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Abstract—This paper proposes a novel highly scalable
sampling-based planning algorithm for multi-robot active in-
formation acquisition tasks in complex environments. Active
information gathering scenarios include target localization and
tracking, active SLAM, surveillance, environmental monitoring
and others. The objective is to compute control policies for
sensing robots which minimize the accumulated uncertainty of
a dynamic hidden state over an a priori unknown horizon. To
address this problem, we propose a new sampling-based algo-
rithm that simultaneously explores both the robot motion space
and the reachable information space. Unlike relevant sampling-
based approaches, we show that the proposed algorithm is prob-
abilistically complete, asymptotically optimal and is supported
by convergence rate bounds. Moreover, we demonstrate that by
introducing bias in the sampling process towards informative
areas, the proposed method can quickly compute sensor policies
that achieve desired levels of uncertainty in large-scale estimation
tasks that may involve large sensor teams, workspaces, and
dimensions of the hidden state. We provide extensive simulation
results that corroborate the theoretical analysis and show that
the proposed algorithm can address large-scale estimation tasks
which were previously infeasible.

I. INTRODUCTION

The Active Information Acquisition (AIA) problem has
recently received considerable attention due to a wide range
of applications including target tracking [12], environmental
monitoring [19], active simultaneous localization and mapping
(SLAM) [5], active source seeking [3], and search and rescue
missions [15]. In each of these scenarios, robots are deployed
to collect information about a physical phenomenon of inter-
est; see e.g., Figure 1.

In this paper, we consider the problem of designing control
policies for a team of mobile sensors residing in complex
environments which minimize the accumulated uncertainty of
a dynamic hidden state over an a priori unknown horizon
while satisfying user-specified accuracy thresholds. First, we
formulate this AIA problem as a stochastic optimal control
problem which generates an optimal terminal horizon and
a sequence of optimal control policies given measurements
to be collected in the future. Under Gaussian and linearity
assumptions we can convert the problem into a deterministic
optimal control problem, for which optimal control policies
can be designed offline. To design optimal sensor policies, we
propose a novel sampling-based approach that simultaneously
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Fig. 1. Target localization and tracking scenario: Two robots with limited
field-of-view (blue ellipses) navigate an environment with obstacles to localize
and track six targets of interest.

explores both the robot motion space and the information
space reachable by the sensors. Next, we show that the pro-
posed algorithm is probabilistically complete, asymptotically
optimal, and convergences exponentially fast to the optimal
solution. Moreover, we provide simulation results for a target
localization and tracking scenario which demonstrate that
by introducing bias into the sampling process, the proposed
algorithm can quickly design paths that achieve desired levels
of uncertainty in AIA tasks that involve large teams of robots,
workspaces, and dimensions of the hidden state, which is
impossible using relevant methods. Finally, we show that the
proposed algorithm can also be used to design sensor policies
when the linearity assumptions are relaxed.

Literature Review: Relevant approaches to accomplish
AIA tasks are typically divided into greedy and nonmyopic.
Greedy approaches rely on computing controllers that incur the
maximum immediate decrease of an uncertainty measure as,
e.g., in [20, 9, 8, 6, 21], while they are often accompanied with
suboptimality guarantees due to submodular functions that
quantify the informativeness of paths [7]. Although myopic
approaches are usually preferred in practice due to their com-
putational efficiency, they often get trapped in local optima. To
mitigate the latter issue, nonmyopic search-based approaches
have been proposed that sacrifice computational efficiency in
order to design optimal paths. For instance, optimal controllers



can be designed by exhaustively searching the physical and
the information space [17]. More computationally efficient
but suboptimal controllers have also been proposed that rely
on pruning the exploration process [24, 2, 23]. However,
these approaches become computationally intractable as the
planning horizon or the number of robots increases. Nonmy-
opic sampling-based approaches have also been proposed due
to their ability to find feasible solutions very fast, see e.g.,
[18, 11, 14, 16]. Common in these works is that they lack
formal guarantees in terms of completeness and/or optimality.
Moreover, as the number of robots or the dimensions of
the hidden states increase, the state-space that needs to be
explored grows exponentially and, as result, sampling-based
approaches also fail to compute sensor policies because of
either excessive runtime or memory requirements. To the best
of our knowledge, we propose the first AIA algorithm that
is computationally efficient, highly scalable, and supported by
optimality and convergence rate guarantees.

