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Abstract—This paper deals with manipulation planning. The
problem consists in automatically computing paths for a system
composed of one or several robots, with one or several grippers
and one or several objects that can be grasped and moved by the
robots. The problem gives rise to constraints that can be either
explicit – an object is in a gripper – or implicit – an object is hold
by two different grippers. This paper proposes an algorithm that
handles such sets of constraints and solves them in an explicit
way as much as possible. When all constraints cannot be made
explicit, substitution is operated between variables to make the
resulting implicit constraint with as few variables as possible.
The manipulation planning problem is modelled as a constraint
graph that stores all the constraints of the problem.

I. INTRODUCTION

Manipulation planning is an instance of path planning where
objects are moved by robot grippers. This implies a lot of
constraints on the motion of the system composed of the robots
and of the objects. Namely, when an object is not grasped, it
should remain still in a stable placement, while when an object
is grasped by a gripper, it should move in a rigid manner with
the gripper. Those constraints can be expressed numerically
on the configuration variables of the robot and object. As
such, constraint resolution is a key feature one must take care
of [17]. It has a direct influence on the completeness [3] and
the efficiency [13] of the overall approach.

Pioneering work in motion planning [31, 1] have been
initiated in the late 1980’s. Random path planning methods
developed in the 1990’s [15] have been first adapted to
the manipulation planning problem by Siméon et al. [26].
Recently, manipulation planning has regained interest with
various approaches that tackle the inherent complexity of
the problem. The domain is traditionally divided into several
categories.

In navigation among movable obstacles (NAMO), the robot
needs to move obstacles in order to reach the goal con-
figuration [29, 22, 5]. Rearrangement planning consists in
automatically finding a sequence of manipulation paths that
move several objects from initial configurations to specified
goal configurations [18, 23, 19]. Other research papers inves-
tigate multi-arm motion planning [9, 10, 6]. From a geometric
perspective, manipulation planning is a hybrid problem the
configuration space of which is a union of subspaces – called
state – defined by constraints (gripper A holds object B for

instance) on the positions of objects and robots. Motion within
or from one to another state are also subject to numerical
constraints. Mirabel et al. [20] propose a representation of the
problem using a graph the nodes of which are states and the
edges of which are manipulation paths. Nodes and edges both
store numerical constraints.

Similar graph structures are also more or less explicitly used
in various papers [3, 14, 11]. The partially discrete nature of
the problem has also given rise to approaches that integrate
task and motion planning techniques [4, 2, 7, 27, 12, 8].
Toussaint and Lopes [30] combine branch and bound with
non-linear optimization techniques.

A manipulation path as computed in [20] is a concatena-
tion of elementary linear interpolations subject to numerical
constraints. To evaluate a configuration along such a path, the
linear interpolation is first computed and then, the resulting
configuration is projected on the sub-manifold that satisfies the
constraints related to the current manipulation edge (Figure 1).
This projection is performed numerically by iteratively solving
the tangent linear system (Newton-Raphson). During path
planning, a lot of constrained path are produced and evaluated
for collision checking. It is therefore important that constraint
resolution takes as little time as possible.

The contribution of this paper is a method that solves a set of
numerical constraints. The method derives from [3, 5]. Some
of the constraints are explicit, some are implicit. Resolution is
performed via substitution of variables that can be explicitly
expressed with respect to other variables, thus defining a non-
linear constraint with less variables. The main benefit is a gain
in terms of time of computation since explicit constraints are
much faster to solve.

The paper is organized as follows. In Section II, we define
implicit and explicit constraints, we explain how implicit con-
straints are numerically solved and we exhibit sufficient condi-
tions under which the combination of two explicit constraints
is still an explicit constraint. In Section III, we describe our
algorithm that simplifies the resolution of a set of constraints
by substituting variables that can be computed with respect
to others and then by applying Newton-Raphson method.
Section IV is devoted to the extension of our work to functions
with values in the space of rigid transformations SE(3).
Finally, section V provides some experimental results showing



the benefit of using explicit representation of constraints when
possible.

