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Abstract—Motion planning is an essential component in most
of today’s robotic applications. In this work, we consider the
learning setting, where a set of solved motion planning problems
is used to improve the efficiency of motion planning on different,
yet similar problems. This setting is important in applications
with rapidly changing environments such as in e-commerce,
among others. We investigate a general deep learning based
approach, where a neural network is trained to map an image
of the domain, the current robot state, and a goal robot state
to the next robot state in the plan. We focus on the learning
algorithm, and compare supervised learning methods with re-
inforcement learning (RL) algorithms. We first establish that
supervised learning approaches are inferior in their accuracy due
to insufficient data on the boundary of the obstacles, an issue that
RL methods mitigate by actively exploring the domain. We then
propose a modification of the popular DDPG RL algorithm that
is tailored to motion planning domains, by exploiting the known
model in the problem and the set of solved plans in the data.
We show that our algorithm, dubbed DDPG-MP, significantly
improves the accuracy of the learned motion planning policy.
Finally, we show that given enough training data, our method
can plan significantly faster on novel domains than off-the-shelf
sampling based motion planners. Results of our experiments are
shown in https://youtu.be/wHQ4Y4mBRDbS.

I. INTRODUCTION

Motion planning — the problem of finding a collision free
trajectory for a robot — is a fundamental component in almost
all robotic applications deployed today [28, 27]. Sampling
based motion planners, such as probabilistic roadmaps [22]
and rapidly exploring random trees [27], have been studied
extensively, can be guaranteed to converge to an optimal solu-
tion [21], and are common practice in various robotic domains
and off-the-shelf software implementations [46, 45]. However,
for domains where the environment can change rapidly, such
as in e-commerce applications, industry 4.0 [26], or home
robotics, it is desired to plan fast, and the computational
burden of sampling based planners can be limiting.

Consider, for example, planning pick-and-place motions for
a robot in an e-commerce warehouse that handles various
products. Building on the insight that the changes in the task
will mostly be limited, e.g., just the product will change, while
the robot and surrounding will stay the same, several recent
studies have explored a learning setting for motion planning,
where data from previously solved motion plans is used to
speed-up planning in new domains [6, 20, 10, 12].

In recent years, deep learning has proven capable of
learning complex patterns in data for various decision mak-
ing domains such as computer vision, protein folding, and

games [24, 14, 43]. Motivated by these successes, we focus
here on approaches that we collectively term neural motion
planners [35, 5, 50, 38, 39], which use deep learning to ap-
proximate a motion planning computation. In a neural motion
planner, a deep neural network is trained to map features of
the domain (e.g., an image), the current robot state, and a
goal robot state to the next robot state in the motion plan. By
training on a set of motion planning domains, the network is
hypothesized to learn the patterns which make for a successful
motion plan, and, once trained, such a network can be used
to quickly predict a motion plan in novel domains without
running a heavy motion planning computation.

In this work, we investigate the algorithmic aspects of
training a neural motion planner to solve nontrivial motion
planning problems. We first consider a supervised learning
approach, where previous plans are simply imitated [39, 16].
We observe that for high-dimensional domains that require
high precision, the success of this approach is limited, which
we attribute to insufficient data distribution on the boundary
of the obstacles. We propose that reinforcement learning (RL;
[47]) has the potential to overcome this problem, since the
exploration process in RL will naturally drive the agent to
investigate important areas in the domain, such as obstacle
boundaries.

While RL algorithms are known to require extensive compu-
tation, the motion planning problem presents several features
that can be exploited to dramatically improve RL performance.
Our main contribution is an RL algorithm that exploits two
features of motion planning problems: the fact that a model
of the dynamics is known, and the fact that we can collect
demonstration data offline through sampling based planners,
to reduce the variance in training, and to perform efficient
exploration.

We show that our method leads to significantly better accu-
racy, and much faster training times. In particular, we demon-
strate predicting motion plans with almost perfect accuracy
on a 4-dimensional robotic arm domain with very challenging
narrow passages. With enough training time, our method
learns to plan significantly faster than off-the-shelf sampling
based planners. Our results suggest that with suitable training
algorithms, deep learning can provide competitive results for
learning in motion planning, opening the door to further
investigations of network architectures and combinations of
planning and learning.
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Fig. 1: DDPG-MP solves a narrow passage work-space. The figure shows several joint configurations along a successful plan
executed by DDPG-MP for a narrow passage work-space (dubbed the hard scenario in Section VII). The episode starts at top-
left image and ends at the bottom right. The green and yellow spheres mark the starting-pose and end-pose of the end-effector,
t marks the time-step. Note the high precision required to navigate through the two rightmost obstacles without collision.