Contributions: The contribution of this paper can be sum-
marized as follows. First, we propose a nonmyopic sampling-
based approach for information-gathering tasks that is highly
scalable, i.e., it can quickly design control policies which
achieve desired levels of uncertainty in AIA tasks that involve
large sensor teams, dimensions of the hidden state, and large
workspaces. Second, we propose the first sampling-based ATA
approach that is probabilistically complete and asymptotically
optimal, and converges exponentially fast to the optimal solu-
tion. Third, we design the first sampling strategy for sampling-
based AIA methods that biases exploration towards regions
that are expected to be informative. This allows us to address
large-scale estimation tasks. Fourth, we provide extensive
simulation results that show that the proposed method can
efficiently handle large-scale estimation tasks, which is im-
possible using existing methods.

II. PROBLEM DEFINITION

Consider N mobile robots that reside in an environment
Q) C R? with obstacles of arbitrary shape located at O C €2,
where d is the dimension of the workspace. The dynamics of
the robots are described by p;(t + 1) = f;(p,(t), u;(t)), for
all j e N :={1,..., N}, where p;(t) € Qpree := Q\O stands
for the state (e.g., position and orientation) of robot j in the
obstacle-free space Qe at discrete time ¢, u;(t) € U; stands
for a control input in a finite space of admissible controls Uf;.
Hereafter, we compactly denote the dynamics of all robots as

p(t+1) = f(p(t), u(t), (D

where p(t) € QN., V¢t >0, and u(t) €U :=Uy x -+ x Un.
The task of the robots is to collaboratively estimate a hidden

state governed by the following dynamics:

x(t+1) = Ax(t) + w(t), (2)

where x(t) € R™ and w(t) € R% denote the hidden state
and the process noise at discrete time t, respectively. We
assume that the process noise w(t) is normally distributed as

w(t) ~ N(d(t), Q(t)), where Q(¢) is the covariance matrix
at time ¢. For instance, x(¢) can model the position of static
or mobile targets [1], the state of spatio-temporal fields [16]
or gas concentration [4].

Moreover, the robots are equipped with sensors to collect
measurements associated with x(¢) as per the observation
model: y;(t) = M;(p;(t))x(t) + v;(t), where y;(t) is the
measurement signal at discrete time ¢ taken by robot j € N.
Also, v;(t) ~ N(0,R;(t)) is sensor-state-dependent Gaus-
sian noise with covariance R;(t). Linear observation models
have been used, e.g., in [4] to estimate a gas concentration
field. Hereafter, we compactly denote the observation models
of all robots as

y(t) = M(p(8))x(t) + v(t), v(t)

The quality of measurements taken by all robots up to a
time instant ¢, collected in a vector denoted by yg.;, can
be evaluated using information measures, such as the mutual
information between yy.; and x(t) or the conditional entropy
of x(t) given yp.;. Assuming a Gaussian distribution for
x(t), ie., x(t) ~ N(u(tlyo:r), 2(t[yo:t)), where p(t|yo.¢)
and X(t|yo.:) denote the mean and covariance matrix of
x(t), respectively, after fusing measurements yo.;, alternative
uncertainty measures can also be used such as the trace,
determinant, or maximum eigenvalue of X(t|yo.;). Note that
p(tlyo.:) and X(t]yo.+) can be computed using probabilistic
inference methods, e.g., Kalman filter.

Given the initial robot configuration p(0) and the hidden
state x(t) that evolves as per (2), our goal is to select a finite
horizon F' > 0 and compute control inputs u(t), for all time
instants ¢ € {0,...,F}, that solve the following stochastic
optimal control problem

~N(O,R(t). (3)

F
Fmin J(F,up.p,yo:.r) Z det X(t|yo:t) (4a)
sU0:F i—0
det E(F|y() ) (57 (4b)
p( ) € eree’ (4C)
pt+1)= ( (t),u(t)), (4d)
x(t+1) = Ax(t) + w(t), (4e)
y(t) = M(p(1))x(t) + v(?), (41)
where the constraints hold for all time instants ¢ € {0, ..., F'}.

