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Abstract—In this paper, we introduce a novel method to
support remote telemanipulation tasks in complex environments
by providing operators with an enhanced view of the task
environment. Our method features a novel viewpoint adjustment
algorithm designed to automatically mitigate occlusions caused
by workspace geometry, supports visual exploration to provide
operators with situation awareness in the remote environment,
and mediates context-specific visual challenges by making view-
point adjustments based on sparse input from the user. Our
method builds on the dynamic camera telemanipulation viewing
paradigm, where a user controls a manipulation robot, and a
camera-in-hand robot alongside the manipulation robot servos to
provide a sufficient view of the remote environment. We discuss
the real-time motion optimization formulation used to arbitrate
the various objectives in our shared-control-based method, partic-
ularly highlighting how our occlusion avoidance and viewpoint
adaptation approaches fit within this framework. We present
results from an empirical evaluation of our proposed occlusion
avoidance approach as well as a user study that compares
our telemanipulation shared-control method against alternative
telemanipulation approaches. We discuss the implications of our
work for future shared-control research and robotics applications.

I. INTRODUCTION

From an early age, people develop an innate ability to adapt
their viewpoints to plan and coordinate manipulations within
their environments [40]. People shift how they look at an object
throughout a grasping action [34], scan their environments to
plan future actions [17], and naturally adjust their viewpoints
to look over and around occlusions when handling items in
visually cluttered settings [23]. The tight coupling between
manipulation and viewpoint contributes to people’s adeptness
in executing tasks in complex day-to-day environments, such
as when crouching to look in a cabinet below a sink to adjust
a valve, moving the head to look around in a cluttered cabinet,
or looking up to secure a light bulb into a ceiling fixture.

While much work in remote telemanipulation has focused
on the control aspects of the problem [27], such as studying
effects of time delays [26], impedance [11], and stability [19],
little is known about how the operator’s viewpoint should
adapt given environmental and task considerations. In fact,
many telemanipulation systems utilize static cameras, where
viewpoints are immutable, or use an end-effector camera on
the manipulator itself, where the viewpoint and manipulation
points are locked together and cannot adapt separately given the
task at hand. Recent work has shown the efficacy of moving
the camera to continuously adjust the viewpoint on-the-fly
for a remote operator [1, 25, 30], leading to telemanipulation

Fig. 1. Building on a dynamic camera telemanipulation viewing paradigm, our
work supports several viewpoint-related tasks, including (a) visual exploration,
(b) geometric viewpoint adjustment, and (c) semantic viewpoint adjustment.

performance and perceptual benefits over an array of static
cameras and an end-effector camera [30]. However, it still
remains unclear how the viewpoint should be adapted to afford
effective manipulations in visually complex environments, i.e.,
environments where occlusions are likely to occur, where
operators may need to look around to obtain situation awareness
and plan future actions, or when specific viewpoints may be
necessary given the semantics of the task.

In this paper, we introduce a telemanipulation method where
the viewpoint continuously adapts over time to better serve
manipulations in response to current environment or task
conditions. Consider the scenario of a teleoperator remotely
preparing a meal for a family member where our method
effectively coordinates the operator’s manipulations with their
viewpoints, such as allowing the user to visually explore the
environment to look for cooking oil, automatically providing
a sufficient view to reach into a drawer to get a measuring







manipulation arm; (2) match end-effector orientation goal on
the manipulation arm; (3) minimize joint velocity of the full
state vector; (4) minimize joint acceleration of the full state
vector; (5) minimize joint jerk of the full state vector; (6) avoid
collisions between the arms and modeled environment features;
(7) keep camera upright; (8) avoid occlusions caused by the
manipulation robot; (9) point camera towards visual target
(“look-at” objective); (10) keep camera position between inner
and outer visibility cones (outlined in §IV); (11) match desired
goal distance between camera and visual target; (12) follow
user’s manual camera translation inputs (if provided). The two
constraints are designed to clamp joint velocities at each update
and avoid kinematic singularities for each arm, respectively.
Our implementations of objectives 1–8 and both constraints
follow prior work [29, 30]; the next section details how we
incorporate our viewpoint adaptation types as objectives 9–12.