II. BACKGROUND

We begin with background on motion planning, imitation
learning, and RL.

A. Motion Planning

We follow a standard motion planning formulation [28]. Let
C denote the configuration space (joint space) of the robot,
let S denote the task space (position and orientation) of the
end effector, and let K : C — S be the robot’s forward
kinematics. Let F' C C denote the free space, and ¢ : C' —
{True, False} a collision predicate that returns True if ¢ €
F. In the motion planning problem, the robot starts from a
joint position ¢y € C, and is required to produce a trajectory
plan T : [0,1] — C in the free space that ends with the end-
effector at a goal pose g € S:

T0)=cy, FK(T(1))=g, Ya€[0,1]:¢(T(a)) = True.

(D
Popular motion planning algorithms rely on sampling the
workspace, and effectively return a list of configurations
co, - - . , c7 which make up the motion plan. A continuous plan
is then derived by interpolation or smoothing [27]. We denote
by W = {F,co,g} a tuple that describes the workspace — the
parameters of a motion planning problem for a given robotic
domain.

B. Reinforcement Learning

In Reinforcement Learning (RL), an agent interacts with an
environment E by observing the current state and executing
an action in discrete time steps. Once an action is executed
the state changes (the change can be either deterministic
or stochastic), the agent receives a reward and the process
repeats until termination. This can be modeled as a Markov
Decision Process (MDP [47]) with a state space S, action
space A, an initial state distribution p(s;), transition dynamics
D(St+1]8¢t, at), and scalar reward function 7(s¢, at).

The goal of the agent is to interact with E by selecting
actions according to some policy 7(a|s) (possibly stochastic)
which maximizes the y-discounted future rewards defined for
time step ¢ as Ry = E Y57, 7' (si, a;)]. Let Q7 (s, a) be

the expected discounted future reward obtained by following
policy 7, after executing action a from state s: Q™ (s,a) =
E [Rt|st = a,a; = a,7]. An important relation between cur-
rent and future Q7 is the Bellman equation:

Q" (st ar) = 2)
E8t+1~p [T(shat) + ’yEat+1N7T(5t+l) [QW(StJrhatJrl)]] .

Let Q*(s,a) be the maximal expected discounted reward
obtained by any strategy, after executing action a from state
st Q*(s,a) = max, E[R:|s; = a,a; = a, 7). For the optimal
policy 7* we have Q™ (s,a) = Q*(s,a) for all states and
actions. The goal of an RL algorithm is to find such a policy.

C. Actor-Critic Algorithm: DDPG

Actor-critic is a popular RL approach [47]. The actor 7(s|a)
models a policy, while the critic Q(s,a) approximates the
state-action value of the actor. The learning process interleaves
improving the critic (for example, by using temporal difference
learning [47]), with updating the policy towards actions with
higher state-action values.

Deep Deterministic Policy Gradient (DDPG [31]) is an
actor-critic RL algorithm designed for continuous state and
action spaces, where 7 and Q are modeled using neural net-
works, and 7 is a deterministic policy with weights §. DDPG
is an off-policy algorithm: it learns by observing actions taken
by a stochastic exploration policy 3, and storing the observed
transitions in a replay buffer [33]. DDPG alternates between
learning Q and learning 7, fixing one while training the other.
Specifically, the update of 7w ascends in the direction which
maximizes (), motivated by the policy gradient theorem:

VoJ & Eyns [VoQs,0)] ©)
where J denotes the expected discounted return [31].

D. Hindsight Experience Replay

In a motion planning setting, the policy needs to be goal-
conditioned, i.e., taking in a goal state as an input parameter.
The recent hindsight experience replay (HER) [4], is an



extension of off-policy RL methods such as DDPG to goal-
conditioned policies. The idea is that, upon failing an episode
(not reaching the goal), the agent adds to the replay-buffer an
episode comprised of the same states and actions seen in the
failed episode, but with the original goal replaced with the last
encountered step — making the episode a success in hindsight.
By making success more frequent, the agent is trained by an
implicit curriculum, which eventually learns to cover the goal
space. Indeed, HER has led to state-of-the-art results in goal-
conditioned RL [4, 44, 30].

