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Abstract—Roadmaps constructed by many sampling-based
motion planners coincide, in the absence of obstacles, with
standard models of random geometric graphs (RGGs). Those
models have been studied for several decades and by now a rich
body of literature exists analyzing various properties and types
of RGGs. In their seminal work on optimal motion planning
Karaman and Frazzoli [31] conjectured that a sampling-based
planner has a certain property if the underlying RGG has this
property as well. In this paper we settle this conjecture and
leverage it for the development of a general framework for the
analysis of sampling-based planners. Our framework, which we
call localization-tessellation, allows for easy transfer of arguments
on RGGs from the free unit-hypercube to spaces punctured by
obstacles, which are geometrically and topologically much more
complex. We demonstrate its power by providing alternative
and (arguably) simple proofs for probabilistic completeness and
asymptotic (near-)optimality of probabilistic roadmaps (PRMs).
Furthermore, we introduce two variants of PRMs, analyze them
using our framework, and discuss the implications of the analysis.

I. INTRODUCTION

Motion planning is a fundamental research area in robotics
with applications in diverse domains such as graphical anima-
tion, surgical planning, computational biology and computer
games. For a general overview of the subject and its applica-
tions, see, e.g., [14, 37, 38].

The basic problem of motion planning is concerned with
finding a collision-free path for a robot in a workspace
cluttered with static obstacles. The spatial pose of the robot, or
its configuration, is uniquely defined by its degrees of freedom
(DOFs). The set of all configurations C is termed the config-
uration space of the robot, and decomposes into the disjoint
sets of free and forbidden configurations, namely F and C\F ,
respectively. Thus, given start and target configurations, the
problem can be restated as the task of finding a continuous
curve in F connecting the two configurations. This can be
very challenging, as F can be exponentially complex (see,
e.g., [13, 57, 63]) in the number of DOFs.
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The high computational complexity of exact solutions to
motion planning have led to the development of sampling-
based planners. These algorithms, which trade completeness
with applicability in practical settings, aim to capture the
connectivity of F in a graph data structure, called a roadmap,
by randomly sampling C. Most of the theoretical properties of
these algorithms are stated in terms of their asymptotic behav-
ior, i.e., assuming that the number of samples is sufficiently
large: The property of probabilistic completeness indicates that
a given algorithm will eventually find a solution (if one exists);
algorithms that are known to be asymptotically optimal also
return a solution whose cost converges to the optimum.

Interestingly, roadmaps constructed by many sampling-
based planners coincide, in the absence of obstacles, with
standard models of random geometric graphs (RGGs). These
models have been studied for several decades and by now
a rich body of literature exists analyzing various properties
and types of RGGs. Indeed, in their seminal work on opti-
mal motion planning, Karaman and Frazzoli [31] observed
this relation. They employed techniques that were initially
developed for the analysis of RGGs to the study of sampling-
based planners. Subsequent proofs regarding completeness and
optimality of new planners (see, e.g., [22, 29, 58]) rely, to
some extent, on the proofs in [31]. Karaman and Frazzoli
conjectured that a sampling-based planner possesses a certain
property if the underlying RGG has this property as well
(see [31, Section 6]). The validity of this conjecture, which
is settled in this paper, allows to import existing results on
RGGs directly to the corresponding sampling-based planners.

Contribution. We introduce the localization-tessellation
framework for the analysis of sampling-based algorithms in
motion planning. Our framework facilitates the extension of
properties of RGGs to sampling-based techniques in motion
planning. This is done using conceptually simple ideas and
elementary tools in probability theory. The underlying result
of the framework is that RGGs demonstrate similar behavior
in the absence as well as in the presence of obstacles. The
framework consists of two main components. First we show
through localization that RGGs maintain their properties in
arbitrarily-small neighborhoods. The tessellation stage extends
these properties to complex domains which can be viewed



as free spaces of motion-planning problems. Namely, the
configuration space punctured by obstacles.

We demonstrate the power of the framework by provid-
ing conditions for probabilistic completeness and asymptotic
(near-)optimality of Probabilistic Roadmaps (PRMs) [32]. Our
proofs are (arguably) much simpler than the original proofs of
Karaman and Frazzoli [31].

Furthermore, we introduce two variants of PRMs called
Soft-PRM and Embedded-PRM, which perform connections in
a randomized fashion, and analyze them using our framework.
Using Soft-PRMs we show that the standard PRM still main-
tains its favorable properties even when implemented using
approximate nearest-neighbor search queries.

Organization. In Section II we review related work. In
Section III we provide formal definitions of several types of
RGGs and describe their properties, which will be employed
by our localization-tessellation framework. In Section IV we
describe the localization component of the framework, that is,
we show that RGGs maintain a wide range of their properties
in arbitrarily-small neighborhoods. In Section V we focus
on the two specific properties of connectivity and bounded
stretch and show that they hold in general domains via a
tessellation argument. In Section VI we make the transition
to motion planning: we describe several planners—including
the standard PRM—and study their asymptotic behavior using
the framework. In Section VII we show empirically that the
theoretical results obtained by the framework also hold in
practice and compare the Soft-PRM and PRM algorithms.
We conclude the paper with a discussion and state several
future research directions (Section VIII). Due to the lack of
space, we provide the main proofs and omit proofs of lesser
importance. Omitted proofs are found in the extended version
of the paper [64].

