributed within a mechanism in certain ways without altgrin
position and velocitye, and¢,, of the CoM expressed its equation of motion, as explained in Featherstong$27].
in base coordinates, givemb, g and a vector of joint This fact, along with the invariances mentioned above, mean
velocity variablesg. that if a designer can find a single mechanism with a de-
Note thate, andeé, give the position and velocity of the CoM sirable balancing property, then a multi-parameter farofly
relative to the origin of base coordinates, whereaand ¢ other mechanisms with the same property can immediately be
are the position and velocity relative to the support pdimt. generated simply by varying the parameters and combirgation
SectionV these quantities will be different. However, foet of parameters that have no effect on the velocity gains.
special case of balancing on a sharp point we can make th&/flocity gain resembles the CoM Jacobian defined in Sug-
origin of base coordinates coincide with the contact point shara et al.|[11]. The difference is that the CoM Jacobian is a
thatc, = ¢ ande¢, = é. mapping from a complete joint velocity vector to the motion



of the CoM, whereas velocity gain is a mapping from active To understand the definitions in EQl 7, suppose that the

joint velocity to the motion of the CoM, in which the passivébalance controller is using wrtual joint, with joint variable

joint motion is deduced from the active joint motion. qv, to perform its balancing task. This joint is mapped to

the actuated motion freedoms according ¢o = fi(gv),

i = 2...n, where the functiong; are chosen by the user. The
Although velocity gain has been defined for a robot makingrtual velocity variable therefore maps to the actuatddaiey

a single point contact with the ground, it can easily bgariables according tg; = (8f/9q¢y)dv. A unit-magnitude

extended to robots that make an area contact if any of tglocity step of the virtual joint in the positive directida

following are true: (1) the ground is elastic, (2) the foot opbtained by setting, = 1, which gives

leg is elastic, or (3) there is an elastic element between the T

actuator and the joint. If any of these are true then we can Ag, = 2_52 2_53 % , (11)

modify the definition of velocity gain to use the centre of ) ’ :

pressure in place of the contact point. If item 3 is the on§0 Ag, is actually a kind of Jacobian: mapping velocities,

one that is true then it is necessary to use the velocity of tgd therefore also velocity steps, from the virtual jointhe

Area Contact

actuator in place ofj. physical ones.
One new property of the velocity gains in Ed. 7 is that they
Il. EXTENSION TOMULTIPLE ACTUATED JOINTS are linear in their arguments. Thus, for any two scalaraind

We now consider a general planar mechanism hawibgF, «» and any two vectord\g,; and Ag,, we have
which includes the passive rolling contact with the grourtte . . . .
vector of position variables is noy = [¢; ¢T]T, whereq; is Gv(a18ga+02AG,0) = 01Gv(Agy)+a2Gv(Adap) (12)
the angle of the rolling contact anrg is the vector of position gnd
variables for the internal motion freedoms of the mechanism
which are assumed to be fully actuated. If the mechanism is &w (@1 Ag,; + @2Ad,5) = 1Gw(AG,;) + 02Gu(Ad,s) -
kinematic tree the, is the vector of joint position variables; (13)
otherwise it is a vector of generalized coordinates fromcivhi An immediate consequence is that we only need to know the
the joint variables can be calculated, in which cdgeis a 9ains for the individual variables ig,, since all other gains
generalized inertia matrix. Instructions for calculatingch are just linear combinations of these ones. If we defihe
matrices can be found in several textbooks. We shall assuffédl Gi to be the gains associated with variabléhen we
that a functiongim(rob, q), analogous tdsim, is available to can define matrices
calculate this matrix.