B. Incorporating Viewpoint Adaptations into RelaxedIK
In this section, we highlight how we incorporate our

viewpoint adaptation types, outlined in §IV, into the RelaxedIK
optimization framework. We use the same Groove loss function
introduced in previous work [29, 30] and specify the loss
function parameters for each additional term. Because these
terms are incorporated within a larger optimization framework
with other objectives built in, other features, such as avoiding
occlusions incurred by the manipulation robot, will automati-
cally be exhibited alongside these viewpoint adaptations.

Geometrically Dictated Viewpoint Adaptations. We incor-
porate geometrically dictated viewpoint adaptations into the
RelaxedIK optimization framework using three objective terms,
two to encourage the camera position to be between the inner
and outer visibility cones outlined in §IV, and one to bring
the camera closer if deemed necessary by the search method.

The outer and inner visibility cone terms are:
χouter(Θ) = arccos( Λ(F̂K(Θm)) � Λ(F̂K(Θc)) ) – ro

χinner(Θ) = ri – arccos( Λ(F̂K(Θm)) � Λ(F̂K(Θc)) )
(2)

Here, Θm and Θc refer to the degrees-of-freedom of Θ
corresponding to the manipulation robot and camera robot,
respectively; F̂K(.) refers to a function that returns the rotation
frame of the end-effector provided a given joint configuration
and the forward kinematics model of the arm; and Λ(.) refers
to a function that returns the “forward” vector of the input
rotation frame. These terms use Groove loss parameters of
t = –3.0, d = 60.0, c = 1e14, f = 0.00001, g = 10.0, which
encourages both terms to be less than zero.

The camera distance objective is:
χdistance(Θ) = ( jj FK(Θm)) – FK(Θc)) jj2 – d )2 (3)

Here, FK(.) is a function that returns the position of the end-
effector given a joint configuration and the forward kinematics
model of the arm and d refers to a goal distance. This term
uses loss function parameters t = 0.0, d = 2.0, c = 0.5, f = 35.0,
g = 2.0, which pulls the objective term output to zero.

Semantically Dictated Viewpoint Adaptations. Semanti-
cally dictated viewpoint adaptations are handled in our method

by allowing the user to provide a sparse directional input to
dictate where the camera should move. As an objective term,
this is supported by having the camera pulled toward a new
location per update using the following term:

χsemantic(Θ) = jj ( c + λg ) – FK(Θc)) jj2 (4)

Here, c is the camera location at the previous update and
g is the directional input specified by the user (represented in
the camera’s local frame). The magnitude of the directional
input vector g and a scalar λ can adjust the sensitivity of the
manual inputs. When no manual inputs are being provided
from the user, g is considered to be [0, 0, 0]T . This term uses
loss function parameters t = 0.0, d = 2.0, c = 0.5, f = 35.0,
g = 2.0, which pulls the objective term output to zero.

Visual Exploration. Visual exploration is supported in our
shared-control method by allowing the user to manually move
the visual target and is formulated as the objective term:

χlookat(Θ) = dis(t, v),

v = FK(Θc) + γ Λ(F̂K(Θc))
(5)

Here, t denotes the visual target point, v denotes the
viewpoint vector pointing out of the front of the camera’s focal
point, dis(., .) is a function that returns the orthogonal distance
between a point and line segment arguments, respectively, and
γ is some large scalar value used to cast out the line segment.
By default, the visual target point t is set as the end-effector
point on the manipulation robot. However, when users enter
visual exploration mode, they are able to move the visual target
point t around by rotating a motion controller. This term uses
loss function parameters t = 0.0, d = 2.0, c = 0.1, f = 10.0,
g = 2.0, which pulls the objective term output to zero.