II. RELATED WORK

We review related work in the area of sampling-based
algorithms for motion planning and random geometric graphs.

A. Sampling-based motion planning

Sampling-based algorithms, such as PRMs [32], Expansive
Space Trees (EST) [27] and Rapidly-exploring Random Trees
(RRT) [35], as well as their many variants, have proven to
be effective tools for motion planning. These algorithms, and
others were shown to be probabilistically complete. While this
is a desirable property of any algorithm, in certain applications
stronger guarantees are required.

In recent years we have seen an increasing interest in high-
quality1 motion planning. The literature contains many exam-
ples of planners that are shown empirically to produce high-
quality paths (for a partial list see [4, 23, 40, 42, 56, 62, 67]).
Unfortunately, they are not backed by rigorous proofs pertain-
ing to the quality of the solution produced by the algorithm. A

1Quality can be measured in terms of length, clearance, smoothness, energy,
to mention a few criteria. However, in this paper we will restrict our focus to
the standard length measure.

complementary work proves that in certain settings RRT can
produce paths of arbitrarily-poor quality [47].

In their seminal work, Karaman and Frazzoli [31] develop
the first rigorous analysis of quality in the setting of sampling-
based motion planning: They provide conditions under which
existing planners are not asymptotically optimal. More im-
portantly, they introduce two new variants of RRT and PRM,
termed RRT* and PRM*, which are shown to be asymptoti-
cally optimal, under the right choice of parameters. Following
this exposition, several asymptotically-optimal algorithms have
emerged (see e.g., [3, 6, 22, 29, 59]). To reduce the running
time of such algorithms several asymptotically near optimal
planners have been suggested, which trade the quality of the
solution with speed of computation (see e.g., [16, 41, 58, 60]).

Although the focus of this paper is on the simplified
“geometric” setting of motion planning, we mention that some
planners can cope with more complex robotic systems in
which uncertainty and physical constraints come into play (see,
e.g., [30, 36, 39, 55, 65, 70, 71]). Some of these planners can
also produce high-quality paths.

B. Random geometric graphs

The study of random geometric graphs (RGGs) was initiated
by Gilbert [24] who considered the following model: a collec-
tion of points is sampled at random in a given subspace of Rd,
and a graph is formed by drawing edges between points that
are closer than a given r > 0, called the connection radius.

An immediate question that follows is for which values
of r the graph is connected (with high probability). Several
works have addressed this question and showed that it is
both necessary and sufficient that the connection radius will

be proportional to
(

logn
n

)1/d

, where n is the number of
points and the points are sampled from the unit hypercube
[0, 1]d (see, e.g., [5, 34, 48]). Penrose [49] established that
connectivity occurs approximately when the graph has no
isolated vertices. The monograph [50] of the same author on
this subject studies many more properties of RGGs, including
vertex degree, clique size and coloring. The reader is also
referred to a survey on the subject by Walters [69].

In recent years RGGs have attracted much attention as a
tool for modeling large-scale communication networks, and in
particular sensor networks: the vertices of the graph represent
sensors and an edge is drawn between two sensors that are in
the communication range. Gupta and Kumar used this analogy
in order to deduce the transmission power necessary for the
network to be connected [25]. An important parameter that
arises in this context is the number of transmitters a message
has to traverse in order to establish a broadcast between two
given transmitters. Several works have established that this
parameter is proportional to the Euclidean distance between
the two nodes (see, e.g., [11, 15, 18, 20, 44, 46]).

Various alternative connection strategies for RGGs have
been proposed over the years, the most studied of which is the
k-nearest model (see, e.g., [8, 9, 72]). More complex models
assign edges between vertices in a randomized fashion (see,



e.g., [12, 21, 51]). Some models introduce an ordering on the
sampled points (see, e.g.,[1, 52, 53, 61, 68]) which results in
a directed graph that resembles the RRT tree [35].

III. PRELIMINARIES

We describe several models of random geometric graphs
(RGGs) and mention useful properties that will be used
throughout the paper. When possible, we follow the notation
and conventions in the standard literature of RGGs (see,
e.g., [50]). Let Xn = {X1, . . . , Xn} be n points chosen
independently and uniformly at random from the Euclidean
d-dimensional cube [0, 1]d. We assume that the dimension d
of the domain is fixed and greater than one. Let ‖x − y‖2
denote the Euclidean distance between two points x, y ∈ Rd
and θd denote the Lebesgue measure of the unit ball in Rd.
Finally, denote by Br(x) be the d-dimensional ball of radius
r > 0 centered at x ∈ Rd and Br(Γ) =

⋃
x∈Γ Br(x) for any

Γ ⊆ Rd. Similarly, given a curve σ : [0, 1] → Rd denote
Br(σ) =

⋃
τ∈[0,1] Br(σ(τ)).

Throughout the paper we will use the standard notation for
asymptotic bounds: Let f = f(n), g = g(n) be two functions.
The notation f = ω(g) indicates that limn→∞ f/g →∞, and
f = o(g) indicates that limn→∞ f/g → 0. Let A1, A2, . . . be
random variables in some probability space and let B be an
event depending on An. We say that B occurs almost surely
(a.s., in short) if limn→∞ Pr[B(An)] = 1.