II. PROBLEM DEFINITION

Let us consider a manipulation planning problem with R
robots and N objects. The configuration space of the whole
system is the Cartesian product of the configuration spaces of
the robots and of the objects:

C = Cr1 × · · · × CrR × Co1 × · · · × CoN .

For simple objects, Coi is the space of rigid-body motions
denoted by SE(3), but more complex objects like a desk with
drawers for instance, are represented by a kinematic chain.

A solution to a manipulation planning problem is a con-
tinuous curve in C, starting from the initial configuration of
the system and ending in a configuration satisfying the goal
specifications (position of the robot, position of the objects,
or both). Unlike for the classical path planning problem, any
curve in the configuration space is almost never a manipulation
planning path since some constraints have to be satisfied along
the manipulation path. See [16] for an overview of the various
instances of path planning problems with constraints.

A. Numerical constraint

More precisely, let us denote by
(qr1 , · · · ,qrR ,qo1 , · · · ,qoN ) ∈ C, the configuration of
the whole system. When robot i ∈ {1, · · · , R} is grasping
object j ∈ {1, · · · , N}, the position oj completely depends
on the position of robot i, and the positions of all other
objects are fixed:

qoj = f1(qri) (1)
qok = pk ∈ Cok ∀k ∈ {1, · · · , N}, k 6= j (2)

where f1 is a smooth mapping from Cri to Coj , and pk are
constant positions of the objects that are not manipulated.

The above constraint is said to be explicit since some
configuration variables (of the objects) can be computed with
respect to others (of the robot).

Definition 1. An implicit constraint is defined by a smooth
mapping g from C to a vector space Rm. A configuration
q ∈ C is said to satisfy constraint g for threshold ε iff

‖g(q)‖ ≤ ε.

Definition 2. Combination of implicit constraints. Let m1,
m2 be two positive integers, let g1 from C to Rm1 and g2

from C to Rm2 be two smooth mappings. The combination of
the implicit constraints defined by g1 and g2 is the implicit
constraint defined by the mapping g from C to Rm1+m2 that
maps to q ∈ C the vector(

g1(q)
g2(q)

)
.

Fig. 1. Manipulation path: simple example of a 1-dof robot grasping a disc.
The path between two configurations is defined by linear interpolation of the
1-dof robot and of the ball position (in blue). Then the constraint (position
of the disc in the gripper) is solved – explicitly if possible or by a Newton-
Raphson like algorithm – (in green).

B. Implicit constraint resolution

As mentioned in the introduction, in [20], manipulation
paths are concatenations of linear interpolations projected on
the sub-manifold defined by manipulation constraints. In other
words, evaluating a configuration along such a path consists
in first computing the linear interpolation and then to solve
the manipulation constraints from this configuration to obtain
a configuration that satisfies the constraints. An important
consequence is that paths are not discretized but implicitly
defined everywhere on their definition interval. Figure 1 shows
a simple example.

Algorithm 1 implicit-constraint-solver(q, g, ε):
find q such that ‖g(q)‖ < ε

α = .1, i = 0, αmax = .95
while ‖g(q)‖ > ε and i ≤ 20 do

// (.)
+ denotes the Moore-Penrose pseudo-inverse

q← q− α
(

∂g
∂q (q)

)+

g(q)

i ← i+ 1
// Make α tend toward αmax

α→ αmax − .8 ∗ (αmax − α)
end while
if ‖g(q)‖ ≤ ε then

return q
else

return failure
end if

Definition 3. An Implicit Constraint Solver is a mapping that
takes as input an implicit constraint g, a tolerance threshold
ε and that returns a mapping h from a part D of C to C such
that

∀q ∈ D, ‖g(h(q))‖ < ε

h is called a projector on the sub-manifold satisfying g.
The procedure described by Algorithm 1 previously introduced

https://github.com/humanoid-path-planner/hpp-core/blob/v4.0/include/hpp/core/path-vector.hh


in [3, 5] is an implicit constraint solver. In this case, D
is the subspace of configuration for which the procedure
converges to a solution. Note that the pseudo-inverse is
computed by a singular value decomposition of complexity
O(m2n + mn2 + n3) where n is the dimension of the
configuration space and m is the dimension of non-linear
constraints. Constraint substitution as described in Section III
makes both the dimension of constraints and the number of
variables decrease in the Newton-Raphson resolution.