VI. EVALUATIONS

We carried out two forms of evaluation to demonstrate the
effectiveness of our dynamic camera shared-control method
for remote telemanipulation. Below, we outline our prototype
system and discuss the designs and findings of our evaluations.

A. Prototype Details

We instantiated our shared-control camera method in a
system, described below, designed to provide sufficient perfor-
mance and safety to demonstrate its benefits in a user study.

Teleoperation Interface—In our system, we used the mimicry-
control interface, presented by Rakita et al. [28], to control the
manipulation robot for remote teleoperation. This method was
shown to be more effective for novice users to control a robot
arm using full 6-DOF Cartesian control than other interfaces.
We used HTC Vive motion controllers as the motion input
devices to capture user input at 80 Hz. One controller moved
the manipulation robot while the other allowed for camera
translation adjustments using sparse motion controls.

Robots—Our system used a 6-DOF Universal Robots UR5
robot as the manipulation robot and a 7-DOF Rethink Robotics
Sawyer robot as the camera robot to match the system used in
prior work [30], which served as one of our comparison cases.



and physical dividers separated the participants and robot
workspace. Users controlled the robots based on what they saw
on the screen. The experimenter sat next to the participants.

Study Tasks—To ensure the generalizability of our findings
to a wide range of telemanipulation tasks, we developed three
tasks that followed a home-care scenario in which participants
would log in to a telemanipulation system to care for a friend
or family member by completing the following tasks:

(1) Sock Sorting. Users picked two pairs of white socks
from a bin, surrounded by other black socks, and placed them
into another bin. This task involved both geometric viewpoint
reasoning, i.e., maintaining a viewpoint from above with a
clear view into the bin, as well semantic viewpoint reasoning,
i.e., viewing the correct part of the bin to locate white socks.

(2) Table Preparation. Users set the table by retrieving
dinner items from a four-cube (2 � 2) organizer that involved
shelves measured 1200 � 1200 � 1200. Participants retrieved
a plate from the top left compartment, a fork from the
upper right compartment, and a spoon from the lower left
compartment. The forks and spoons were placed upright in
a cup on their respective shelves. This task also involved
geometric viewpoint reasoning, i.e. maintaining a viewpoint
of the end-effector reaching into the compartments, visual
exploration, i.e., surveying items on shelves, and semantic
viewpoint reasoning, i.e., refining the viewpoint within the
compartments to specify a proper grasp.

(3) Pill Organization. Users picked up a pill bottle and
poured a small pill into three containers: a bowl, a cup, and
a real pill tray. The containers were chosen to make the task
more difficult over time and to show skill level over a single
task given a gradient of difficulty. This task involved semantic
viewpoint reasoning to get a sufficient view of the pouring
motion. A variant of this task was also used in prior work [30],
allowing us to compare our results to prior work.

Study Procedure—A male experimenter obtained informed
consent and provided detail on the study. Participants then
viewed a training video on the robot-control approach and the
motion controller. Participants then (1) received ten minutes
of training on a particular telemanipulation condition using
videos and an interactive training session, (2) performed the
three tasks outlined in §VI-C using the current condition, and
(3) filled out a questionnaire pertaining to the current condition.
This process repeated until all conditions were completed, with
short breaks between each task as the experimenter reset the
robot to its initial configuration and set up the workspace for
the new task. Upon completion, participants responded to a
demographics survey and received compensation.

Measures—To assess performance, we measured task com-
pletion time over the five tasks (sock sorting, table preparation,
and pill organization � 3). For each task, the participants
had a maximum time of five minutes. To measure participant
perceptions, we administered a questionnaire based on prior
research on measuring user preferences and teamwork with
a robot [15, 20], including scales on goal understanding,
trust,ease of use, robot intelligence, fluency, and predictability
(Table II), using a seven-point rating scale.