Definition 1 [50]. Given rn ∈ R+, the random geometric
graph (RGG) Gdisk(Xn; rn) is an undirected graph with the
vertex set Xn. For any two given vertices x, y ∈ Xn the graph
contains the edge (x, y) if ‖x− y‖2 6 rn.

We use the term RGG to refer both to the family of random
geometric graphs and to the specific model described in Def. 1.
This slight abuse of notation is introduced to be consistent with
existing literature and the exact meaning of RGG will be clear
from the context.

The following model is a generalization of RGGs. Here a
pair of vertices are connected by an edge with a probability
that depends on the length of the edge.

Definition 2 [51]. Let rn ∈ R+, and let φn be a probabil-
ity measure over [0, rn]. The soft random geometric graph
(SRGG) Gsoft(Xn; rn;φn) is an undirected graph with the
vertex set Xn. Denote by E the edge set of this graph. For any
pair of vertices x, y ∈ Xn, the following holds independently:

Pr[(x, y) ∈ E] =

{
0 if ‖x− y‖2 > rn,

φn(‖x− y‖2) otherwise.

The following model can be viewed as a special case of
SRGG where rn =∞ and φn is constant.

Definition 3 [21]. The randomly-embedded geometric graph
(REGG) Gembed(Xn; pn) is an undirected graph with the vertex
set Xn. For every two distinct vertices x, y ∈ Xn, the graph
contains the edge (x, y) with probability pn, and independently
from the other edges.

A. Connectivity

We mention two results related to the connectivity of the
RGG and SRGG models.

Theorem 1 [12]. Let Gn = Gdisk(Xn, rn) and rn =

γ
(

logn
n

)1/d

. Then Gn is disconnected a.s. if γ < γ∗, and

connected a.s. if γ > γ∗, where γ∗ = 2(2dθd)
−1/d.

The following theorem follows from [51, Theorem 2.3]. The
proof is technical and omitted due to lack of space.

Theorem 2. Let Gn = Gsoft(Xn; rn;φn) and rn =

γ
(

logn
n

)1/d

. Set γ = αγ∗ for any α > (d+ 1)1/d, and define
φn(z) = 1−z/rn, for any z ∈ R+. Then Gn is connected a.s.

B. Bounded stretch

Let G be a graph whose vertices are embedded in Rd.
For every two vertices x, y ∈ G denote their weighted graph
distance, i.e., the sum of lengths of the shortest path from
x to y, by dist(G, x, y). Throughout the paper we will use
the term stretch to denote the ratio between dist(G, x, y) and
the length of the shortest path between x, y in the domain in
which the graph is embedded. For instance, if this domain is
convex, then for every x, y ∈ G the stretch is defined to be
dist(G, x, y)/‖x− y‖2.

Theorem 3 [20]. Let Gn = Gdisk(Xn; rn) with rn =

γ
(

logn
n

)1/d

where γ > γ∗ (see Theorem 1). Then there exists
a constant ζ such that for every two vertices x, y in the same
connected component of Gn, with ‖x− y‖2 = ω(rn), it holds
that dist(Gn, x, y) is at most ζ‖x− y‖2 a.s.

Theorem 4 [21]. Let Gn = Gembed(Xn; pn) and pn =

ω
(

logd n
n

)
. Then for every two vertices x, y ∈ Xn it holds

that dist(Gn, x, y) is at most ‖x− y‖2 + o(1) a.s.

IV. LOCALIZATION OF MONOTONE PROPERTIES OF RGGS

In this section we discuss graph properties and their asymp-
totic behavior, when focusing on a subset of the domain [0, 1]d.
A property A is monotone if for every G = (V,E) and H =
(V,E′) such that E ⊆ E′, it holds that G ∈ A =⇒ H ∈ A.
Note that connectivity (Section III-A) and bounded stretch
(Section III-B) are monotone.2

Definition 4. Let G = (X,E) be a graph embedded in
[0, 1]d, i.e., the vertices of X represent points in [0, 1]d and
edges represent straight-line paths between the corresponding
vertices. Given Γ ⊂ [0, 1]d we denote by G(Γ) the graph
obtained from the intersection of G and Γ. This graph consists
of the vertex set X ∩ Γ and all the edges in E that are fully
contained in Γ.

Definition 5. Let Gn be an RGG, SRGG or an REGG, defined
over the vertex set Xn. Then Gn is localizable for a property A

2 Additional examples of monotone properties for a graph G are: G is
Hamiltonian, G contains a clique of size t, G is not planar, the clique number
of G is larger than that of its complement, the diameter of G is at most s, etc.



if for every constant 0 < ε 6 1 and every d-dimensional axis-
aligned cube Bε ⊆ [0, 1]d with side length of ε it holds that
Gn(Bε) ∈ A a.s.

Lemma 1. Let A be a monotone property and γA some
constant. Let Gn = Gdisk(Xn; rn) be an RGG such that Gn ∈ A
a.s., for every rn = γ

(
logn
n

)1/d

, where γ > γA. Then Gn is
localizable for A.