In (4a), ug.F stands for the sequence of control inputs applied
from ¢ = 0 until £ = F. Also, assuming a Gaussian
distribution for x(t), det X(¢|yo.t) denotes the determinant of
the covariance matrix of x(t) given the measurements yo.;.
In words, the objective function (4a) captures the cumulative
uncertainty in the estimation of x(t) after fusing information
collected by all robots from ¢ = 0 up to time F'. The first
constraint (4b) requires the terminal uncertainty of x(F) to be
below a user-specified threshold ¢; see also Remark 2.1. The
second constraint (4c) requires that the robots should never
collide with obstacles. The last three constraints capture the
robot and hidden state dynamics and the sensor model.
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Fig. 2. Figure 2(a) illustrates the subsets V. The colored circles represent the
states q(t) € V of the tree while the root is depicted by a blue square. Nodes
q that share the same robot-configuration are depicted with the same color.
Note that the covariance component of the states/nodes (t) is not depicted.
As aresult, nodes with the same time stamp ¢ and the same robot configuration
but possibly with different covariances (t) overlap in this figure; see, e.g.,
the blue node in the layer ”¢t = 2”. Figure 2(b) illustrates the incremental
construction of the tree.

is F' = teng, and the control inputs ug.p are recovered by
computing the path qg.,, in G that connects q(fena) to the
root (0), i.e., Aoty = d(0),...,q(tena) [line 18, Alg. 1].
Note that satisfaction of the constraints (5¢)-(5e) is guaranteed
by construction of G; see Section III-A. In what follows, we
describe the core operations of Algorithm 1, ‘sample’ and
‘extend’ that are used to construct the tree G.

A. Incremental Construction of Trees

At every iteration n of Algorithm 1, a new state Quew(t +
1) = [Pnew(t + 1), Zpew(t + 1)] is sampled. The construction
of the state quew(t + 1) relies on two steps. Specifically, first
we sample a state ppew(t + 1) [lines 2-3, Alg. 1]; see Section
II-A1. Second, given pyew(t + 1) we compute the covariance
matrix ey (t + 1), giving rise to quew(t + 1) which is added
to the tree structure [line 6, Alg. 1]; see Section III-A2.

1) Sampling Strategy: To construct the state ppew, we first
divide the set of nodes V into a finite number of sets, denoted
by Vi C V, based on the robot-configuration component of
the stats q € V. Specifically, a V}, collects all states q € V
that share the same robot configuration p; see Figure 2.By
construction of Vj, we get that V = Uf:”lvk, where K, is
the number of subsets V) at iteration n. Also, notice that
K,, is finite for all iterations n, since the set of admissible
control inputs I/ is finite, by assumption. At iteration n = 1
of Algorithm 1, it holds that Ky =1, V; =V [line 1, Alg. 1].

Second, given the sets Vi, we first sample from a given
discrete distribution fy,(k[V): {1,..., K,} — [0,1] an index
ke {1,...,K,} that points to the set V [line 2, Alg. 1]. The
density function fy,(k|V) defines the probability of selecting
the set V), at iteration n of Algorithm 1 given the set V. Any
density function f), can be used to draw samples kg as long
as it satisfies the following assumption.

Assumption 3.1 (Probability density function fy): (i) The
probability density function fy(k|V) : {1,...,K,} — [0,1]
satisfies fy,(k|V) > €, V k€ {l,...,K,} and for all n > 0,
for some € > 0 that remains constant across all iterations n.
(ii) Independent samples kg can be drawn from fy.

Next, given the set Vy,_, sampled from fy, and the corre-
sponding robot state p;ang, We sample a control input Upey € U
from a discrete distribution fi;(u) : U — [0,1] [line 3, Alg.
1]. Given a control input uy,, sampled from f;;, we construct
the state Ppew @S Pnew = f(Drand; Unew) [line 3, Alg. 1]. Any
density function f;; can be used to draw samples Uy, as long
as it satisfies the following assumption.