C. Explicit constraints

We denote by
• dim C the dimension of the configuration vectors in C,
• IC the set of positive integers not greater than dim C,
• I a subset of IC ,
• Ī the complement in IC of I ,
• |I| the cardinal of I .

If q ∈ C is a configuration, we denote by qI ∈ R|I| the vector
composed of the components of q of increasing indices in I .

a) Example: if q = (q1, q2, q3, q4, q5, q6) and I =
{1, 3, 6}, then qI = (q1, q3, q6), qĪ = (q2, q4, q5).

Definition 4. An explicit constraint E = (in, out, f) is a
mapping from C to C, defined by the following elements:
• a subset of input indices in ⊂ {1, · · · ,dim C},
• a subset of output indices out ⊂ {1, · · · ,dim C},
• a smooth mapping f from R|in| to R|out|,

satisfying the following properties:
• in ∩ out = ∅,
• for any p ∈ C, q = E(p) is defined by

q ¯out = p ¯out

qout = f(pin).

With the same notation as above, if we define g as the
mapping from C to R|out| defined by

g(p) = pout − f(pin), (3)

E is a projector on the submanifold satisfying g with threshold
equal to 0.

In other words, an explicit constraint can be formulated as
an implicit constraint.

D. Combination of explicit constraints

We now establish some sufficient conditions under which
the combination of 2 explicit constraints yields an explicit
constraint and we show how to compute the resulting explicit
constraint.

Let E1 = (in1, out1, f1) and E2 = (in2, out2, f2) be 2
distinct explicit constraints. If

out1∩out2 = ∅ and (in1∩out2 = ∅ or in2∩out1 = ∅), (4)

the combination of both explicit constraints yields another
explicit constraint E = (f, in, out) with input and output sets
in and out defined later on.

Without loss of generality, by switching the constraints E1

and E2, we can reduce hypothesis (4) to

out1 ∩ out2 = ∅ and in1 ∩ out2 = ∅. (5)

Under this assumption, the input and output spaces of f are
defined by

in = (in1 ∪ in2) \ (in2 ∩ out1),

out = out1 ∪ out2.

To evaluate E, we build a tuple T of dim C elements initialized
to ∅. For each
• i ∈ out1, we set T [i] to E1,
• i ∈ out2, we set T [i] to E2,

where T [i] denotes the i-th element of T . Figures 2 gives an
example.

(· · ·E2 E2 E2︸ ︷︷ ︸
out2

· · ·
in2︷ ︸︸ ︷

∅ ∅ E1 E1 E1 E1︸ ︷︷ ︸
out1

· · ·
in1︷ ︸︸ ︷
∅ · · · ∅ · · · )

Fig. 2. Combination E of two compatible explicit constraints E1 and E2.
In red, output variables of E; in blue, input variables of E.

To compute q = E(p), for p ∈ C, we first copy p into q,
we evaluate f1(qin1) and update qout1 with the result, and
then we evaluate f2(qin2) and update qout2 with the result.

III. COMBINATION OF IMPLICIT AND EXPLICIT
CONSTRAINTS

Let kg and kE be two non-negative integers. Given a set of
kg implicit constraints g1, · · · , gkg

and kE explicit constraints
E1, · · ·EkE

, we wish to build a projector on the submanifold
that satisfies all these constraints. We proceed as follows.

Let E be the first explicit constraint, and let g be the
combination of g1, · · · , gkg . For each j from 2 to kE .
• if E and Ej satisfy hypothesis (4), we replace E by the

combination of E and Ej ,
• otherwise, we replace g by the combination of g with the

implicit representation (3) of Ej .
After this operation, we have one implicit constraint g
with values in Rm, and at most one explicit constraint
(in, out, f) , E that represent the same solution submanifold
as g1, · · · , gkg and E1, · · ·EkE

together.

g(q) = 0 (6)
qout = f(qin) (7)

A. Constraint resolution

Up to variable reordering, we assume that output variables
and input variables are contiguous:

q = (qout,qin,qin∪out)