Proof: For simplicity of presentation, we will use the
notation G to refer to Gdisk throughout the proof. Recall that Xn
is a collection of n points chosen independently and uniformly
at random from [0, 1]d. We will also use Yεm = {Y1, . . . , Ym}
to denote a collection of m points chosen independently and
uniformly at random from Bε. Without loss of generality,
assume that Bε = [0, ε]d.

Observe that there exists a constant α > 1 independent of n
such that G(Xn; r′n) ∈ A a.s., where rn = αr′n. The role of α
is purely technical and will become clear shortly. Now,

Pr[G(Xn ∩Bε; rn) /∈ A] = Pr[G(Xn ∩Bε;αr′n) /∈ A]

=

n∑
m=0

Pr
[
G (Xn ∩Bε;αr′n) 6∈ A

∣∣∣ |Xn ∩Bε| = m
]

· Pr [|Xn ∩Bε| = m]

=

n∑
m=0

Pr [G (Yεm;αr′n) 6∈ A] · Pr [|Xn ∩Bε| = m] .

Denote

σ(i, j) =

j∑
m=i

Pr [G (Yεm;αr′n) 6∈ A] · Pr [|Xn ∩Bε| = m] ,

and by definition we have that for 1 6 ` 6 n

Pr [G(Xn ∩Bε;αr′n) /∈ A] = σ(0, n) = σ(0, `− 1) + σ(`, n).

We show that for ` = α−dεdn both limn→∞ σ(0, ` − 1) = 0
and limn→∞ σ(`, n) = 0 which will conclude the proof of the
lemma (for simplicity we assume that ` ∈ N) . We start with
the former expression:

σ(0, `− 1) =

`−1∑
m=0

Pr [G (Yεm;αr′n) 6∈ A] · Pr [|Xn ∩Bε| = m]

6
`−1∑
m=0

Pr [|Xn ∩Bε| = m] = Pr [|Xn ∩Bε| < `]

= Pr
[
|Xn ∩Bε| < α−dE[|Xn ∩Bε|]

]
6 exp

{
−nεd(1− α−d)2

}
.

The last inequality follows from the Chernoff inequality (see,
e.g., [17, Theorem 1.1]), the application of which is made
possible due to the α−d factor.

We now focus on showing that limn→∞ σ(`, n) = 0. For
any two integers n,m such that ` 6 m 6 n we have that

Pr[G(Yεm;αr′n) /∈ A]
(1)
= Pr[G(Xm;αε−1r′n) /∈ A]

(2)

6 Pr[G(Xm; r′m) /∈ A].

where the transitions are made possible due to (1) a scaling
of the graph from [0, ε]d to [0, 1]d; (2) the monotonicity of A
and the fact that r′m 6 α

ε r
′
n. To show that indeed r′m 6 α

ε r
′
n,

note that αε−1 > 1 and that limn→∞ r′n = 0. Thus,

r′m 6 r′` = α−1rn = α−1γ

(
logα−dεdn

α−dεdn

)1/d

= ε−1γ

(
logα−dεdn

n

)1/d

6 ε−1γ

(
log n

n

)1/d

=
α

ε
r′n.

Furthermore, set m∗ = argmaxm∈[`,n] (Pr [G(Xm, r′m) /∈ A]).
It follows that

σ(`, n) =

n∑
m=`

Pr [G (Yεm;αr′n) 6∈ A] · Pr [|Xn ∩Bε| = m]

6
n∑

m=`

Pr [G(Xm, r′m) /∈ A] · Pr [|Xn ∩Bε| = m]

6 Pr [G(Xm∗ , r′m∗) /∈ A]

n∑
m=`

Pr [|Xn ∩Bε| = m]

= Pr [G(Xm∗ , r′m∗) /∈ A] · Pr [|Xn ∩Bε| > `]

6 Pr [G(Xm∗ , r′m∗) /∈ A] .

Note that limn→∞ Pr [G(Xm∗ , r′m∗) 6∈ A] = 0, which con-
cludes the proof.

The following are the SRGG and REGG equivalents of
Lemma 1. The proofs are very similar to that of the previous
lemma, and are omitted due to lack of space.

Lemma 2. Let A be a monotone property and let Gn =
Gsoft(Xn; rn;φn) be an SRGG such that Gn ∈ A a.s.,
where rn, φn are as defined in Theorem 2. Then Gn is
localizable for A.

Lemma 3. Let A be a monotone property and let Gn =
Gembed(Xn; pn) be an REGG such that Gn ∈ A a.s., where pn
is non-decreasing. Then Gn is localizable for A.

V. PROPERTIES OF RGGS IN GENERAL DOMAINS VIA
TESSELLATION

In the previous section we considered three models of
RGGs defined over the convex domain [0, 1]d. We discussed
the necessary conditions such that random graphs will be
localizable for any monotone property A. In this section we
consider the specific monotone properties of connectivity and
bounded stretch for general domains.

A region Γ ⊂ [0, 1]d is said to be ρ-safe for some ρ > 0
if Bρ(Γ) ⊂ [0, 1]d, namely if the Minkowski sum of Γ with a
ball of radius ρ is contained in [0, 1]d.

