
Closing the Loop for Robotic Grasping:
A Real-time, Generative Grasp Synthesis Approach

Douglas Morrison, Peter Corke and Jürgen Leitner
Australian Centre for Robotic Vision
Queensland University of Technology

Brisbane, Australia, 4000
Email: douglas.morrison@hdr.qut.edu.au

Abstract—This paper presents a real-time, object-independent
grasp synthesis method which can be used for closed-loop
grasping. Our proposed Generative Grasping Convolutional
Neural Network (GG-CNN) predicts the quality and pose of
grasps at every pixel. This one-to-one mapping from a depth
image overcomes limitations of current deep-learning grasping
techniques by avoiding discrete sampling of grasp candidates and
long computation times. Additionally, our GG-CNN is orders of
magnitude smaller while detecting stable grasps with equivalent
performance to current state-of-the-art techniques. The light-
weight and single-pass generative nature of our GG-CNN allows
for closed-loop control at up to 50Hz, enabling accurate grasping
in non-static environments where objects move and in the
presence of robot control inaccuracies. In our real-world tests,
we achieve an 83% grasp success rate on a set of previously
unseen objects with adversarial geometry and 88% on a set of
household objects that are moved during the grasp attempt. We
also achieve 81% accuracy when grasping in dynamic clutter.

I. INTRODUCTION

In order to perform grasping and manipulation tasks in the
unstructured environments of the real world, a robot must be
able to compute grasps for the almost unlimited number of
objects it might encounter. In addition, it needs to be able to
act in dynamic environments, whether that be changes in the
robot’s workspace, noise and errors in perception, inaccuracies
in the robot’s control, or perturbations to the robot itself.

Robotic grasping has been investigated for decades, yielding
a multitude of different techniques [2, 3, 27, 29]. Most
recently, deep learning techniques have enabled some of the
biggest advancements in grasp synthesis for unknown items.
These approaches allow learning of features that correspond
to good quality grasps that exceed the capabilities of human-
designed features [12, 17, 21, 23].

However, these approaches typically use adapted versions of
Convolutional Neural Network (CNN) architectures designed
for object recognition [12, 15, 23, 25], and in most cases
sample and rank grasp candidates individually [17, 21, 23],
resulting in long computation times in the order of a sec-
ond [21] to tens of seconds [17]. As such, these techniques
are rarely used in closed-loop grasp execution and rely on
precise camera calibration and precise robot control to grasp
successfully, even in static environments.

We propose a different approach to selecting grasp points
for previously unseen items. Our Generative Grasping Con-
volutional Neural Network (GG-CNN) directly generates an
antipodal grasp pose and quality measure for every pixel in an

Fig. 1. Our real-time, generative grasping pipeline. A camera mounted to the
wrist of the robot captures depth images containing an object to be grasped.
Our Generative Grasping Convolutional Neural Network (GG-CNN) generates
antipodal grasps – parameterised as a grasp quality, angle and gripper width –
for every pixel in the input image in a fraction of a second. The best grasp is
calculated and a velocity command (v) is issued to the robot. The closed-loop
system is capable of grasping dynamic objects and reacting to control errors.

input depth image and is fast enough for closed-loop control
of grasping in dynamic environments (Fig. 1). We use the
term “generative” to differentiate our direct grasp generation
method from methods which sample grasp candidates.

The advantages of GG-CNN over other state-of-the-art
grasp synthesis CNNs are twofold. Firstly, we do not rely on
sampling of grasp candidates, but rather directly generate grasp
poses on a pixelwise basis, analogous to advances in object
detection where fully-convolutional networks are commonly
used to perform pixelwise semantic segmentation rather than
relying on sliding windows or bounding boxes [19]. Secondly,
our GG-CNN has orders of magnitude fewer parameters than
other CNNs used for grasp synthesis, allowing our grasp
detection pipeline to execute in only 19 ms on a GPU-equipped
desktop computer, fast enough for closed-loop grasping.