E. Imitation Learning

In imitation learning [41], a decision making policy is
learned from observing expert behavior. Following the RL
notation, given a data set of N expert demonstrations
{s{*P a$*P}N |, the problem is to find a policy 7 = P(als)
that imitates the expert behavior. A popular imitation learning
method is behavioral cloning [37], where 7 in learned by
maximizing the data log likelihood Zf;l log m(a;™|s;™").

DAgger [40] is an imitation learning algorithm that corrects
the distribution mismatch problem, where the distribution
of states in the learning corpus may be different than the
distribution of states encountered by the learned policy. In
DAgger, after training a policy using behavioral cloning, the
policy is executed, and additional expert data is first collected
for all states visited, and then added to the agent’s data-set.
Afterwards, a new policy is trained on the updated data-set
and the process repeats to convergence.

IIT. PROBLEM FORMULATION

We consider the problem of learning for motion planning.
In this setting, we assume that motion planning workspaces
are generated from some (unknown) distribution P(W'). We
are given a training data set of N workspaces {W;}¥ | drawn
from P, and the goal is to use this data to plan faster in an
unseen test workspace Wyest, also drawn from P.

We focus on an approach termed neural motion planning
(NMP) [39]. In NMP, a workspace W is described by a
set of features, or context vector, w. The goal in NMP is
to train a neural network policy 7 that maps w and the
current configuration of the robot c¢; to the next step in a
motion plan ¢;y;. Once trained, such a network can produce
a motion plan by unrolling the predictions to produce a list of
states cg,...,cr. We say that the motion plan is successful
if it satisfies the motion planning problem conditions, i.e.,
FK(er) = g, and ¢(c;) = True Y0 < t < T.! In the
remainder of this work, we investigate how to best train the
neural network in NMP.

IV. IMITATION LEARNING VS. RL

A straightforward method for training an NMP is using
imitation learning. In this approach, a standard motion planner
(e.g., RRT*) is used to solve all the training work spaces.
These motion plans are used to train a neural network using,
e.g., behavioral cloning. This approach has been shown to

UIn practice, we can only verify that ||FK (c1) — g|| < ¢, for a small e.

Fig. 2: Data Distribution on Edges of Obstacles. Spheres
indicate visited end-effector poses seen during training. Green
spheres were generated by an RL agent (DDPG) while red
spheres are imitation learning targets (i.e., produced by the
motion planner). Note that near obstacle boundaries, green
spheres are more dominant, indicating the sparsity of data that
imitation learning agents have on the edges of obstacles.

work well for discrete planning problems [16, 9], and recently
has been investigated in the context of NMP [39, 5, 50].

In our investigation, we found that for domains that require
high precision in the motion plan, such as a robot moving
through tight passages, the performance of imitation learning
is severely limited (see explicit results in Section VII). We
attribute this finding to the distribution of the training data,
as depicted in figure 2 for the end effector of a robot arm
moving in a narrow passage. In NMP, it is fundamental that the
neural network learns not to hit obstacles. However, since the
expert produces perfect motion plans, there is no information
about hitting an obstacle in the training data. Note in Figure 2
that the data distribution for imitation learning does not cover
the obstacle boundaries, thus there is no reason to expect
that a network trained with this data will learn not to hit
obstacles. This is an instance of the distribution mismatch
problem described by Ross et al. [40]. While in principle the
DAgger algorithm [40] could mitigate this issue, it is too costly
to compute in practice as it requires running motion planning
on every sample in the data. One can instead acquire expert
data only for states that resulted in a collision. However, as we
report in the supplementary material (Section C), this approach
did not lead to a significant improvement, which we believe
is due to theses samples not being well-balanced with the rest
of the data.

We propose that RL is more suitable for training NMPs.
In RL, the agent starts out with a policy that does not solve
the task, and through trial and error it gradually collects data
on how not to hit obstacles, thereby improving its policy.
Indeed, as depicted in Figure 2, the data distribution in RL
has much more presence near the obstacle boundaries — the
critical decision points for motion planning. Therefore, in this
work we pursue an RL approach to NMP, as we describe next.



V. RL FOR MOTION PLANNING

In this section we first describe an RL formulation for NMP,
and then propose a specialized RL algorithm for this domain.

We consider an episodic RL setting [47], where at each
episode a workspace W is randomly selected from the training
set, and the task is to plan a successful motion plan in it. At
time step ¢ of an episode, the robot configuration is ¢; and the
context vector for W is w. We define the state s; to be the
tuple {w, ¢;}, and the action to be the difference in the robot
configuration:?