From a balancing point of view, the fundamental difference Gy=[Gw Gu - Gul (14)
between a single actuated freedom and multiple actuatsod
freedoms is that in the latter case the control system has Gu=[Gu2 Guz - Gunl (15)
the freedom to choose what movements to make in order to
achieve or maintain balance. This choice affects the vilocSUch that

gain, since some movements have more influence on the CoM Gv(Aq,) = Gy Aq, (16)

than others. Indeed, it will usually be possible to find-2 ;g

directions of motion in which the velocity gain is zero. To G (Ad) = Q. Aé 17

cater for this new possibility, we modify EQl 6 as follows: (Ad.) w Sa (A7)
b-Aé A Simple Example

Gv(Agq,) = Ata, Gu(Ada) = A= le| @ Consider a planar triple pendulum containing two revolute

joints and balancing on a sharp point. This robot is effetyiv
a planar 3R mechanism in which joint 1 is passive and
Jomts 2 and 3 are active. The vector of joint variables is
(g1 g2 Q3]T and the vector of actuated joint variables

= [q2 q3]*. If the user is interested in using joint 2 for
balancing then the relevant velocity gains &¥e(Ag,) and
[Hu Hla:| [Aql} _ H ®) G.(Ag,) with Ag, = [1 0]T, and the two gains are equal
H.,, H,.| |Aq, L to Gy2 and G,,». Likewise, if the user is interested in using
joint 3 for balancing them\g, = [0 1]T, and the two gains are
equal toG.3 andG,, 3. Alternatively, if the user (or the balance
controller) wishes to distribute the balancing motion diyua
between the two joints then the relevant gains @tgAq,)
andG,(Agq,) with Ag, = [0.5 0.5]T.

This last choice illustrates why it is important to let theeus
supply Ag,. By specifying[0.5 0.5]7 as the definition of a

where Ag, is a velocity step chosen by the user, and
and A¢ are the steps i@ and ¢ resulting from the actuation
impulse that causeg\q,,.

These gains are calculated in almost the same way as befgre
First we solve the impulsive equation of motion fAg; : 'S 4a

giving )
Agy = H—ll H,Aq, . 9
(Hi, is alx(n—1) matrix.) Then we calculate andA¢ from
g Adq
[e, A¢] = empv(rob, q, [Aq }) (10)

a



unit velocity step, the user is tacitly adopting a 1-normt Bundependent velocity gains. Motions about these two virtua
why not a 2-norm, or amo-norm, or some kind of weighted joints will cause rolling of the leg in two different direotis,
norm? The only reasonable answer is that this has to be lefiatad the set of all linear combinations of motions about these
the discretion of the user, since one cannot anticipatetigxagoints spans the set of all rolling directions. The robot tan
what problem the user is trying to solve. regarded as being good at balancing if it has a high velocity
gain in every direction. If the robot’s ability to balance stu
be described by a single scalar, then choose the smallest gai

We now consider the case of a general spatial mechanisgnthis set, because this is the direction in which the robot i
making a single point contact with a horizontal supportinigast able to balance, and therefore most likely to fall over
surface located in the—y plane of a Cartesian coordinate Another difference between the 2D and 3D cases is that in
system with thez axis pointing up (world coordinates). Thethe 2D case there is a single passive DoF and the controller
link that makes this contact (the leg) is able to roll withous required to control it, whereas in the 3D case there are 3
slipping in both thexr andy directions, and it is able to spin passive DoF but the controller is only required to contrad tw
about the contact normal. It therefore has three degreesobfthem. The third passive DoF is the freedom of the leg to
instantaneous motion freedom relative to the support serfaspin about the contact normal. This motion must be taken into
However, rolling in 3D is a well-known example of a nonaccount, because spinning motions do occur during balgncin
holonomic constraint, and this particular constraint rseface  but there is no need to control these motions for the purpbse o
position variables and three velocity variables. achieving and maintaining balance. Indeed, the spin freddo