We evaluate the performance of our system in different
scenarios by performing grasping trials with a Kinova Mico
robot, with static, dynamic and cluttered objects. In dynamic
grasping trials, where objects are moved during the grasp
attempt, we achieve 83% grasping success rate on a set of
eight 3D-printed objects with adversarial geometry [21] and
88% on a set of 12 household items chosen from standardised
object sets. Additionally, we reproduce the dynamic clutter
grasping experiments of [32] and show an improved grasp
success rate of 81%. We further illustrate the advantages of
using a closed-loop method by reporting experimental results
when artificial inaccuracies are added to the robot’s control.

[17] [25] [23] [12] [15] [21] [18] [32] Ours

Real Robot Experiments X � X X � X X X X
Objects from Standard Sets � - � � - � � � X
Adversarial Objects [21] � - � � - X � � X
Clutter � � X � � � X X X
Closed-loop � - � � - � X X X
Dynamic Objects � - � � - � � X X
Code Available X � X � � X � � X *
Training Data Available X X X � X X X � X
Training Data Type Real Real Real Synthetic Real Synthetic Real Synthetic Real

(Cornell [17]) (Cornell) (Trial) (Cornell) (Trial) (Cornell)

TABLE I: A comparison of our work to related deep learning approaches to grasp synthesis.
* Code is available at https://github.com/dougsm/ggcnn

II. RELATED WORK

Grasping Unknown Objects Grasp synthesis refers to the
formulation of a stable robotic grasp for a given object, which
is a topic which has been widely researched resulting in a
plethora of techniques. Broadly, these can be classi�ed into
analytic methods and empirical methods [3, 27]. Analytic
methods use mathematical and physical models of geometry,
kinematics and dynamics to calculate grasps that are sta-
ble [2, 24], but tend to not transfer well to the real world due
to the dif�cultly in modelling physical interactions between a
manipulator and an object [2, 26, 27].

In contrast, empirical methods focus on using models and
experience-based approaches. Some techniques work with
known items, associating good grasp points with an of�ine
database of object models or shapes [6, 8, 22], or familiar
items, based on object classes [28] or object parts [7], but are
unable to generalise to new objects.

For grasping unknown objects, large advancements have
been seen recently with a proliferation of vision-based deep-
learning techniques [17, 21, 23, 25, 33]. Many of these tech-
niques share a common pipeline: classifying grasp candidates
sampled from an image or point cloud, then ranking them
individually using Convolutional Neural Networks (CNN).
Once the best grasp candidate is determined, a robot executes
the grasp open-loop (without any feedback) which requires
precise calibration between the camera and the robot, precise
control of the robot and a completely static environment.

Execution time is the primary reason that grasps are exe-
cuted open-loop. In many cases, deep-learning approaches use
large neural networks with millions of parameters [12, 21, 23]
and process grasp candidates using a sliding window at
discrete intervals of offset and rotation [17, 23], which is
computationally expensive and results in grasp planning times
in the order of a second [21] to tens of seconds [17].

Some approaches reduce execution time by pre-processing
and pruning the grasp candidates [17, 33] or predicting
the quality of a discrete set of grasp candidates simultane-
ously [12, 23], trading off execution time against the number of
grasps which are sampled, but ignoring some potential grasps.

Instead of sampling grasp candidates, both [15] and [25]
use a deep CNN to regress a single best grasp pose for an
input image. However, these regression methods are liable to
output the average of the possible grasps for an object, which

itself may not be a valid grasp [25].
Similar to our method, Varley et al. [31] use a neural

network to generate pixelwise heatmaps for �nger placement
in an image, but still rely on a grasp planner to determine the
�nal grasp pose.

We address the issues of execution time and grasp sampling
by directly generating grasp poses for every pixel in an image
simultaneously, using a comparatively small neural network.