Ct+1 = Ct + ay. “)

Note that this implies deterministic dynamics, since the context
vector w is assumed to remain constant. The next state is:

Str1 = {w, et + ar} = f(st,az). 5)

Upon hitting an obstacle, or after reaching the goal, the
episode terminates. We define a reward such that maximizing
it produces a correct solution to the motion planning problem,
by encouraging movement toward the goal and not hitting
obstacles. Note that any transition {c;,c;1} can belong to
one of three classes: free space movement, denoted as T'r,qc;
collision, denoted as T,,;; and reaching the goal, denoted as
Tyoar- The transition reward is:

—e,

T _
r; =<1

(Ctv Ct+1) S Tfreea
, (Ct7 Ct+1) € Tgoal, 6)
_]-a (Ctv CtJrl) € Tcol'

The constant € > 0 needs to be small enough such that
the robot prefers moving in free space than colliding; we
empirically set it to 0.01 in our experiments.

Some motion planning problems may include additional
rewards. For example, in our experiments we wanted to
encourage the robot not waste effort by trying to move a
joint beyond its limits. To model this, we use a reward of
rtD (domain specific reward), which in our case is the norm
of the wasted movement (full details in section B). Finally,
the full reward of the system is r; = r} +rP .

A. The DDPG-MP Algorithm

We next present Deep Deterministic Policy Gradient for
Motion Planning (DDPG-MP) — a deep RL algorithm tailored
for training an NMP. To motivate the algorithm, we observe
that in the context of RL, the motion planning setting admits
the following unique features:

1) The dynamics (Eq. (4)) and reward (Eq. (6)) are known.
2) Similar to imitation learning, we can obtain expert
demonstrations for the work spaces in our training data.

Since our problem is deterministic, we build on the DDPG
algorithm [31], a strong and popular deep RL algorithm for
continuous control. We add to DDPG two modifications that
exploit the motion planning features described above: we

20ur work can be extended to kinodynamic motion planning by including
the robot’s dynamics. We defer this to future work.

propose a model-based actor update that reduces variance, and
use the expert demonstrations to perform efficient exploration.
We next describe each idea in detail (for pseudo-code see
Section A in the supplementary material).

B. Model-Based Actor Update

When training the actor network, the model is updated in the
direction which maximizes Q™. However, Q™ is not known,
and we only have access to an approximation Q’T learned by
the critic, resulting in errors (due to bias and variance) in the
policy gradient estimation of the actor. A key observation in
our work is that we can reduce errors in the actor update by
using the known dynamics model. Note that in a deterministic
domain with a deterministic policy, by definition (cf. Eq. (2))
we have that for any £ € 0,1,...:

Q™ (s, ar) =r(se,a) + -+ ¥ ' (seqm, T(S14))

+ Y Q™ (St k1, T(S14k+1))-

Thus, if we know the reward function and transition function,
we can estimate Q™ as r(sg, a¢)+- - -+ T (sp4p, T(Sp k) +
YR Q™ (S44kt1, (St4x41)), and we expect that as k grows, the
error in this approximation will reduce [17] (for kK — oo the
error is zero). In our experiments, we found that £k = 1 is
enough to significantly improve the actor update, and in the
following we focus on this case. Extending our result to & > 1
is straightforward.

Following the above derivation, keeping in mind that transi-
tioning to a goal or obstacle terminates the episode, and using
the specific form of the dynamics in our problem (5), we obtain
the following actor update:

VoJ =Egp[Vo (r(se,m(st)) (N
+ ’V]I(ct,ctJrl)ETfreeQ(f(stv W(St))a W(f(stv W(St)))))]

Note, however, that both the indicator function in (7) and
our reward function (6) are non differentiable, and their step-
function structure means that the reward gradients in (7) will
not be informative.

We therefore propose to use a smoothed reward function
7 and a smooth approximation p to I, ,,,)ery,.. instead.
While one can derive explicit smoothing functions for these,
in our work we opted for a general approach using super-
vised learning. Specifically, we represent 7(w,ct, ci4+1) and
p(w, ¢, ¢i41) as neural networks, and train them using random
samples of robot configurations. Technical implementation
details regarding these models are given in Section D of the
supplementary material.?