We therefore characterize the motion of the leg relative smmetimes described as intrinsically uncontrollabléyalgh
the support with position variableg, ¢,, ¢1, ¢> andgs, and this is only correct if spinning is frictionless. The suldjed
velocity variablesj;, ¢» and ¢s. The variablesy;, ¢» andgs  spin control is separate from balance control, and is oatsid
are a set of Euler angles describing the orientation of the léhe scope of this paper.
andqi, ¢2 andgs are their derivatives. The variables andg, The spatial velocity gains are calculated in a similar manne
give thex andy coordinates of the contact point, and canndo their planar counterparts. Assuming a sharp contacttpoin
be computed directly from the other variables. Insteady thihe first step is to calculatag,, from the given value ofAg,
are calculated by integrating the velocity of the contaéhpo using the impulsive equation of motion:
which can be computed directly from the other variables. H H Aé

: . . PP pa 9, _ |0
For the special case of balancing on a sharp contact point, [H. H } [A .p] = { ] (19)
. . e . I ap aa qa

the rolling contact simplifies to a spherical joint, and the
position variablesy, and g, become constants. In this casdiving
we choose the origin of the world coordinate system to be at Ag, = —H,  Hy. Aqg, . (20)
the contact point, so that, = g, = 0.

Overall, the robot has degrees of velocity freedom, which
can be partitioned int8 passive D_olF at the contact aﬁd— 3 e, Ad] = cmpv(rob, q, [qu] ), (1)
actuated DoF. We therefore defidgg = [¢1 ¢o R Aq,

. . . .T .T . . . .
[qa -+~ ¢a]" andq = [g, q,]". We continue to assume theand then calculate the gains using Eg] 18. The calculation

existence of data structureb, describing both the robot andmethod for a general rolling contact is the subject of thet nex
its contact with the ground, and the three functigsisi, gim  gection.

andcmpv, which must now perform their calculations in 3D.

The vectorse and ¢, describing the position and velocity of V. GENERAL ROLLING CONTACT

the CoM relative to the contact point, are now 3D vectors. In the preceding sections, definitions were given for a
The job of a balance controller in 3D is to bring the CoMyeneral rolling contact, but calculation methods wereicstd

directly above the support point. This means either driving the case of balancing on a sharp point. This section ptesen

both ¢, and ¢, to zero, or makinge point upwards. We the calculation methods for a general rolling contact. Tée-g

therefore define the 3D versions of the velocity gains a&sal method is to augment the robot model with extra degrees

IV. EXTENSION TO3D

L

We then calculate and A¢ using

follows: of freedom, and then impose the kinematic constraints of the
Aé cx Aé rolling contact. This approach allows us to reuse the fomsti
Gv(Ag,) = {Aéy] and G.(Aq,) = e jsim, gim and cmpv defined earlier, and requires only one

new function,roll, which is explained below. However, the

G., is now the angular velocity vector that is perpendiculafD and 3D cases differ in their details because the former is
to both ¢ and ¢, and that describes the rate of change ®folonomic and the latter nonholonomic.

the direction ofc. These definitions are compatible with their

planar counterparts, and simplify to the planar versiortaef Rolling in 2D

robot happens to be planar and moving in a vertical plane. Figure[2 shows the kinematics of a planar rolling contact.
As the balance controller now needs to control two degreAscoordinate frame is fixed in the leg, and the three variables

of rolling freedom, it requires two virtual joints with liaely ¢, ¢, andg; give the position and orientation of this frame



where

X 0
Y 0
G=1 o (25)

0 1(n71)><(n71)
Given H, the next step is to calculathg, from Eqs[8 and
[@. One can then calculate, and A¢, from

[Co, Aé,] = cmpv(rob, q’, AG) (26)
where o
Fig. 2. Kinematics of rolling in 2D XAq
. YAq
AG = . 27
q Ady (27)
relative to the base coordinate frame, which is positioned s | Agq,
that itsz axis lies on the support surface. A fourth varialdle, ringlly, ¢ is calculated from EG22, andi¢ is calculated from
serves to locate the contact point. The vectoendc, are as _ .
defined earlier. However, whereas we previously assumed tha Aé = Aé, — (X +3)Adq (28)
the contact point was located at the origin of base coordfat L 0

so thatc = ¢,, we now have a new relationship between them: To summarize, the calculation procedure for obtaining the
G+ & velocity gains in the case of a general planar rolling cantac
C=2¢Co— { 0 } . is as follows:
1) callroll to obtaing,, ¢,, etc.;
) form q’ as per Eq[C23, and call eithésim or gim to
obtain H';
) calculateH using Eqs[ 24 and 25;
) calculateAg; using Eql9;
) form Ag’ as per Eq._27 and calculatg andA¢, using
Eq.[26;

(22)

(¢ is negative in the diagram.)