Assumption 3.2 (Probability density function fi;): (i) The
distribution fy;(u) satisfies fy;(u) > ¢, for all u € U, for
some ¢ > 0 that remains constant across all iterations n. (ii)
Independent samples U,y can be drawn from the probability
density function fy,.

Remark 3.3 (Density functions fy, and fy;): Note that As-
sumptions 3.1(i) and 3.2(i) also imply that the density func-
tions fy and f; are bounded away from zero on {1,..., K, }
and U, respectively. Also, observe that Assumptions 3.1 and
3.2 are very flexible, since they also allow fy, and fi; to change
with iterations n of Algorithm 1, as the tree grows.

Remark 3.4 (Sampling Strategy): An example of a distribu-
tion f) that satisfies Assumption 3.1 is the discrete uniform
distribution fy(k|V) = 7, for all k € {1,..., K, }. Observe
that the uniform function trivially satisfies Assumption 3.1(ii).
Also, observe that Assumption 3.1(i) is also satisfied, since
there exists an € > ( that satisfies Assumption 3.1(i), which is
€= ﬁ, where R is a set that collects all robot configurations
p that can be reached by the initial state p(0), at some ¢t > 0.
Note that R is a finite set, since the set {/ of admissible
control inputs is finite, by assumption. Similarly, uniform
density functions f;; satisfy Assumption 3.2. Note that any
functions fy and fi; can be employed as long as they satisfy
Assumptions 3.1 and 3.2. Nevertheless, the selection of fy, and
fu affects the performance of Algorithm 1; see Theorem 4.3.
In Section V, we design (nonuniform) density functions fy, and
fu for a target tracking application that bias the exploration
towards informative regions in Q...

2) Extending the tree: If the configuration pyey, constructed
as in Section III-A1, does not belong to the obstacle-free space,
then the current sample ppnew is rejected and the sampling
process is repeated [line 4, Alg. 1]. Otherwise, the tree is ex-
tended towards states quew that are constructed as follows; see
also Figure 2(b). Given a state qrand(t) = [Prand(t), Lranda ()] €
Vk,..i» WE construct a state qnew by appending to prew(t + 1),
the covariance matrix ey (t + 1) computed as Yew(t +1) =
P(Prand (1), Zrana(t)), where recall that p(-) is the Kalman filter
Ricatti map [lines 6-7, Alg. 1]. Next, we update the set of
nodes and edges of the tree as V = V U {Quew(t + 1)} and
E = EU{(qrand(t), dnew (t + 1))}, respectively [lines 8-9, Alg.
1]. The cost of the new node qew (¢t + 1) is computed as in (6),
i.e., Jg(Quew(t+1)) = Jg(Qrana(t)) + det Xpey (£ +1) [line 10,
Alg. 1]. Finally, the sets V), are updated, so that if there already
exists a subset V), associated with the configuration pyeyw, then



Vi = Vi U{dnew (t + 1) }. Otherwise, a new set V, is created,
ie., K, = K, +1 and Vk,, = {dnew} [lines 11-14, Alg. 1].
This process is repeated for all states qana(t) € Vy,,,, [line 5,
Alg. 1]. Recall that the states in Vy_, share the same robot
configuration pyg but they are possibly paired with different
time stamps ¢ and covariance matrices X(t); see Figure 2.

IV. COMPLETENESS, OPTIMALITY & CONVERGENCE

In this section, we examine, the correctness, optimality, and
convergence rate of Algorithm 1.

Theorem 4.1 (Probabilistic Completeness): If there exists
a solution to Problem 1, then Algorithm 1 is probabilisti-
cally complete, i.e., it will find with probability 1 a path
qo.r, defined as a sequence of states in V), i.e., qo.r =
q(0),q(1),q(2),...,q(F), that solves Problem 1, where
a(f) e v, forall f €{0,...,F}.

Theorem 4.2 (Asymptotic Optimality): Assume that there
exists an optimal solution to Problem 1. Then, Algorithm
1 is asymptotically optimal, i.e., the optimal path qp., =
q(0),q(1),q(2),...,q(F), will be found with probability 1,
as n — oo. In other words, the path generated by Algorithm 1
satisfies P ({lim,, o0 J (F,up.r) = J*}) = 1, where J is the
objective function of (5) and J* is the optimal cost.”