Closed-Loop GraspingClosed-loop control of a robot to
a desired pose using visual feedback is commonly referred to
as visual servoing. The advantages of visual servoing methods
are that they are able to adapt to dynamic environments and
do not necessarily require fully accurate camera calibration
or position control. A number of works apply visual servoing
directly to grasping applications, with a survey given in [14].
However, the nature of visual servoing methods mean that
they typically rely on hand-crafted image features for object
detection [13, 30] or object pose estimation [11], so do not
perform any online grasp synthesis but instead converge to a
pre-determined goal pose and are not applicable to unknown
objects.

CNN-based controllers for grasping have very recently
been proposed to combine deep learning with closed loop
grasping [18, 32]. Rather than explicitly performing grasp
synthesis, both systems learn controllers which map potential
control commands to the expected quality of or distance to a
grasp after execution of the control, requiring many potential
commands to be sampled at each time step. In both cases, the
control executes at no more than approximately 5Hz. While
both are closed-loop controllers, grasping in dynamic scenes
is only presented in [32] and we reproduce these experiments.

The grasp regression methods [15, 25] report real-time
performance, but are not validated with robotic experiments.

Benchmarking for Robotic Grasping Directly comparing
results between robotic grasping experiments is dif�cult due
to the wide range of grasp detection techniques used, the
lack of standardisation between object sets, and the limitations
of different physical hardware, e.g. robot arms, grippers or
cameras. Many people report grasp success rates on sets of
“household” objects, which vary signi�cantly in the number
and types of objects used.

The ACRV Picking Benchmark (APB) [16] and the YCB
Object Set [5] de�ne item sets and manipulation tasks, but
benchmark on tasks such as warehouse order ful�lment (APB)

https://github.com/dougsm/ggcnn

Fig. 2. Left: A graspg is de�ned by its Cartesian position(x; y; z), rotation
around the z-axis� and gripper widthw required for a successful grasp. Right:
In the depth image the grasp pose~g is de�ned by its centre pixel(u; v), its
rotation ~� around the image axis and perceived width~w.

or table setting and block stacking (YCB) rather than raw grasp
success rate as is typically reported. Additionally, many of the
items from these two sets are impractically small, large or
heavy for many robots and grippers, so have not been widely
adopted for robotic grasping experiments.

We propose a set of 20 reproducible items for testing, com-
prising comprising 8 3D printed adversarial objects from [21]
and 12 items from the APB and YCB object sets, which we
believe provide a wide enough range of sizes, shapes and
dif�culties to effectively compare results while not excluding
use by any common robots, grippers or cameras.

In Table I we provide a summary of the recent related work
on grasping for unknown objects, and how they compare to
our own approach. This is not intended to be a comprehensive
review, but rather to highlight the most relevant work.

III. G RASPPOINT DEFINITION

Like much of the related literature [12, 17, 21, 23, 32],
we consider the problem of detecting and executing antipodal
grasps on unknown objects, perpendicular to a planar surface,
given a depth image of the scene (Fig. 2).

Let g = (p; �; w; q) de�ne a grasp, executed perpendic-
ular to thex-y plane. The grasp is determined by its pose,
i.e. the gripper's centre positionp = (x; y; z) in Cartesian
coordinates, the gripper's rotation� around thez axis and
the required gripper widthw. A scalar quality measureq,
representing the chances of grasp success, is added to the pose.
The addition of the gripper width enables a better prediction
and better performance over the more commonly used position
and rotation only representation.

We want to detect grasps given a 2.5D depth imageI =
RH � W with height H and width W , taken from a camera
with known intrinsic parameters. In the imageI a grasp is
described by

~g = (s; ~�; ~w; q);

where s = (u; v) is the centre point in image coordinates
(pixels), ~� is the rotation in the camera's reference frame and
~w is the grasp width in image coordinates. A grasp in the
image space~g can be converted to a grasp in world coordinates
g by applying a sequence of known transforms,

g = tRC (tCI (~g)) (1)

where tRC transforms from the camera frame to the
world/robot frame andtCI transforms from 2D image co-
ordinates to the 3D camera frame, based on the camera
intrinsic parameters and known calibration between the robot
and camera.