In the data structureob, the leg is connected to the ground
via a planar joint (i.e., two prismatic joints and a revolute g
joint), so that the leg has a full 3 DoF relative to the ground. 4
Thus, the robot has been augmented with an extra 2 DoF (it;
now hasn + 2 DoF), and the variableg, and g, are being
treated as independent. It therefore follows that the fonst 6) calculatec and A¢ using Eqs[ 22 and 28; and
jsim, gim and cmpv must be given an augmented position -

! _ calculate the velocity gains using Hq. 7.
\.//ec_tor,q , as argument, and also an au_gmented velocity VeCtﬂﬁthough the kinematics of a general rolling contact can be
q', in the case oftmpv. These are defined as follows:

very complicated, it is worth mentioning that if the leg happ

Qa Ga to be a circular wheel, and the leg coordinate frame is at the
;1 1y centre of the wheel, the¢ == =Y =0andy = X =r
7= a1 and ¢ = a1 (23) (the radius of the wheel).
q. .

Rolling in 3D

We now introduce a new functiomoll(rob, 1), to calculate  The calculation procedure for a general rolling contact in

the kinematics of the rolling contact. Specifically, theldal-
ing quantities are calculated, ¢,, £, X (=dg,/d¢1), ¥
(=dg,/dg1) and = (=d¢/dq;). Observe that; is the inde-

3D follows the same pattern as for a general rolling contact
in 2D, but with some differences in the details, as follows.
First, the leg is now connected to the world coordinate frame

pendent variable, and that everything in this list is corefluthy a 6-DoF joint, consisting of three translations and three
as a function ofy,. rob appears in the argument list becausgytations. Thus, the robot model imb has been augmented
roll needs to know the shape of the foot, and it is assum@gth three translational DoF, with corresponding variahje,

that this data is stored inb.

andgq., and now has + 3 DoF in total. It therefore follows

. ) . i . g
It was mentioned earlier that the velocity gain is not defmqﬁlat the augmented vectog and Ag’ and the matrixG all

This effect enters into the calculation via the derivativés

that H' is now a(n+3)x(n+3) matrix.

Y and =, which depend on the curvature at the contact point, Next, g, and Ag, replaceq; and Ag;, and this implies
and which undergo a step change in value if there is a stggme changes in the dimensions of other quantities. Ingoarti

change in curvature.

ular, X andY are nowl x3 matrices, anE is a2x3 matrix

The functionsjsim and gim calculate an augmented in-pecauset is now a 2D vector with: andy components. The

ertia matrix, H', which is a(n+2)x(n+2) matrix. This is
converted to thenxn generalized inertia matrix, which
includes the kinematics of the rolling contact, as follows:

H=G'H G (24)

relationship betweer andc, is now

qx _gm

C=Co— Qy_gy ) (29)
0



and the relationship betweeke and Ag¢, is

Aé = Aéy — ( Bf(] +5)Ad, | (30)
0

Finally, roll(rob, q,,) must now calculate the quantitigs
and Z (=dg./dq,, a 1x3 matrix), but it can no longer cal-
culateq, andg, because the rolling contact is nonholonomic.
These variables must instead be calculated by integrating
and¢,, which can be calculated froX, Y andq,,. However,
it turns out that this calculation is not necessary becalise t
velocity gains do not depend on the values of these two
variables, and they can be set to any arbitrary value, SL@&
as zero. (The same is also true @f in the planar rolling
case.) Note, however, that the velocity gains do depend on
the velocity variables\g, and Ag,, which therefore must be configuration space, plus information indicating whichnjsi
calculated as described above. and joint combinations are to be used for balancing.