Theorem 4.3 (Convergence rate bounds): Let qf., denote
the optimal solution to (5). Then, there exist parameters
an(q.r) € (0,1], which depend on the selected density
functions fy and fy, for every iteration n of Algorithm 1,
such that

_Yh—1 n(@de)

1 > P(An(qSF)) > l—e 2 n+F7 (7)

if n > F. In (7), A"(qf.) denotes the event that Algorithm
1 constructs the path qf. > within n iterations.

Remark 4.4 (Convergence rate): Observe in (7) that
lim,, 0o P(A"(q}.»)) = 1. This means that if Problem 1
has an optimal solution, then Algorithm 1 will find it with
probability 1 as ny.x — 00, as expected due to Theorem 4.2.

V. MULTI-ROBOT MULTI-TARGET TRACKING

In this section, we consider an application to target localiza-
tion and tracking for Algorithm 1. In this scenario, the hidden
state x(t) is created by stacking the positions of all targets at
time ¢, i.e., x(t) = [x7(t),x3(¢),...,x,(t)]T, where x;(t)
is the position of target i € M := {1,..., M} at time ¢ and
M > 0 is the number of targets. We require the constraint
(5b) to hold for all states x;(F'), for some d;. As discussed
in Section III, any density functions fy and f;, that satisfy
Assumptions 3.1 and 3.2 can be employed to generate states
Qnew(t) in Algorithm 1. In what follows, we design density
functions that allow us to address large-scale estimation tasks
that involve large teams of robots and targets. The main idea
is to build fy and fi; so that the tree is biased to explore
regions of (.. Where targets are predicted to be.

Note that the horizon F' and Ug.f returned by Algorithm 1 depend on n.
For simplicity of notation, we drop this dependence.

A. Density Function fy

Let L(q) denote the length (number of hops) of the path
that connects the node q € V to the root q(0) of the tree. Let
also L.« denote the maximum L(q) among all nodes q € V,
i.e., Limax = maxqey L(q). Hereafter, we denote by Lpyax the
set that collects all nodes q € V that satisfy L(q) = Luyax,
ie., Lmix = {9 €V | L(q) = Lmax }- Given the set L%, we
construct the density function fy so that it is biased to select
subsets V), C V that contain at least one node q € V that
belongs to Lmax. Specifically, fy(k[V) is defined as follows

pvﬁ if k € ’Cmax

)
‘max

(1- py)m, otherwise,

fo(kV) = { (8)
where (i) Kax iS a set that collects the indices k of the subsets
Vi that satisfy Vi N Lyax 7# 0, and (ii) py € (0.5,1) stands
for the probability of selecting any subset Vj that satisfies
Vi N Liax # 0. Note that py, can change with iterations n but
it should always satisfy py, € (0.5,1) to ensure that subsets
Vi, with Vi N Linax # O are selected more often.

B. Density Function fy

The density function f; is designed so that control inputs
u; that drive robot j towards regions that are predicted to
be informative are selected more often. Specifically, given a
state Qrand(t) € Vi,,.» Where kpang is sampled from fy(k[V),
we design fi;(u|quna(t)) as follows. The construction of
fu(u|drana(t)) presumes that targets are assigned to each
robot, when the robots are in state Qaa(t); the target as-
signment process is described in Section V-C. Given the
assigned targets, f;; is designed so that control inputs u;
that minimize the geodesic distance (see e.g., [13]) between
the next robot position p;(t + 1) = £;(p; rana(t), u;) and the
predicted position of target 7, denoted by x;(¢+1), are selected
more often. Note that the predicted position X;(t + 1) can
be computed using, e.g., the Kalman filter prediction step.
Specifically, fy is defined as fy/(uldrana(t)) = [T en fir(0)),
where f7,(u;) is constructed as follows.