We refer to the set of grasps in the image space as thegrasp
map, which we denote

G = (� ; W ; Q) 2 R3� H � W

where� , W andQ are each2 RH � W and contain values of
~� , ~w andq respectively at each pixels.

Instead of sampling the input image to create grasp candi-
dates, we wish to directly calculate a grasp~g for each pixel in
the depth imageI . To do this, we de�ne a functionM from
a depth image to thegrasp mapin the image coordinates:
M (I) = G. From G we can calculate the best visible grasp
in the image space~g� = max

Q
G, and calculate the equivalent

best grasp in world coordinatesg� via Eq. (1).

IV. GENERATIVE GRASPINGCONVOLUTIONAL

NEURAL NETWORK

We propose the use of a neural network to approximate the
complex functionM : I ! G . M � denotes a neural network
with � being the weights of the network.

We show thatM � (I) = (Q � ; � � ; W �) � M (I), can be
learned with a training set of inputsI T and corresponding
outputsG T and applying the L2 loss functionL , such that

� = argmin
�

L (G T ; M � (I T)) :

A. Grasp Representation

G estimates the parameters of a set of grasps, executed
at the Cartesian pointp, corresponding to each pixels. We
represent thegrasp mapG as a set of three images,Q, � and
W . The representations are as follows:

Q is an image which describes the quality of a grasp
executed at each point(u; v). The value is a scalar in the
range[0; 1] where a value closer to 1 indicates higher grasp
quality, i.e. higher chance of grasp success.

� is an image which describes the angle of a grasp to
be executed at each point. Because the antipodal grasp is
symmetrical around� �

2 radians, the angles are given in the
range[� �

2 ; �
2].

W is an image which describes the gripper width of a grasp
to be executed at each point. To allow for depth invariance,
values are in the range of[0; 150] pixels, which can be
converted to a physical measurement using the depth camera
parameters and measured depth.

B. Training Dataset

To train our network, we create a dataset (Fig. 3) from
the Cornell Grasping Dataset [17]. The Cornell Grasping
Dataset contains 885 RGB-D images of real objects, with
5110 human-labelled positive and 2909 negative grasps. While
this is a relatively small grasping dataset compared to some
more recent, synthetic datasets [20, 21], the data best suits

Fig. 3. Generation of training data used to train our GG-CNN. Left:
The cropped and rotated depth and RGB images from the Cornell Grasping
Dataset [17], with the ground-truth positive grasp rectangles representing
antipodal grasps shown in green. The RGB image is for illustration and is
not used by our system. Right: From the ground-truth grasps, we generate
the Grasp Quality (Q T), Grasp Angle (� T) and Grasp Width (W T) images
to train our network. The angle is further decomposed intocos(2� T) and
sin(2� T) for training as described in Section IV-B.

our pixelwise grasp representation as multiple labelled grasps
are provided per image. This is a more realistic estimate of
the full pixel-wise grasp map, than using a single image to
represent one grasp, such as in [21]. We augment the Cornell
Grasping Dataset with random crops, zooms and rotations to
create a set of 8840 depth images and associatedgrasp map
imagesG T , effectively incorporating 51,100 grasp examples.

The Cornell Grasping Dataset represents antipodal grasps
as rectangles using pixel coordinates, aligned to the position
and rotation of a gripper [35]. To convert from the rectangle
representation to our image-based representationG, we use
the centre third of each grasping rectangle as an image mask
which corresponds to the position of the centre of the gripper.
We use this image mask to update sections of our training
images, as described below and shown in Fig. 3. We consider
only the positive labelled grasps for training our network and
assume any other area is not a valid grasp.

Grasp Quality: We treat each ground-truth positive grasp
from the Cornell Grasping Dataset as a binary label and set
the corresponding area ofQT to a value of 1. All other pixels
are 0.