If the leg happens to be a sphere, and the leg coordinaterhe graphs show that the improved design has better ve-
frame is located at the centre of the sphere, le& andZ |ocity gains in most of its configuration space, althougiréhe

4. HyQ balancing on diametrically opposite legs (tohgaght 0.6m,
configuration C in Tablg I)

are all zero, and. equals the radius of the sphere. is a problem area in the vicinity ofr,0) where the gain
changes sign. This may or may not be an issue. For example,
VI. A DESIGNEXAMPLE if ¢ cannot get close ta because of motion limits then this

This section illustrates the use of velocity gain to designrggion of configuration space is unreachable and the vglocit
planar triple pendulum that is good at balancing. Joints @ af&ins in this region are irrelevant.

3 in this mechanism are actuated, and joint 1 is passive. ~ The graphs also show that joint 2 has a better velocity gain

Figure[3 shows contour plots of the angular velocity gaiffan joint 3 almost everywhere, and that the velocity gain of
for joints 2 and 3 of an initial design and an improved desigRint 2 improves with increasing angle. These results are no
of the triple pendulum, plotted againgt from 0 to =~ and Surprise: joint 2 moves more mass than joint 3, so it is hardly
¢s from —7 to m. The plot for negative values of, is SUrprising that it has more effect on the CoM; and increasing
identical to the one shown, rotated bg0° about(0,0). The ¢z folds the robot so as to bring the CoM closer to the support
gain is independent of;, and the robot is straight whenP0int, so thatc| in the denominator of E{] 7 becomes smaller.
¢ = g¢s = 0. The colours red, dark orange, light orangd e blue region in the graphs for joint 3 occur at configuragio
and yellow onwards can be regarded as bad, poor, OK af{fiere the mechanism is curled up, and the CoM is relatively
good. Brown corresponds to positive values, and the boynd&lose to the support point.
between red and brown is the set of configurations whereAn investigation of this kind can be used to analyze existing
ba|ancing is phys|ca||y impossib|e using the chosen J0|nt robots as well as deSign new ones. With an eXiSting rObOt, one

Graphs like these can be used as maps for a high-leg@nnot alter the joint velocity gains, unless one is preppzoe
controller, telling it which configurations are good for bal@dd masses here and there. However, one can compose maps
ancing and which are bad, and telling it also which jointsike those in FiguréI3 to show which configurations are good
or combinations of joints, are most effective for maintagi for balancing and which are not, and to show which joints,
balance in each region of configuration space. or combinati(_)ns of joi_nts, are th_e best to use. Adding mass is

The initial design consists of three identical links of léng N0t necessarily a bad idea: consider, for example, the bialgn
0.3m and mass 0.5kg, the mass being concentrated at a poift®¢ Of a tightrope walker—a relatively small additionalssa
the far end of each link. The improved design has link lengt3at improves substantially the artist's ability to balané
of 0.2m, 0.25m and 0.35m, and masses of 0.7kg, 0.5kg afRlCCity-gain analysis can show how much mass is needed,
0.3kg. AsG,, is both mass- and scale-invariant, neither thwhere best to put it, and how big an effect it will have.
absolute masses not the absolute link lengths matter: bely t
ratios are important.