Pu, if (llj :u}f)/\(dij >Rj)
(1- pu)ﬁ, otherwise,

fu(wy) = { ©)
where (i) di; = ||%;(t +1) — p;(t 4+ 1)||, and i is the index
of the target assigned to robot j, (ii) IZ; denotes the sensing
range of robot j, and (iii) uj € U; is the control input
that minimizes the geodesic distance between p;(t + 1) and
Xi(t+1), ie, uj = argming; o [%i(t +1) = p;(t + 1),
where |[-[| , denotes the geodesic norm/distance. Observe that
the density functions (8) and (9) satisfy Assumptions 3.1 and
3.2, respectively, by construction. In words, (9) selects more
often control inputs that drive the robots close to the predicted
positions x;(t + 1) of their corresponding assigned targets i,
until these predicted positions are within the robots’ sensing
range. Once this happens, controllers are selected randomly.
Finally, observe that (9) is designed independently of the
sensor models. Alternative density functions f;; can also be







TABLE I
SCALABILITY ANALYSIS

First Order Dynamics Diff. Drive Dynamics
N/M Runtime Cost / F Runtime Cost / F
1/5 15.32 secs | 29.28 /302 | 23.74 secs | 34.47 /374
10/10 | 25.32 secs | 11.79 /47 55.97 secs | 14.44 /52
1020 | 27.33 secs | 25.12 /47 56.86 secs | 39.35/77
10/35 | 27.87 secs | 44.79 /61 58.52 secs | 55.58 /77
1520 | 41.18 secs | 22.85/42 1.84 mins | 29.78 / 60
15/35 | 55.6 secs 36.94 / 48 2.1 mins 49.16 / 68
20/20 | 43.41 secs | 21.96 / 46 1.64 mins 31.21 /59
20/25 | 20.9 secs 13.12 /21 1.43 mins 38.87 /59
20/35 | 4293 secs | 33.20/ 44 1.57 mins | 47.8 /58
30/56 | 1.41 mins 58.23 /1 46 2.74 mins | 76.7 /62

linearly with ¢, ;(¢), with slope 0.25, as long as ¢, ;(t) < 2;
if £;,(t) > 2, then ¢ is infinite. Observe that this observation
model is nonlinear and, therefore, the separation principle,
discussed in Section II, does not hold; as a result, offline
control policies are not optimal. In this case, we execute
Algorithm 1 using the linearized observation model about the
predicted target positions. Note that, similar to [1], Algorithm
1 can be coupled with a Model Predictive Control approach
where the robots redesign their paths every few measurements,
to generate adaptive sensor policies.

B. Scalability Analysis

In this section, we examine the performance of Algorithm
1 with respect to the number of robots, their dynamics, and
the number of targets. The results are summarized in Table
I. In all case studies of Table I, all targets are modeled
as linear systems and the parameters §; are selected to be
§; = 1.8 x 1079, for all 4+ € M, while the robots reside in
the 10m x 10m environment shown in Figure 3. Observe in
Table I that Algorithm 1 can design feasible paths very fast
even for large number of robots and targets regardless of the
robot dynamics; see also Figure 3(a). Finally, we also applied
Algorithm 1 to a scenario where a team of NV = 7 differential
drive robots should localize and track M = 20 targets in a
significantly larger workspace, such as a residential area, with
dimensions 500m x 1000m. In this scenario, the sensing range
of the robots is 20m, and the motion primitives are selected as
u € {0,2}m/s and w € {0, +n/4, £7/2, £7/1.33, £7} rad/s.
Algorithm 1 generated robot paths in 12.23 mins with terminal
horizon F' = 3769 that are depicted in Figure 4.

C. Comparisons with Alternative Approaches

We first compare our algorithm to myopic/greedy ap-
proaches, where the robots select the control input that incurs
the maximum immediate decrease of the cost function in (5).
Such approaches failed to design meaningful paths, since the
majority of the robots at their initial locations cannot take
any measurement due to their limited sensing range (see e.g.,
Figure 3(a)) and, therefore, all control inputs incur the same
cost. As a result, in these case studies, the greedy approach
closely mimics random-walk methods. Furthermore, we also
compared Algorithm 1 to a (decentralized) coordinate descent
biased-greedy approach, an improved version of the standard

(a) N/M = 10/20, Cost = 39.35, (b) N/M = 10/20, Cost = 61.32,
F = 77, Runtime = 56.86secs F = 77, Runtime = 39.76 mins
Fig. 3. Comparison between Alg.1 (Fig. 3(a)) and a coordinate descent
biased-greedy approach (Fig. 3(b)) for the case study N/M = 10/20 of

Table 1. The green (cyan) and red (blue) square denote the initial and final
positions of the robots (targets). Obstacles are represented by gray boxes.