A. Connectivity

Denote by Aconn the connectivity property. We show that
for any random graph Gn which is an RGG, SRGG or REGG
that is localizable for Aconn it also holds that Gn is connected
over any ρ-safe region Γ ⊂ [0, 1]d. Note that we make no
additional assumptions on Γ in this section.



Theorem 5. Let Γ ⊂ [0, 1]d be a ρ-safe region for some
constant ρ > 0 independent of n and let Gn be a random graph
that is localizable for Aconn. Then any two points x, y ∈ Γ∩Xn
that lie in the same connected component of Γ are connected
in Gn(Bρ(Γ)) a.s..

In the proof of Theorem 5 we will place two partially-
overlapping grids over Γ and use the localization of Gn in
each grid cell (see Fig. 1). We now proceed to define the
grids and state several of their properties which, in turn, will
allow us to formally prove Theorem 5.

Let Hε be a grid partition of [0, 1]d into axis-aligned
hypercubes with side length of ε = 2

3
√
d
ρ. Furthermore, denote

by Hε(Γ) the subset of cells of Hε whose intersection with Γ is
non-empty. Namely, Hε(Γ) = {H ∈ Hε | H∩Γ 6= ∅}. Let H̃ε
be a grid partition of [0, 1]d into axis-aligned hypercubes with
side length of ε obtained by shifting Hε by ε/2 along every
axis and let H̃ε(Γ) = {H ∈ H̃ε | H ∩Hε(Γ) 6= ∅}. We have
the following claim.

Claim 1. Let H ∈ Hε(Γ) ∪ H̃ε(Γ). Then H ⊂ Bρ(Γ).

We introduce some more terminology. Every two
cells H,H ′ ∈ Hε(Γ) are called neighbors if they share
a (d− 1)-dimensional face. We now consider a refinement of
each grid cell H of Hε(Γ) (or of H̃ε(Γ)) into 2d sub-cells
obtained by splitting H by two along each axis through the
middle point of H . This induces the set of (refined) grid cells
Hε/2(Γ) (or H̃ε/2(Γ), respectively). Note that the number of
cells in Hε/2(Γ) and H̃ε/2(Γ) is fixed for the given d, ρ,Γ,
and does not depend on n.

Claim 2. Let H ∈ Hε(Γ) ∪ H̃ε(Γ). Then Xn ∩H 6= ∅, a.s..

We are ready for the main proof.
Proof (Theorem 5): Recall that Gn is localizable

for Aconn. As
⋃
H∈Hε(Γ) ⊂ Bρ(Γ), and since x and y are in

the same connected component of Γ, there exists a sequence
of hypercubes H1, . . . ,Hk ∈ Hε(Γ) such that (i) x ∈ H1,
(ii) y ∈ Hk and (iii) Hi and Hi+1 are neighbors for 1 6 i < k.
By Claim 1 each Hi is contained in Bρ(Γ).

Claim 2 ensures, using the fact that Γ is ρ-safe, that each Hi

contains a vertex of Gn a.s. Let x = x1, . . . , xk = y denote
such a set of vertices where xi ∈ Hi. We will show (using
the localization of monotone properties) that xi and xi+1 are
connected in Gn(Bρ(Γ)) which will conclude our proof.

Let H̃ ∈ H̃ε(Γ) be a hypercube that intersects both Hi

and Hi+1 (there are always 2d−1 such hypercubes). By
Claim 2, both H̃ ∩Hi and H̃ ∩Hi+1 contain a vertex of Gn
a.s., since both of these intersection represent hypercubes
in Hε/2(Γ). Let zi and zi+1 be these vertices, respectively
(see Fig. 2).

Now, using Lemmas 1-3 we have that xi and zi are
connected in Hi, that zi and zi+1 are connected in H̃ , and that
zi+1 and xi+1 are connected in Hi+1 a.s. This must hold for
every 1 6 i < k in order to ensure that x and y are connected
in Gn(Bρ(Γ)). Due to the fact that k can be at most the number
of cells in Hε(Γρ), which is independent of n, we deduce that

Γ

Bρ(Γ)

∂Hε(Γ)

ρ

Fig. 1. Visualization of Γ (green), Bρ(Γ) (purple) and the grid Hε used
for the proof of Theorem 5. The boundary of the set of grid cells Hε(Γ)
is depicted using dark red lines.

Hi Hi+1

H̃

xi

xi+1

zi+1

zi

Fig. 2. Visualization of the proof of Theorem 5. Hypercubes Hi, Hi+1

and H̃ of side length ε are depicted in solid blue lines and dashed red
lines, respectively. A path connecting xi ∈ Hi to xi+1 ∈ Hi+1 via
intermediate points zi ∈ Hi ∩ H̃ and zi+1 ∈ Hi+1 ∩ H̃ is depicted
by a purple line.

indeed x, y are connected in Gn(Bρ(Γ)) a.s.

B. Bounded stretch

Given ζ > 1 denote by Aζstr the property indicating that
a given geometrically-embedded graph has a bounded stretch
of ζ, for any two vertices . Formally, let G be a graph defined
over a vertex set X ⊂ [0, 1]d. The notation G ∈ Aζstr indicates
that for every x, y ∈ X it holds that dist(G, x, y) 6 ζ‖x−y‖2.
The proof of the following theorem is very similar to that of
Theorem 5.