C. Targeted Exploration via Expert Demonstrations Scoring

Another disadvantage of DDPG is sample inefficiency that
occurs because of uninformed exploration. DDPG’s explo-
ration policy selects a random action in every step with low
probability to discover novel moves. This exploration policy
makes succeeding in narrow passages highly unlikely, since

3There are many possible choices for reward smoothing. We chose to model
it as a neural network since it was easy to implement in out setup.



these often require a very specific action sequence with no
guiding reward signal along the way. Since the probability to
randomly generate such a sequence of actions is extremely
low, the agent can never reach the other side of the passage
to collect the reward. Worse, randomly exploring this narrow
corridor leads in practice to many collisions, making the agent
avoid entering the passage in the first place.

We propose to overcome the issue by providing the agent
with motion planner demonstrations for failed work spaces.
This is especially important in tight passages since instead
of failing over-and-over, after the first failure the agent gets
a useful signal that it can use to learn appropriate actions.
Note that this strategy implicitly generates a curriculum: easier
failure cases resolve earlier during training and the agent stops
receiving demonstrations for those, while harder cases are still
supplied with demonstrations. At the end of training we expect
to succeed in most attempts and thus not use this exploration
strategy, which is inline with other exploration strategies where
the noise is being reduced over time, e.g using an e-greedy
approach with a decreasing € over time [47].

Let Tw = (cj,ao,¢],a1...an—1,C}) be a trajectory pro-
duced by a motion planner, which is a solution to a failed
workspace query W = {F cg, g}, i.e ¢§ = ¢o and FK(c}) =
g. In order to incorporate the information of 7y, to the replay
buffer, we only need to assign a reward to every transition, to
obtain (cf,a;,r;,cj,,). Because Ty is known to be a valid
trajectory, this process is straightforward — by applying Eq.
(6), to obtain r;. This strategy can be seen as a ‘smart’ form
of exploration, where instead of trying random actions, we
are guided by the motion planner to try actions that result
in success. We have found that this allows us to reduce the
magnitude of the random exploration required for DDPG to
work, thereby obtaining a much more stable algorithm.

VI. RELATED WORK

The idea of learning from experience to plan faster in
motion planning has been studied under various approaches,
such as using a library of past trajectories [7, 20, 6, 10],
learning the sampling procedure [32, 19, 25], learning a
latent representation of obstacles [19], and learning to select
goals [12].

The idea of using a neural network for motion planning
(termed here as NMP) dates back to the previous decade [15,
49]. Following recent advances in deep learning [24], interest
in these methods has rekindled [35, 5, 50, 38, 39]. The poten-
tial advantages of NMP are the possibility of generalizing to
different domains, working directly on raw perceptual signals
such as images, and a low memory footprint: once trained,
the NMP is a compact prediction model that does not require
storing a large library of trajectories. While most previous
work on NMP concerned the neural network architecture [e.g.,
29, 39, 50, 5], in this work we focus on a parallel investigation
— the training algorithm for NMP. We believe that with better
architectures, our results can be further improved.

RL for continuous control has been explored exten-
sively [42, 31]. Our method builds on two main ideas for

improving RL: using expert demonstrations, and a model-
based update for the policy gradient. While similar ideas
have been explored in the literature [e.g., 34, 36, 17], our
formulation is tailored for the NMP setting, and is, to the best
of our knowledge, novel.

Using neural networks for planning in discrete tasks has
been explored for navigation [48], task planning and combi-
natorial optimization [16, 9] and games [43]. Interestingly, the
seminal AlphaGo program [43] exploited expert demonstra-
tions and the known structure of the game to improve RL. Our
work exploits similar properties of continuous motion planning
domains, therefore requiring different methods.

VII. RESULTS

In this section we evaluate the DDPG-MP algorithm on
various NMP domains, and show that it obtains state-of-the-art
results in training an NMP model. In addition, we investigate
the components that contribute to DDPG-MP’s success using
an ablation study. Finally, we show that using DDPG-MP
we can significantly improve upon the planning times of
conventional motion planners. We investigate the following
questions:

1) Is RL more suitable for NMP than imitation learning?

2) Can DDPG-MP obtain state-of-the-art results for NMP?

3) Can NMP models trained with DDPG-MP generalize to

unseen work spaces with a high success rate?

4) Can we use NMP models to plan faster than sampling

based motion planners?

We next describe the experimental settings we used.