System (6-7) becomes

g(f(qin),qin,qin∪out) = 0 (8)
qout = f(qin) (9)



We define g̃ the mapping from R| ¯out| to Rm as

g̃(qin,qin∪out) = g(f(qin),qin,qin∪out)

To solve (8), we apply Algorithm 1 to g̃. Note that g̃ has less
variables than g. We need to compute the Jacobian of g̃ with
respect to q ¯out = (qin,qin∪out):

∂g̃

∂qin
(q ¯out) =

∂g

∂qout
(f(qin),q ¯out)

∂f

∂qin
(qin)

+
∂g

∂qin
(f(qin),q ¯out)

∂g̃

∂qin∪out
(q ¯out) =

∂g

∂qin∪out
(f(qin),q ¯out)

As g is a combination of implicit constraint, its Jacobian is
simply obtained by stacking the Jacobians of all the implicit
constraints. When f is obtained from the combination of
several explicit constraints, computing ∂f/∂qin is not as
trivial.

B. Jacobian of the combination of explicit constraints

a b c
E2

E2

E2

∂f2
∂qd

∂f1 d

∂qa

∂f2
∂qb

∂f2
∂qc

E1

E1

E1

E1

∂f1
∂qa

∂f1
∂qb

0

Fig. 3. Jacobian of the combination of two explicit constraints. f1 d denotes
the components of f1 corresponding to elements of d = in2 ∩ out1.

As in Section II-D, we denote by E the combination of two
explicit constraints E1 and E2. The rows of the Jacobian of f
correspond to output variables qout1 and qout2 . The columns
correspond to input variables with indices in (in1∪in2)\(in2∩
out1). We define the following disjoint subsets of indices:

a = in1 \ in2,

b = in1 ∩ in2,

c = in2 \ in1 \ out1,
d = in2 ∩ out1.

With these definitions, we have

in1 = a ∪ b
in2 = b ∪ c ∪ d
in = a ∪ b ∪ c

Note that in Figure 2, d = in1 ∩ in2 = ∅.
To compute the Jacobian of f , we separate the variables:

f(qin) =

(
f1(qa,qb,qc)
f2(qa,qb,qc)

)
To make notation tractable, we make an assumption on the
order of the output variables and the input variables. The

implementation is of course more general as explained in the
next section. Note that in figures 3 and 2, the order of output
variables is different.
f1 only depends on qa and qb. The Jacobian rows corre-

sponding to f1 thus contain the Jacobian of f1. f2 depends
on qb, qc, and qd. The blocks corresponding to f2 output
and qb, qc input contain the Jacobian of f2, while variables
qd are output variables of f1 the corresponding block is thus
a product of Jacobians. Figure 3 provide expressions of the
blocks that compose the Jacobian of f .

C. Implementation details

To compute the value and Jacobian of a combination
of explicit constraints, we have implemented a class called
MatrixBlockView. The constructor takes as input two sets
of indices rows and cols. For i, 0 ≤ i < |rows| and j,
0 ≤ j < |rows|, let I be the i − 1-th element of rows and
J be the j − 1-th element of cols. If
• M = MatrixXd is a matrix of the Eigen library, then
• Mv = MatrixBlockView (M, rows, cols)

emulates the Eigen matrix such that
• Mv (i,j) is a reference to M (I,J) element.

The Jacobian matrix J of explicit constraint f in the
previous section represented in Figure 3 is thus computed as
follows. J_1 and J_2 are the Jacobian matrices of f1 and f2.

MatrixBlockView(J, out_2, a) = MatrixBlockView(J_2, all, d)

* MatrixBlockView(J1, d, a)
MatrixBlockView(J, out_2, b) = MatrixBlockView(J_2, all, b)
MatrixBlockView(J, out_2, c) = MatrixBlockView(J_2, all, c)
MatrixBlockView(J, out_1, a) = MatrixBlockView(J_1, all, a)
MatrixBlockView(J, out_1, b) = MatrixBlockView(J_1, all, b)
MatrixBlockView(J, out_1, c) = 0

IV. FUNCTION VALUED IN SE(3)

For clarity, the developments of the previous sections make
the assumption that functions take values in Rm where m
is a positive integer. In equation (1) however, function f1

represents the position of a rigid object and takes value
in SE(3)1. Although the position of a rigid object can be
represented by 6 values (x, y, z, roll, pitch, yaw), it is well
known that this representation suffers a lot of shortcomings.