Theorem 6. Let Γ ⊂ [0, 1]d be a ρ-safe region for some con-
stant ρ > 0 independent of n. Let Gn be a random graph that is
localizable forAζstr, for some ζ > 1. Additionally, let x, y ∈ Xn
be two points that lie in the same connected component of Γ.
Then dist(Gn(Bρ(Γ)), x, y) 6 ζ‖x − y‖Γ + o(1) a.s., where
‖x − y‖Γ denotes the length of the shortest path between x
and y that is fully contained in Γ.



VI. APPLICATION TO SAMPLING-BASED MOTION
PLANNING

We now move to the setting of motion planning in which
a robot operates in the configuration space C = [0, 1]d, and
whose free space is denoted by F ⊆ C. Recall that the
problem consists of finding a continuous path between two
configurations (points) s, t ∈ F , that is fully contained in F .

The reason why we cannot apply results on RGGs to motion
planning directly is that F is not the full hypercube [0, 1]d but
rather could be a geometrically and topologically very com-
plicated subset of this hypercube. However, the localization-
tessellation approach that we have devised enables us to fairly
directly adapt results from the theory of RGGs to this more
involved setting, as we do in this section.

Specifically, we start by introducing the Soft-PRM algo-
rithm and Embedded-PRM algorithms which are extensions
of SRGG and REGG to the setting of motion planning. We
remark that Soft-PRM is very similar to a technique that
was studied experimentally by McMahon et al. [43]; here
we provide theoretical analysis for it. We then continue to
provide proofs for probabilistic completeness and asymptotic
optimality of these methods.

A. Motion-planning algorithms

We introduce the Soft-PRM algorithm. The description of
PRM and Embedded-PRM immediately follow, as they are
special cases of Soft-PRM. Recall that SRGG is defined for a
connection radius rn and the function φn : R+ → [0, 1]: two
vertices x, y ∈ Xn for which ‖x − y‖2 6 rn are connected
with an edge with probability φn(‖x− y‖2).

We use the following standard procedures: sample(n)
returns n configurations that are sampled uniformly and ran-
domly from C; nearest_neighbors(x, V, r) returns all
the configurations from V that are found within a distance
of r from x; collision_free(x, y) tests whether the
straight-line segment connecting x and y is contained in F ;
random_variable() selects uniformly at random a real
number in the range [0, 1].

The preprocessing phase of Soft-PRM is described in
Alg. 1. In lines 1-4, n configurations are sampled (note that
this slightly differs from some PRM descriptions in which the
samples are assumed to be collision free) and for each sample,
Soft-PRM retrieves the neighboring samples which are within
a distance of at most rn from it. For each sample point x
and each candidate neighbor y it decides with probability
φn(‖x − y‖2) whether to attempt the connection (lines 5-6).
If this is the case, the edge (x, y) is tested for being collision
free (line 7), and added accordingly to E.

The (standard) PRM and Embedded-PRM are identical to
Alg. 1 using the parameters rn and φn = 1 for PRM and
rn = ∞ and φn = pn for Embedded-PRM. Note that in
the implementation of Embedded-PRM there is no need to
maintain a nearest-neighbor data structure (line 3) as every
pair of vertices x, y ∈ Xn is chosen with probability pn.

In the query stage each of the three algorithms is
given two configurations s, t, which are then connected to

Algorithm 1 Soft-PRM(n, rn, φn)
1: V ← {xinit} ∪ sample(n); E ← ∅; G ← (V,E)
2: for all x ∈ V do
3: U ← nearest_neighbors(x, V, rn)
4: for all y ∈ U do
5: ξ ← random_variable()
6: if ξ 6 φn(‖x− y‖2) then
7: if collision_free(x, y) then
8: E ← E ∪ (x, y)

return G

their neighbors in the underlying roadmap by executing
nearest_neighbors with the connection radius rquery =

γ
(

logn
n

)1/d

, where γ > γ∗ = 2(2dθd)
−1/d. Naturally, every

connection is tested for collision. Finally, the underlying graph
is searched for the shortest path from s to t and the respective
path in F is returned (if exists).

Observation 1. Denote by Gn the Soft-PRM roadmap pro-
duced for n samples and the connection radius rn. Then
Gn = Gsoft

n (Xn; rn;φn)∩F . The same applies for the relation
of the underlying roadmaps of PRM, Embedded PRM, and
RGG, REGG, respectively.

B. Probabilistic completeness

Let (F , s, t) be a motion-planning problem that consists of
the free space F ⊂ [0, 1]d, and s, t ∈ F are the start and
target configurations, respectively. We provide the definition
of probabilistic completeness and state the conditions under
which the aforementioned algorithms posses this property.

Definition 6 [31]. Let σ : [0, 1] → F be a continuous path,
and let δ > 0. The path σ is δ-robust if Bδ(σ) ⊆ F .

Definition 7 [31]. A motion-planning problem (F , s, t) is δ-
robustly feasible if there exists a δ-robust path σ connecting s
to t, for some fixed δ > 0.