The improved design was obtained by manually exploring This section presents an analysis of the balancing abifity o
the effects that parameter changes had on the velocity gatime hydraulic quadruped HyQ [10]. It is proposed to make this
until a parameter set was found with significantly bettengai robot balance on two diametrically opposite legs in posture
This is feasible when the mechanism is as simple as a triilee the one shown in Figufg 4. Specifically, the two raisegle
pendulum. However, in general it is preferable to use anmill be held in a fixed configuration, so that they behave like
automated optimization process in which the designer ggpplan extension of the torso, and the robot will balance by tigpi
weights indicating the relative importance of each regién ¢he torso about a line joining the hip centres (the centres of

VIlI. HYQ BALANCING



15 2 2.5 3 0 15 2
Fig. 3. Contour plots of angular velocity gai+{,) for joint 2 (left column) and joint 3 (right column) of an iral design (top row) and improved design

(bottom row) of planar triple pendulum. Horizontal axig:; vertical axis:g3; contours: browr>0, red 0 to—0.06, others as shown in the top left plot.

the top cylinders in the figure) of the two supporting legse Th
supporting feet are positioned directly below the hip cesitr o1
The available parameters are: the angles defining the ;mostur_o' .
of the raised legs, and the height of the torso above the groun _0'16
The latter is measured from the origin of the torso coordinat _0'18
frame, which lies on the line of tipping. '

-0.1f

-0.2

To calculate the velocity gains of this robot, for the pugos
of balancing in this particular manner, the first step is trde
a kinematic mapping from the operational space of balancingc_
to the joint space of the robot. The latter consists of the
12 revolute joints of the robot mechanism plus the torso,’g,g.

virtual revolute joints: a rotation about the line joininbet

-0.22

0.24
0.26

0.

5.

45

0.5

0.55 0.6 0.65 0.7 0.75

- . Angular velocity gain versus torso height (m) for ttased-leg
6 DoF relative to the ground. The former consists of tweonfigurations listed in Tabf@ |

two supporting feet, with joint variablé;, which represents left front leg right hind leg
the robot's passive freedom to fall over, and a rotation abou A —90° 10°  —20°  —90° —10° 20°
the line ioining the t g hi ¢ ith oint B —90° 70° —140° —90° —70° 140°

- joining the two supporting hip centres, with join C 0° 60° —120° 0° —60° 120°
variable 65, which represents the movement that the robot TABLE |

uses to balance. In effect, the kinematics function maps an
inverted double pendulum onto the robot. The calculation of
velocity gain then proceeds as explained in Secfién I, but
with the robot’s dynamics expressed in terms of the virtual
joint variablesf; and#, instead ofg; andgs.

RAISED-LEG CONFIGURATIONS

(B) legs fully retracted, pointing sideways; and (C) legstlga

Figure[B plots angular velocity gain against torso heighetracted, pointing down (as shown in Fig. 4).
for the raised-leg configurations listed in Talle |. These The first thing to notice about this graph is that there

configurations are: (A) legs fully extended, pointing sidg®,

is a factor of 3 difference between the best and the worst



configuration; so the choice of configuration can be expectedThe paper concludes with two examples of use: designing
to have a substantial effect on the quality of the robot triple pendulum to be good at balancing, and analyzing the
balancing, and on the risk of falling over. This alone is egtou balancing ability of an existing quadruped in order to cleos
to justify a velocity-gain analysis of this robot. a good configuration for a balancing experiment. The latter
The next thing to notice is that the main determining factaequires a kinematics function that maps the robot’s batanc
is torso height, which accounts for more than a factor of twmotion onto the physical joints.
variation in velocity gain over the range considered, whsre
extending the raised legs sideways produces only a 20-30%
improvement. When the raised legs are not extended, they hB{d Double  Robotics.  ‘Double’  telepresence  robot.
little effect. One can deduce form this data that the robot's Wwwv. doubl erobotics. conm accessed Jan. 2015.
safest strategy is to crouch down as much as possible, unlbddR. Featherstone.Rigid Body Dynamics Algorithms
the two non-supporting legs, and then move them directly out Springer, New York, 2008.
to configuration A. [3] R. Featherstone. Analysis and Design of Planar Self-
There are two sources of disturbance acting on this robot: Balancing Double-Pendulum Robots.Padois, Bidaud &
IMU sensor noise and unknown forces exerted by its umbilical Khatib (eds.),RoManSy 19 — Robot Design, Dynamics
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