To represent an element of SE(3), we use a 7-dimensional
vector (q0, · · · q6) such that:
• (q0, q1, q2) represents the translation, and
• ‖(q3, q4, q5, q6)‖ = 1, quaternion q3i + q4j + q5k + q6

encodes the rotation.
The velocity of a rigid object, called a twist can be repre-

sented by a 6-dimensional vector (v, ω) where
• v ∈ R3 is the velocity of the point of the object that

coincides with the origin of the world frame, expressed
in the basis of the object,

• ω ∈ R3 is the angular velocity of the object expressed in
the basis of the object.

See [21] chapter 2, Section 3.2 for details.

1The group of rigid-body transformations

https://github.com/humanoid-path-planner/hpp-constraints/blob/98c23f3c66d3704bae787e5f53603e9dabfe2811/include/hpp/constraints/matrix-view.hh#L810
https://github.com/humanoid-path-planner/hpp-constraints/blob/98c23f3c66d3704bae787e5f53603e9dabfe2811/include/hpp/constraints/matrix-view.hh#L889
http://eigen.tuxfamily.org/index.php?title=Main_Page


A. Addition and subtraction

Let (v, ω) ∈ R6 represent a twist and q = (q0, · · · q6)
represent an element of SE(3). Applying the constant twist
(v, ω) during unit time to q leads to another element of SE(3)
that we denote by:

p = q + (v, ω)

This definition of the addition is an extension of the addition
on vector spaces where applying a constant velocity v during
unit time starting from a vector q leads to q + v.

We define the subtraction accordingly: if q1 and q2 are two
elements of SE(3), q2−q1 is a vector of R6 representing the
(minimal) constant twist leading from q1 to q2 in unit time.

With this definition, we can extend the developments of
the previous sections to functions with values in Cartesian
products of vector spaces and SE(3).

V. RESULTS

Our implementation of the above method is integrated in the
package hpp-constraints of the open-source platform
HPP [20]. All tests are run on a processor Intel Xeon 3.5
Ghz, with 8 Go of RAM.

To analyse the influence of explicit constraint substitution
into Newton-Raphson algorithm (Alg. 1), we compare our
approach to the standard Newton-Raphson algorithm, as it is
the most successful method [28, 3, 5] for general non-linear
constraints.

A. Construction set

In this scenario, two UR3 robots, (Ri)i∈{0,1} assemble a set
of magnetised cylinders (Ci)i∈{0,1} and spheres (Si)i∈{0,1}
(Figure 4). The configuration space of the system is composed
of vectors of the following form:
q = (qR0

,qR1
,xC0

,pC0
,xC1

,pC1
,xS0

,pS0
,xS1

,pS1
),

where
• qR0

,qR1
∈ R6 represent the configurations of each robot,

• xC0
,xC1

,xS0
,xS1

∈ R3 represent the positions of the
centers of the cylinders and spheres,

• pC0 ,pC1 ,pS0 ,pS1 ∈ R4 are unit quaternions represent-
ing the orientations of the cylinders and spheres.

We denote
IR0

= {0, · · · , 5}, IR1
= {6, · · · , 11}, IC0

= {12, · · · , 18},
IC1

= {19, · · · , 25}, IS0
= {26, · · · , 32}, IS1

= {33, · · · , 39}
the sets of indices corresponding to the configurations of
respectively the robots, the cylinders, and the spheres.

The goal is to produce a sequence of manipulation paths in
order to assemble two spheres on a cylinder.

We provide to the algorithm the high-level task sequence as
follows:

1) R0 grasps S0,
2) R1 grasps C0,
3) S0 is assembled on C0,
4) R0 releases S0,
5) R0 grasp S1,
6) S1 is assembled on C0,

Fig. 4. Top left: two UR-3 robots assemble two spheres on a cylinder. The
complete resolution takes a few seconds. Top right: the constraint graph is
composed of 9 states. Bottom: grasp constraints are defined by frames attached
to robot grippers and to objects. The middle frame of the cylinder defines the
grasp constraint by the robot gripper. The left and right frames correspond to
positions of the spheres when stuck to the cylinder.