Definition 8 [31]. A planner ALG is probabilistically com-
plete if for any robustly-feasible (F , s, t), the probability that
ALG finds a solution with n samples converges to 1 as n tends
to ∞.

Lemma 4. Let ALG ∈ {PRM,Soft-PRM, Embedded-PRM}
with a selection of parameters for which the corresponding
random graph Gn be localizable for connectivity. Then ALG
is probabilistically complete.

Proof: Suppose that (F , s, t) is robustly feasible. By
definition, there exists a path σ connecting s to t and δ > 0
for which Bδ(σ) ⊆ F .

Let δ′ := δ/2 and let Γ := Bδ′(σ). Note that s, t ∈ Γ and
also Bδ′(Γ) = Bδ(σ) ⊆ F ⊂ [0, 1]d, which implies that Γ is
δ′-safe. By the fact that ALG is localizable for connectivity,
and by Theorem 5, we have that for every x, y ∈ Xn ∩ Γ it
follows that x, y are connected in Gn(Bδ′(Γ)) a.s.



It remains to show that during the query stage s and t
are connected to Gn(Bδ′(Γ)). It is not hard to verify that
Xn ∩ Brquery(s) 6= ∅,Xn ∩ Brquery(t) 6= ∅, a.s., which implies
connectivity.

Theorem 7. Recall that γ∗ = 2(2dθd)
−1/d and that d > 2.

Then the following algorithms are probabilistically complete:

(i) PRM(rn), where rn = γ
(

logn
n

)1/d

, for γ > γ∗;

(ii) Soft-PRM(rn;φn), where rn = γ
(

logn
n

)1/d

, for

γ = αγ∗, α > (d + 1)1/d, and φn(z) = 1 − z/rn,
for any z ∈ R+;

(iii) Embedded-PRM(pn), where pn = ω
(

logd n
n

)
.

Item (i) results from combining Theorem 1 with the lo-
calization lemma for RGGs (i.e., Lemma 1), and Lemma 4.
Items (ii),(iii) similarly follow.

Remark 1. The connection radius in (i) is smaller by a factor
of 2−1/d than the one obtained by Janson et al. [29], and
smaller by a factor of 2−1/d(d + 1)−1/d than the connection
radius proposed by Karaman and Frazzoli [31] when no
obstacles are present. We also mention that, similarly to these
two works, rn can be reduced by a factor of |F|1/d, with a
slight modification to Theorem 5.

C. Asymptotic (near-)optimality

Given a path σ denote its length by |σ|. We define the
property of asymptotic near-optimality and state the conditions
under which PRM and Embedded-PRM have this property.

Definition 9. Suppose that (F , s, t) is robustly feasible. A path
σ∗ connecting s to t is robustly optimal if it is a shortest path
for which the following holds: for any 0 < ε there exists a δ-
robust path σ such that |σ| 6 (1+ε)|σ∗| for some fixed δ > 0.

Definition 10. A sampling-based planner ALG is asymptot-
ically ζ-optimal, for a given ζ > 1, if for every robustly-
feasible problem (F , s, t) it follows that |σn| 6 ζ|σ∗| + o(1)
a.s., where σn denotes the solution returned by ALG with n
samples. A planner that is asymptotically 1-optimal is simply
called asymptotically optimal.

Theorem 8. For d > 2 we have the following results:
(i) PRM(rn) is asymptotically ζ-optimal for rn =

γ
(

logn
n

)1/d

, where γ > γ∗, and some constant ζ;
(ii) Embedded PRM(pn) is asymptotically optimal for

pn = ω
(

logd n
n

)
;

The proof of this theorem is similar in nature to that of
Theorem 7 (but follows from Theorem 3 for (i) and Theorem 4
for (ii)), and hence omitted due to lack of space.

VII. EVALUATION

In this section we present experiments demonstrating the
behavior of RGGs and SRGGs in the absence and in the pres-
ence of obstacles. We then proceed to compare the Soft-PRM
and PRM algorithms. For each model, and each algorithm,
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Fig. 3. (a) Connectivity and (b) stretch in the absence of obstacles.

we use the minimal parameters that are required in order to
ensure connectivity. For our experiments we used the Open
Motion Planning Library (OMPL) [66] with Randomly Trans-
formed Grids (RTG) [2] as our nearest-neighbor (NN) data
structure. RTG were shown to outperform other NN libraries
for several motion-planning algorithms [33]. All experiments
were run on a 2.8GHz Intel Core i7 processor with 8GB of
memory. Results are averaged over 100 runs, and computed for
dimensions d = 2, 6, 9 and 12. Additionally, when results for
different dimensions behave similarly, we present only plots
for d = 2 and d = 12.

Connectivity and stretch in the unit cube. We begin by
reporting the number of nodes that are not in the largest
connected component (CC) for RGG and SRGG in the ab-
sence of obstacles. Clearly, when the graph is connected, this
number is zero. One can see (Fig. 3a) that as the number of
nodes increases, the number of nodes not in the largest CC
approaches zero. Additionally, the two models exhibit very
similar trends.