Angle: We compute the angle of each grasping rectangle
in the range[� �

2 ; �
2], and set the corresponding area of� T .

We encode the angle as two vector components on a unit
circle, producing values in the range[� 1; 1] and removing
any discontinuities that would occur in the data where the
angle wraps around� �

2 if the raw angle was used, making
the distribution easier for the network to learn [9]. Because
the antipodal grasp is symmetrical around� �

2 radians, we
use use two componentssin(2� T) and cos(2� T) which
provides values which are unique within� T 2 [� �

2 ; �
2] and

symmetrical at� �
2 .

Width: Similarly, we compute the width in pixels (max-
imum of 150) of each grasping rectangle representing the

width of the gripper and set the corresponding portion ofW T .
During training, we scale the values ofW T by 1

150 to put it in
the range[0; 1]. The physical gripper width can be calculated
using the parameters of the camera and the measured depth.

Depth Input: As the Cornell Grasping Dataset is captured
with a real camera it already contains realistic sensor noise
and therefore no noise addition is required. The depth images
are inpainted using OpenCV [4] to remove invalid values.
We subtract the mean of each depth image, centring its value
around0 to provide depth invariance.

C. Network Architecture

Our GG-CNN is a fully convolutional topology, shown
in Fig. 4a. It is used to directly approximate thegrasp
map G � from an input depth imageI . Fully convolutional
networks have been shown to perform well at computer vision
tasks requiring transfer between image domains, such image
segmentation [1, 19] and contour detection [34].

The GG-CNN computes the functionM � (I) =
(Q � ; � � ; W �), where I , Q � , � � and W � are represented
as 300� 300 pixel images. As described in Section IV-B,
the network outputs two images representing the unit vector
components of2� � , from which we calculate the grasp
angles by� � = 1

2 arctan sin(2 � �)
cos(2� �) .

Our �nal GG-CNN contains 62,420 parameters, mak-
ing it signi�cantly smaller and faster to compute than
the CNNs used for grasp candidate classi�cation in other
works which contain hundreds of thousands [10, 18] or
millions [12, 21, 23, 25] of parameters. Our code is available
at https://github.com/dougsm/ggcnn.

D. Training

We train our network on 80% of our training dataset, and
keep 20% as an evaluation dataset. We trained 95 networks
with similar architectures but different combinations of con-
volutional �lters and stride sizes for 100 epochs each.

To determine the best network con�guration, we compare
relative performance between our trained networks by eval-
uating each on detecting ground-truth grasps in our 20%
evaluation dataset containing 1710 augmented images.

V. EXPERIMENTAL SET-UP

A. Physical Components

To perform our grasping trials we use a Kinova Mico 6DOF
robot �tted with a Kinova KG-2 2-�ngered gripper.

Our camera is an Intel RealSense SR300 RGB-D camera.
The camera is mounted to the wrist of the robot, approximately
80mm above the closed �ngertips and inclined at14� towards
the gripper. This set-up is shown in Fig. 4a.

The GG-CNN computations were performed on a PC run-
ning running Ubuntu 16.04 with a 3.6GHz Intel Core i7-7700
CPU and NVIDIA GeForce GTX 1070 graphics card. On this
platform, the GG-CNN takes 6ms to compute for a single
depth image, and computation of the entire grasping pipeline
(Section V-C) takes 19ms, with the code predominantly writ-
ten in Python.

	Introduction
	Related Work
	Grasp Point Definition
	Generative Grasping ConvolutionalNeural Network
	Grasp Representation
	Training Dataset
	Network Architecture
	Training

	Experimental Set-up
	Physical Components
	Limitations

	Test Objects
	Grasp Detection Pipeline
	Grasp Execution
	Open Loop Grasping
	Closed Loop Grasping

	Object Placement

	Experiments
	Static Grasping
	Dynamic Grasping
	Dynamic Grasping in Clutter
	Isolated Objects
	Cluttered Objects
	Dynamic Cluttered Objects

	Robustness to Control Errors

	Conclusion