7) R0 releases S1,
8) R1 releases C0.

Given this sequence of actions, our software builds a constraint
graph the nodes of which are states of the system and the edges
of which are transitions that encode path constraints. Each
state encodes a set of position constraints between robots and
objects. The states are the following

1) all objects lie on the ground,
2) R0 → S0,
3) R0 → S0 and R1 → C0,
4) R0 → S0 and R1 → C0 and S0 ↔ C0,
5) R1 → C0 and S0 ↔ C0,
6) R0 → S1 and R1 → C0 and S0 ↔ C0,
7) R0 → S1 and R1 → C0 and S0 ↔ C0 and S1 ↔ C0,
8) R1 → C0 and S0 ↔ C0 and S1 ↔ C0,
9) S0 ↔ C0 and S1 ↔ C0 and assembly lies on the ground.

where → means “grasps”, and ↔ means “is stuck on”. Any
configuration of any manipulation path lies in one of the above
states. Each of states 1), 2), 3), 5), 6), 8), and 9) is composed
of explicit constraints that are all compatible. For instance,
in state 8), the position of C0 depends on the configuration
of R1, and the positions of S0, S1 depend on the position
of C0. Hence, the configuration of R0 uniquely determines
the positions of C0, S0, and S1. On the contrary, states 4)
and 7) form closed kinematic chains and require an implicit
resolution. Our work handles all those sets of constraints in a

https://github.com/humanoid-path-planner/hpp-constraints/blob/master/include/hpp/constraints/hybrid-solver.hh
https://github.com/humanoid-path-planner/hpp-constraints


seamless and efficient way.
a) Variable substitution: let us describe the variable

substitution algorithm for state 4). We denote by E1, E2, E3

the constraints in this state:
E1 = R0 → S0 (xS0

,pS0
) = fR0→S0

(qR0
)

E2 = R1 → C0 (xC0
,pC0

) = fR1→C0
(qR1

)
E3 = S0 ↔ C0 (xS0

,pS0
) = fS0↔C0

(xC0
,pC0

)
We first compose E1 and E2. Using the notation of Sec-
tion II-D, we have

in1 = IR0
, out1 = IS0

, in2 = IR1
, out2 = IC0

.

We notice immediatly that Condition (4) is satisfied and
therefore E1 and E2 are compatible. They combine into
another explicit constraint E = (in, out, f) such that

out = IS0
∪ IC0

, in = IR0
∪ IR1

f(qR0 ,qR1) =

(
fR0→S0(qR0)
fR1→C0(qR1)

)
Using the same reasoning, we can state that E and E3 are not
compatible since (Condition 4)

out ∩ out3 = (IS0
∪ IC0

) ∩ IS0
6= ∅.

We therefore apply the constraint resolution algorithm de-
scribed in Section III. After substitution, constraints (6-7)
rewrite

fR0→S0
(qR0

)− fS0↔C0
(fR1→C0

(qR1
)) = 0

(xS0
,pS0

) = fR0→S0
(qR0

)
(xC0

,pC0
) = fR1→C0

(qR1
)

Implicit resolution is performed on the first line of the above
system using algorithm (1). Note that this constraint of dimen-
sion 6 implies only 12 degrees of freedom (qR0

,xC0
,pC0

) out
of 36.2

To compute a solution path, we generate target configura-
tions in each node, accessible from the initial configuration,
and then we connect those targets by a visibility-PRM algo-
rithm [25] in the appropriate sub-manifold. This is a variant
of the method described in [24]. The manipulation planning
algorithm is not the topic of this paper.

We analyse the improvements of the projection algorithm.
From a set of 10000 random configurations, we compute the
average computation time and success ratio of the projection
with and without explicit constraint substitution. Figure 5
shows the results. As expected, explicit constraint substitution
increases the success ratio and reduces the computation time.
Note that in states 4) and 7), although constraints are solved
implicitly, we observe an improvement due to the reduction
of the number of variables. The accompanying video shows a
solution path found to assemble the parts.