NMP Architecture: As outlined above, in this work we
wish to disentangle the questions of NMP architectures from
the NMP training algorithm. Therefore, we chose popular neu-
ral network architectures that were the same for all methods
we tested. Specifically, for domains without image inputs we
used fully connected neural networks, which are popular for
continuous control [13]. For domains with image inputs we
used convolutional layers followed by fully connected lay-
ers [33, 31]. We provide full details of the network architecture
in Section B of the supplementary material.

Simulation environment: In our choice of a domain, we
opted for an environment that can present challenging planning
problems, yet be simple enough visually to not require com-
plex perception efforts. We chose a 4DoF WidowX robotic
arm [1], with movement restricted the XZ plane, and box-
shaped obstacles in various sizes, positions, and orientations.
Restricting movement to the plane allows us to capture the
domain using a simple 2-dimensional image of the obstacles,
which is natural for processing with convolutional neural
networks, as discussed above. By varying the positioning of
the obstacles, we can generate planning problems with various
difficulty levels. We note that this setup is significantly more
challenging than the point robots and car-like robots explored
in previous NMP work [e.g., 39].

We used Tensorflow [2] for training the neural net-
works. Our code is available at https://github.com/tomjur/
ModelBasedDDPG.



(b) Hard scenario - three obstacles.

(a) Simple scenario - single obstacle.
passage.

The top two obstacles create a narrow (c) Vision scenario - 1000 obstacle

configurations selected randomly.

Fig. 3: Scenarios - the simple (left), hard (middle) and four random samples from the vision (right) scenarios used in our
experiments. Note that the obstacles’ proximity to the arm make for a tight work space, especially in the hard scenario.

Evaluation metric: Evaluating the performance of agents
trained with RL is a delicate matter [18], and in particular,
how to choose the ‘best’ agent during training requires some
validation metric. To address this, for each training run, the
model iteration with highest test success-rate is taken and
tested again on 1000 new validation work-spaces. This asserts
that the reported scores are not just a lucky sample, but
accurately capture the success rate of the model (the validation
success-rates are mostly lower than the best test success-rates).

Scenarios: Within the simulation described above, we con-
ducted experiments on three scenarios, which we term simple,
hard and vision, as depicted in Figure 3. The simple scenario
(Figure 3a) contains just a single obstacle. The hard scenario
(Figure 3b) was manually designed with a challenging obstacle
configuration: three obstacles, such that the two top obstacles
create a narrow passage where a sequence of very specific
movements is required in order to cross. For the NMP problem,
in both simple and hard scenarios the obstacle configuration
is fixed, and the only variation is in the starting and goal
positions. Formally, W = (F, cp, g) contains a fixed F, and ¢
and g are sampled from a distribution of feasible trajectories.
The context vector w is simply g.

The vision scenario, shown in Figure 3c, is used to in-
vestigate generalization to unseen obstacle configurations. We
generated a data set of 1000 random obstacle configurations,
partitioned to 80% train and 20% test. We report success
rates on the test set. For this scenario all three parts of
W = (F,cp,g) are randomly sampled, and the context
vector in this case contains both an image I of the obstacle
configuration, and the goal pose g.

We note that when sampling random work spaces (either
obstacles or starting positions and goals), trivial problems,
such as problems that do not require crossing obstacles, or
where the goal is very close to the starting point, are frequent.
To focus on interesting planning problems, we used rejection
sampling to bias our testing to problems that require crossing
from one side of an obstacle to the other. We note that in
the hard and vision scenarios, the arm often needs to cross
more than a single obstacle, making the task even more
challenging. The difficulty of our domain is best appreciated

Simple scenario

success rate

—— DDPG-MP (no expert)
— DDPG

20000 30000 40000 50000 60000

train episodes

o 10000

Fig. 4: Simple scenario success rate: visual comparison be-
tween DDPG in green, to DDPG-MP (no expert) in blue.
Each curve shows the average test success rate of 3 runs, with
the upper and lower bounds the maximal and minimal values
respectively. Each data-point is the count of successful work-
spaces out of 200 test work-spaces shown to the model during
testing.

Comparing IL to RL

success rate

—e— DDPG-MP
—— Behavioral-Cloning

20000 40000 60000 80000 100000 120000 140000 160000
Motion planning episodes

Fig. 5: Comparison between IL method to our method on the
simple workspace.

in the accompanying video https://youtu.be/wHQ4Y4mBRbS.
Full details of the sampling process are given in Section B.
We next present our results.