0 100 200 300 400 500 600 700 800 900 1000

Fig. 4. Case study N =7, M = 20: Graphical depiction of the robot paths
(colored paths) and the targets (black paths).

greedy method. Specifically, the robots select control inputs
in a coordinate descent way (see [2]), as follows. If all
control inputs for a robot are equivalent, then the control
input returned by the density function fi;, designed in Section
V, is selected. Otherwise, the greedy action is selected. The
resulting paths for the case study N/M = 10/20 are depicted
in Figure 3(b). Observe in these figure that the robots get
trapped in local optima/regions and fail to explore the rest of
the workspace, which is not the case when Alg. 1 is applied;
see Figure 3(a).

Second, we compared our algorithm to existing nonmyopic
algorithms. Specifically, we applied the Feedforward Value It-
eration (FVI) method that exhaustively searches both the robot
motion space and the information space to generate optimal
paths [17]. FVI also failed to solve the considered case studies
because of excessive runtime and memory requirements. For
instance, FVI was able to solve an AIA task with N = 1
robot and M = 2 targets, in 44.56 secs, with cost 0.71 and
u € {0,1}m/s. Finally, we compared Algorithm 1 to the
RIG-tree algorithm proposed in [11].> The RIG-tree algorithm
failed to return a solution for all case studies of Table I within
2 hours. The largest estimation tasks that RIG-tree was able
to solve involved (i) NV = 1 robot and M = 2 targets, and (ii)
N = 2 robots and M = 3 targets, in 2.23 and 3.91 secs with
cost 2.25 and 4.41, respectively, assuming sparsely distributed
targets. In fact, the RIG-tree algorithm has been applied only

3We appropriately modified the RIG-tree, so that it fits our problem formu-
lation. Specifically, first we used the objective function of (5) and, second, we
replaced the budget constraints in [11] with the terminal uncertainty constraint
(5Db).



to cases where information is available everywhere in the
workspace; see Section 5 in [11].

VII. CONCLUSION

In this paper we proposed a new sampling-based algorithm
for multi-robot AIA tasks in complex environments supported
by formal guarantees. Comparative simulation studies vali-
dated the theoretical analysis and showed that the proposed
method can quickly compute sensor policies that satisfy de-
sired uncertainty thresholds in AIA tasks that involve large
sensor teams, workspaces, and dimensions of the hidden state,
which was impossible using relevant methods. Future work
will focus on estimating the target motion model and applying
the proposed framework to other estimation tasks, such as
wireless signal strength mapping.
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APPENDIX A
PROOF COMPLETENESS, OPTIMALITY, & COMPLEXITY

In what follows, we denote by G" = {V",E", Cost} the
tree that has been built by Algorithm 1 at the n-th iteration.
The same notation also extends to fy, fis, and Uyey. To prove
Theorems 4.1 and 4.2, we need to prove the following results.

Lemma A.1 (Sampling V}! ): Consider any subset V' and
any fixed iteration index n and any fixed k € {1,..., K, }.
Then, there exists an infinite number of subsequent iterations
n + w, where w € W and W C N is a subsequence of N, at
which the subset V] is selected to be the set V,?de.

Proof: Let A™4n+v (k) = {ypt — v} with w € N,
denote the event that at iteration 7 4+ w of Algorithm 1 the
subset V7' C V" is selected by the sampling operation to be
the set V" [line 2, Alg. 1]. Also, let P(A™-" (k)) denote
the probability of this event, i.e., P(A™"+% (k) = 17 (k).

Next, define the infinite sequence of events Arand - —
{Arnd.ntw(gyree for a given subset Vi C V™. In what fol-
lows, we show that the series ) o, P(A™" (L)) diverges
and then we complete the proof by applying the Borel-Cantelli
lemma [10].