B. Romeo humanoid robot

In this scenario, the humanoid robot Romeo3 manipulates
a placard with both hands, Handright and Handleft. Two

2Poses in SE(3) stand for 6 degrees of freedom although the are represented
by 7 numbers.

3The model can be obtained at http://doc.aldebaran.com/2-
5/family/romeo/index romeo.html

Fig. 5. Projection success ratio and computation time for the construction set
problem. We compare fully implicit formulation (without substitution) to our
combination of implicit and explicit constraint resolution (with substitution).
Note the logarithmic scale.
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frames, Placardhigh and Placardlow, are defined on the
placard, as shown on Figure 6. The three following states are
considered:

1) Handright grasps Placardhigh,
2) Handright grasps Placardhigh and Handleft grasps

Placardlow,
3) Handleft grasps Placardlow,

Moreover, in all of these states, the following additional
constraints are added to ensure robot balance:

• feet at fixed positions (dimention 12),
• robot center of mass above support polygon (dimension

2).

To our best knowledge, there is no simple explicit formu-
lation of these constraints so a solver based on exact inverse
kinematics would not be able to address this problem.

a) Variable substitution: let us describe the variable sub-
stitution algorithm for state 2) above. The configuration vector
is of the form q = (qromeo,qplacard) where qromeo ∈ R40,
and qplacard ∈ R7. The constraints are of the following form:

qplacard = fleft(qromeo)
qplacard = fright(qromeo)
fbalance(qromeo,qplacard) = 0

http://doc.aldebaran.com/2-5/family/romeo/index_romeo.html
http://doc.aldebaran.com/2-5/family/romeo/index_romeo.html


Fig. 6. Top: Romeo robot with the frames attached to each hand. Bottom
left: Romeo holds the placard with boths hands. Bottom left: the three states
considered are shown on the constraint graph, on the right.

Note that fbalance output is of dimension 14. The first two
constraints are explicit but incompatible. The system thus
becomes

qplacard = fleft(qromeo)
fleft(qromeo)− fright(qromeo) = 0
fbalance(qromeo, fleft(qromeo)) = 0

The last two constraints are solved implicitely. They represent
an implicit constraint of dimension 20 with 40 variables,
instead of dimension 26 with 46 variables.

Fig. 7. Projection success ratio and computation time for humanoid robot
problem. We compare fully implicit formulation (without substitution) to our
combination of implicit and explicit constraint resolution (with substitution).
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From a set of 10000 random configurations, we compare the
success ratio and the average computation time of the projec-
tion algorithm with and without explicit constraint substitution.
Figure 7 shows the results. For states 0) and 2), the success
ratio and the computation time are both marginally influenced.
In these states, the placard is held by one hand. For state 1),
substitution has a great positive influence on the success ratio
and computation time of the projection.

VI. CONCLUSION

This paper proposes a method to solve automatically non-
linear constraints expressed either implicitly or explicitly.
Such constraints are in the core of the manipulation planning
problem, especially when manipulation paths go through states
where an object is grasped by several grippers.

Our method is integrated with success in a manipulation
planning framework and experimental results show that huge
improvement can be obtained.

It can of course be argued that the example provided in
Section V-A can be solved with exact inverse kinematics.
However, we claim that our approach applies to more general
cases where exact inverse kinematics is not available, like in
Section V-B where a humanoid robot in quasi-static equilib-
rium grasps objects.
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[4] Stéphane Cambon, Rachid Alami, and Fabien Gravot.
A hybrid approach to intricate motion, manipulation
and task planning. International Journal of Robotics
Research, 28, 2009.

[5] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei,
M. Taı̈x, and J.-P. Laumond. Dynamic walking and
whole-body motion planning for humanoid robots: an in-
tegrated approach. The International Journal of Robotics
Research, 32(9-10):1089–1103, 2013.

[6] Andrew Dobson and Kostas Bekris. Planning representa-
tions and algorithms for prehensile multi-arm manipula-
tion. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015.

[7] Caelan Reed Garrett, Tomás Lozano-Pérez, and
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