A. Imitation Learning vs. RL

As mentioned above, we have found that imitation learning
does not provide accurate enough training for NMP. We



Model Test Validation
DDPG 0.865  0.82533
DDPG-MP (no expert) 1.0 0.99366

TABLE I: Success rates simple scenario

demonstrate this here for the simple scenario, while similar
results were obtained for other scenarios. We collected up
to 160K expert demonstrations and trained imitation learning
agents using behavioral cloning and DAgger. The results
are presented in Figure 5, for various sizes of the training
data set. The best behavioral-cloning and DAgger models
reached a success rate of only 0.78 and 0.8 respectively. We
also observed that the success-rate gains were diminishing,
meaning that there is little contribution in adding more data.
RL, on the other hand, was able to obtain a near-perfect NMP
with a fraction of the expert demonstrations. This is explained
in Figure 2 by observing the data distribution of RL and
imitation learning, and noting that for RL the data is better
distributed in the important areas — near obstacles.

B. RL for NMP

Next we evaluate DDPG-MP for NMP. We compare to
two baselines: the original DDPG [31], and DDPG with
HER [4], the current state-of-the-art in RL for learning goal-
conditioned policies. Figures 4 and 6 plot the test success rate
during training for the simple and hard scenarios. Tables II
and III show the validation success rates for the hard and
vision scenarios. Observe that DDPG-MP is the model with
highest success rate in every experiment conducted, and on the
hard scenario, alternative approaches only reach 0.31 success
rate, while DDPG-MP reached a near-perfect success rate of
0.97. These results demonstrate the effectiveness of DDPG-
MP in learning neural network policies for motion planning,
especially when the problem is challenging in the sense that
it requires navigating through narrow passages.

In the following we perform an ablation study to identify
the components that make DDPG-MP so successful.

C. Investigating the Model Based Actor Update

In this section, we investigate the importance of the model-
based actor update in DDPG-MP. To study this, we ablate the
smart exploration component of DDPG-MP, and instead use
the vanilla DDPG exploration. We call this algorithm DDPG-
MP-no-expert. Thus, the only difference between DDPG-MP-
no-expert and conventional DDPG is in changing the actor
objective function from Eq. (3) to Eq. (7). As shown in figure
4 and table I, DDPG-MP-no-expert significantly improves the
precision and speed-of-convergence in comparison to DDPG.
Specifically, DDPG trained on the full 64K work-spaces
reaches a validation success rate of 0.825. Meanwhile, DDPG-
MP-no-expert needed on average 33082.66 episodes to reach
a test success score of 1.0 and stop, achieving an average
validation score of 0.9936.

Model Test Validation
DDPG 0.36833  0.31766
DDPG+HER 0.3633 0.286
DDPG-MP (no expert) 0.83 0.81933
DDPG-MP+HER (no expert)  0.72833  0.68866
DDPG-MP (full) 0.99 0.9733

TABLE II: Success rates hard scenario

D. Investigating Exploration via Expert Demonstrations

The hard scenario is a challenging motion planning envi-
ronment to learn: the narrow corridor requires a very precise
sequence of actions without much room for errors. Moreover,
since most work-space queries (which are presented randomly
to the agent) do not include this portion of the state space, it is
rare for the agent to see states in the corridor and is therefore
prone to the problem of catastrophic forgetting. Under regular
RL exploration strategies this task is either impossible or
requires a large amount of episodes which the exploration
happens to give the correct sequence over and over.

The targeted exploration method via expert demonstrations
of Section V-C is shown to be an effective solution to this
problem. In this section, we both measure the contribution of
this strategy, and compare it to HER, a popular state-of-the-art
exploration strategy.

We start by comparing the baselines DDPG with and with-
out HER to DDPG-MP (full) as shown in Figure 6a. We can
see that DDPG-MP reaches a near-perfect validation success-
rate of 0.9733, while the DDPG and DDPG+HER only reach
0.318 and 0.286 each, demonstrating that the complete DDPG-
MP algorithm is better in this scenario than both baselines.

Next, we would like to understand the contribution of using
demonstrations to explore. For this purpose, in Figure 6b
we compare DDPG-MP with a vanilla exploration strategy
(i.e., replacing the expert demonstrations exploration with
the standard DDPG exploration) to DDPG-MP with a HER
exploration strategy (i.e., replacing the expert demonstrations
with HER) and the complete DDPG-MP algorithm.