Recall that by Assumption 3.1(i), we have that given
any subset Vj' C V", the probability f}}(k[V™) satis-
fies f}3(k[V™) > € for any iteration n. Thus we have
that P(Amndntw (L)) kYY) > e >0,
for all w € N. Note that this result holds for any
k € {1,...,Kntw} due to Assumption 3.1(i). Therefore,
we have that Y o P(A™dntw(k)) > S e Since €
is a strictly positive constant, we have that > . e di-
verges. Then, we conclude that > o P(A™dntw(k)) =
0o. Combining this result and the fact that the events
Arandntw () are independent by Assumption 3.1(ii), we get
that P(lim sup,,_, ., A™4"+% (k) = 1, by the Borel-Cantelli

lemma. In other words, the events A™d"+w (k) occur in-
finitely often, for all k¥ € {1,...,K,}. This equivalently
means that for every subset V} C V", for all n € N, there
exists an infinite subsequence ¥V C N so that for all w € W
it holds V,Z::dw = V", completing the proof. [ |

Lemma A.2 (Sampling u,.,): Consider any subset V,?md se-
lected by fy and any fixed iteration index n. Then, for any
given control input u € U, there exists an infinite number of
subsequent iterations n + w, where w € W and W' C W is
a subsequence of the sequence of W defined in Lemma A.1,
at which the control input u € U is selected to be u/:t™.

Proof: This proof resembles the proof of Lemma A.1 and
is omitted. [ ]

Before stating the next result, we first define the reachable
state-space of a state q(t) = [p(t),X(t)] € V}, denoted by
R(q(t)) that collects all states q(t +1) = [p(t+1),3(t+1)]
that can be reached within one time step from q(¢).

Corollary A.3 (Reachable set R(q(t))): Given any state
q(t) = [p(t),d(t)] € V!, forany k € {1,..., K, }, Algorithm
1 will add to V™ all states that belong to the reachable
set R(q(t)) will be added to V"%, with probability 1, as
w — 00, i.e., limy, o P({R(q(t)) CV*T¥}) = 1. Also,
edges from q(¢) to all reachable states q'(t + 1) € R(q(t))
will be added to £"1%, with probability 1, as w — oo, i.e.,
limy o0 P ({Ugrer(q)(a,9’) € E™TY) = 1.

Proof: The proof straightforwardly follows from Lemmas
A.1-A.2 and is omitted. [ ]

Proof of Theorem 4.3: By construction of the path qg.r,
it holds that q(f) € R(q(f — 1)), for all f € {1,...,F}.
Since q(0) € V!, it holds that all states q € R(q(0)),
including the state q(1), will be added to V" with prob-
ability 1, as n — oo, due to Corollary A.3.Once this
happens, the edge (q(0),q(1)) will be added to set of
edges £ due to Corollary A.3.Applying Corollary A.3 in-
ductively, we get that lim, ,ocP({qf € V"}) = 1 and
lim, oo P{(a(f —1),q(f)) €€™}) = 1, for all f €
{1,..., F} meaning that the path qo.r will be added to the
tree G™ with probability 1 as n — oo completing the proof.

Proof of Theorem 4.2: The proof of this result straight-
forwardly follows from Theorem 4.1. Specifically, recall from
Theorem 4.1 that Algorithm 1 can find any feasible path and,
therefore, the optimal path as well, with probability 1, as
n — o0, completing the proof.

Proof of Theorem 4.3: To prove this result, we model
the sampling strategy employed by Algorithm 1 as a Poisson
binomial process. Specifically, we define Bernoulli random
variables Y,, at every iteration n of Algorithm 1 so that
Y, = 1 only if the edge (q(f — 1),q(f)) is added to the
tree at iteration n, where f is the smallest element of the set
{1,..., F} that satisfies q(f — 1) € V"' and q(f) ¢ V"~ L.
Then, using the random variables Y,,, we define the random
variable Y = Y "™ Y,, which captures the total number of
successes of the random variables Y,, and we show that it
follows a Poisson binomial distribution. Finally, we show that
P(A™>(qf.)) = P(Y > F') which yields (7) by applying
the Chernoff bounds to Y. The detailed proof is omitted.
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