We continue to asses how increasing the number of nodes
affects the stretch of the graphs. For each such n, we sampled
m = 50 vertices and computed the stretch for every pair
of sampled vertices. We then report on the maximal stretch
obtained among all O(m2) pairs of nodes which gives a rough
approximation of the average stretch of the graph. Results are
depicted in Fig. 3b. Observe that typically the stretch decreases
as the number of nodes increases and that RGG and SRRG
behave very similarly. Notice that each point along the plot is
an average of 100 different runs. In addition, the RGG’s used
for each time-step are independent. Thus, it is probable that
a graph drawn with n1 vertices is connected while a graph
drawn with n2 > n1 vertices is disconnected.

Connectivity and stretch of RGGs in general domains. The
set of experiments come to demonstrate Theorems 5 and 6.
Namely, that the asymptotic behavior of RGGs with respect
to connectivity and stretch is maintained in the presence of
obstacles. We constructed the following toy-scenario where
we subdivided the d-dimensional unit hypercube by halfing it
along each axis. In the center of each one of the 2d sub-cubes,
we inserted an axis-aligned hypercube as an obstacle. The size
of the obstacle was chosen such that the obstacles covered 25%
of the unit hypercube. See Figure 4 for a visualization in two
and three dimensions.



(a) 2d (b) 3d

Fig. 4. Visualization of toy scenario for (a) two and (b) three
dimensions. Obstacles are depicted in blue.
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Fig. 5. (a) Connectivity and (b) stretch for RGGs in the toy scenarios.

We report on the results for RGGs (Fig. 5) and note that sim-
ilar results were observed for SRGGs. Stretch was computed
between the origin (0, . . . , 0) and the center (0.5, . . . , 0.5).
Observe that for all dimensions, the graph is asymptotically
connected and the stretch tends to one.

Motion-planning algorithms. Finally, we compare PRM and
Soft-PRM as sampling-based planners for rigid-body motion
planning on the Home scenario (Fig. 6b) provided by the
OMPL distribution.This six-dimensional configuration space,
SE3, includes both translational and rotational degrees of
freedom. Thus, it is not clear if the theoretic results presented
in this paper still hold in this non-Euclidean space.

To apply the results, a key question one has to address
is how to choose the connection radius when using a non-
Euclidean metric. Let x be a point sufficiently far from the
boundary and let rn = γ (log n/n)

1/d be the connection radius
used. When using the Euclidean metric, the average number
of neighbors of x is nbr(n) =

(
2d−1/d

)
· log n. Thus, for

each value of n, we sampled 100 random points and, for each
one, computed the radius r for which the point had nbr(n)
neighbors. Finally, we used the average value over all such
points in the experiments.

Figure 6a presents the cost of the solution produced by each
algorithm as a function of the running time. Similar to the
previous tests, both algorithms exhibit similar behavior, and
the cost obtained approaches the optimum as the number of
nodes increases.

VIII. DISCUSSION

We conclude this paper by describing a connection between
Soft-PRM and approximate nearest-neighbor (NN) search in
sampling-based motion planning. We then proceed to describe
future research directions that follow from our work.
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Fig. 6. (a) Average quality obtained by the PRM and Soft-PRM
algorithms as a function of the running times in the Home scenario (b).
Error bars in (a) denote the 20’th and 80’th percentile. Cost is normalized
such that the unit cost represents the optimum.

Approximate NN search in motion planning. NN search
is a key ingredient in the implementation of sampling-based
planners (see, e.g., line 3 in Alg. 1). Typically, exact NN
computation, where all the neighbors of a query point in a
given area are reported, tends to be slow in high dimensions,
due to the “curse of dimensionality” [26]. Thus, most im-
plementations of motion planners involve approximate NN
libraries (see, e.g., [7, 33, 45]), which are only guaranteed to
return a subset of the neighbors of a given query point (see,
e.g., [2, 10, 19, 28]).

However, existing proofs of probabilistic completeness and
asymptotic optimality of standard planners (see, e.g., [29, 31,
32]) assume that NNs are computed exactly. Without these
assumptions, the proofs no longer hold (although it may be
possible to modify them to take this into account).

The analysis given in this paper bridges this gap: PRM,
when implemented with approximate NN search, can be
modeled as a Soft-PRM. Thus, the former algorithm is prob-
abilistically complete by using the probabilistic completeness
of the latter (see Theorem 7).

Future work. The literature of RGGs is rich and encompasses
many models which were not addressed in this work due to
lack of space (see, e.g., [12, 9, 68]). Such models can be used
to analyze existing planners and might lead to the development
of novel planners.

In this work our focus was on Euclidean configuration
spaces and the standard Euclidean distance. We mention that
several works on RGGs consider different metrics in the Eu-
clidean space (see, e.g., [5, 49]). Such results can be imported
to the setting of motion planning using our framework, with
slight modification of the proofs.

Perhaps a more urgent issue involves the analysis of exiting
planners in complex configuration spaces. To the best of our
knowledge the behavior of standard planners such as PRM
and RRT* is not well understood for non-Euclidean spaces,
even for the simple case of a rigid-body robot translating and
rotating in a three-dimensional workspace. We believe that
several results involving RGGs in complex domains can shed
light on this question. For instance, Penrose [48] considers the
case where points are sampled on a torus, whereas Penrose
and Yukich [54] study the setting of points on a manifold
embedded in Euclidean space.
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