Figure 6 shows the success rate over the number of training
episodes, and Table II shows the average validation success-
rate, both clearly show that DDPG-MP (full) is the best model.
Comparing DDPG-MP+HER (no expert) to DDPG-MP (no
expert) we see that there is no benefit for using HER, and it
even degrades the performance. We conclude that using HER
is either not beneficial in this case, or requires more fine-
tuning in order to make it work for these types of challenging
motion planning scenarios. In Section E of the supplementary
material we provide an in-depth analysis of why HER is not
well suited for such motion planning scenarios.

Finally, we analyze our proposed exploration strategy by
comparing DDPG-MP (no expert) to DDPG-MP (full). DDPG-
MP (full) reaches a near-perfect success rate of 0.9733 com-
pared to 0.81933 of DDPG-MP (no expert), and also learns 4X
faster. These results clearly show that DDPG-MP’s exploration
strategy is beneficial.
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Fig. 6: Hard scenario results. 6a: Comparison with baselines. We compare DDPG and DDPG+HER in green and red, to DDPG-
MP (our method) in blue. 6b: Comparing exploration strategies. We compare DDPG-MP with a vanilla DDPG exploration
strategy (no expert) in blue, DDPG-MP with HER exploration strategy (DDPG-MP+HER) in green, and our exploration strategy
utilizing expert demonstrations DDPG-MP (our method) in red. For both figures: each curve shows the average test success
rate of 3 runs, with the upper and lower bounds the maximal and minimal values respectively. Each data-point is the count of
successful work-spaces out of 200 test work-spaces shown to the model during testing.

Model Test Validation
DDPG 0.9233 0.89733
DDPG+HER 0.955 0.925
DDPG-MP (full) 0.96166 0.93566

TABLE III: Success rates for the vision scenario.

E. Vision scenario: Generalization to Unseen Obstacles

The previous two experiments showed that DDPG-MP can
generalize to unseen work spaces, where the obstacles are
fixed but the start and goal configurations are varied. In
this experiment we also investigate the effect of changing
the obstacle configurations — can we train NMP models that
generalize to previously unseen obstacle configurations? To
answer this question we use the vision scenario, where with
each work space, a visual input of the obstacles configuration
is given to the model. We hypothesize that if unseen work
spaces share some similarities with the work spaces seen
during training, DDPG-MP will be able to generalize and solve
the unseen scenarios with high accuracy.

Table III shows that all models reach high success rates,
with DDPG-MP getting the highest validation success rate
of 0.93. We note that the individual scenarios that comprise
the vision scenarios were selected from an easier distribution
of obstacle configurations compared to the hard scenario,
and this may be the reason that models such as DDPG and
DDPG+HER are almost on-par with DDPG-MP.

FE. Vision Scenario: Planning Times

Finally, we show that an NMP model trained with DDPG-
MP has preferable running times to sample-based motion
planners, for workspaces with an obstacle configuration not
seen during training. To do this we compare the planning times
it takes to produce trajectories for 100 random workspaces
with unseen obstacle configurations (from the vision scenario

test set). DDPG-MP takes 8.55 seconds to compute, while it
takes 50.93 seconds for OpenRAVE’s RRT motion planner —
a 6X speedup in favor of DDPG-MP. The experiment was
conducted on a Ubuntu 16 desktop machine, with a 12-
core Intel 17-8700k 3.7GHz CPU, 32GB RAM and NVIDIA
GeForceGTX 1080Ti. We note that OpenRAVE uses C++
code, while our code runs in non-optimized python. We expect
that with dedicated optimization these results would improve.

These planning times should be contrasted with the accuracy
rate of the NMP approach. For a 93% success rate with
a 6X speedup, a naive strategy that first tries to sample a
plan using NMP, and if it fails (by running it through a
collision checker) falls back to a conventional motion planner,
a significant speedup on average would still be guaranteed.
That said, we believe that smarter ways of combining the NMP
with a conventional planner could be devised (e.g., along the
lines of [16], which used an NMP as a search heuristic for
discrete planning domains).

VIII. CONCLUSION

We presented DDPG-MP: an RL based algorithm for train-
ing a neural motion planner. We showed that our method
significantly improves the training time and final accuracy of
the learned planner, compared to both imitation learning and
state-of-the-art RL approaches. We further showed that our
approach can be used to train neural networks that predict
accurate motion plans given an image of the obstacles in
the domain, and do so considerably faster than conventional
motion planners.

In this work, we focused only on the learning algorithm
for training a neural motion planner. Our results pave the
way for further investigations of neural network architectures
for motion planning, and combinations of learning based
approaches with classical methods for motion planning.
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