TABLE II
MEASUREMENTS OF PERCEIVED CONTROL EXPERIENCE

Goal understanding (Cronbach’s α = 0.87)
The robot perceives accurately what my goals are
The robot does not understand what I am trying to accomplish
The robot and I are working towards mutually agreed upon goals

Trust (Cronbach’s α = 0.86)
I trusted the robot to do the right thing at the right time
The robot was trustworthy

Ease of use (Cronbach’s α = 0.93)
The control method made it easy to accomplish the task
I felt confident controlling the robot
I could accurately control the robot

Robot intelligence (Cronbach’s α = 0.93)
The robot was intelligent
The robot was able to independently make decisions through the task
The robot had an understanding of the task
The robot had an understanding of my goal during the task

Fluency (Cronbach’s α = 0.91)
The robot and I worked fluently together as a team
The robot contributed to the effectiveness of our team

Predictability (Cronbach’s α = 0.92)
The robot consistently moved in a way that I expected
The robot’s motion was not surprising
The robot responded to my motion inputs in a predictable way

Participants—We recruited 12 participants (5 male, 7 female),
aged 19–25 (M = 20.42, SD = 1.67), from a university campus.
A post-hoc power analysis with (1–β) = .80 and α = .05 found
an observed power of 0.96 (d = 3.15) with this sample size.
Participants reported low familiarity with robots (M = 2.14,
SD = 1.46, measured on a seven-point scale). No participants
reported participating in prior robotics research studies. The
study took 90 minutes, and each participant received $15 USD.

Results—We analyzed data from all measures using one-way
repeated-measures analyses of variance (ANOVA) using control
method as the within-participants variable. Figure VI-C shows
data and test results from all objective and subjective measures.
Our analyses provided full support for both hypotheses.

Discussion—Our results support our hypotheses that our
telemanipulation system significantly improves results over
the autonomous dynamic camera method on all tasks and
many perceptual measures. We observed wide variance in the
ADC condition results across all tasks. Because the camera in
the ADC condition just moved in response to the motion of
the manipulation robot, without any consideration of the task
or environment, the resulting motion behavior and resulting
viewpoints from the camera could substantially differ across
participants, even for the same task. Because our VSMS
condition considered the task and environment geometry, the
quality of the viewpoint was not dictated by this level of chance,
contributing to improved results with lower variance.

We expected mimicry-control to perform better than our
method on all tasks and perceptual measures, though we only
observe significantly better results on the table preparation task
and a marginal effect on the tray pill organization task. We
believe that incorporating depth perception into our method
will further close the performance gap between the remote and
co-located telemanipulation methods on these tasks.
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Fig. 3. Results for our user study. Thick, thin, and dotted lines indicate p < .001, p < .05, and p < .10, respectively, in pairwise comparisons.

VII. GENERAL DISCUSSION

In this paper, we presented a remote telemanipulation shared-
control method where the viewpoint is able to adapt to
afford effective task execution in complex environments. We
introduced a novel viewpoint adjustment algorithm designed
to automatically mitigate occlusions caused by the workspace
geometry, and showed how we address visual exploration and
context-specific visual challenges. In this section, we outline
limitations of our current methods, and discuss how our results
could be applied to a wide area of robotics applications.

Limitations—Our method has limitations that suggest future
extensions. First, our method does not afford depth perception
to users using the on-screen interface. We will explore tech-
niques to elicit depth effects, such as using motion parallax or
stereo vision, and compare them against mimicry-control where
users utilize their own depth perception while manipulating.

Our shared-control camera method benefits the remote user’s
view without easing the manipulation based on said awareness.
We plan to explore ways to use the rich un-occluded data stream
to supplement the control algorithm on the manipulation robot.
For instance, while our motion optimization framework affords
collision avoidance between the two arms and static objects
modeled ahead of time in the environment, both robots can
collide with dynamic objects. We will explore ways of providing
dynamic collision avoidance given the clear external view of
the manipulation point and other parts of the environment.

Our geometric occlusion avoidance algorithm also has known
limitations. For instance, the forward “manipulation” vector
may not be an accurate proxy for the robot’s approach direction

in all cases, especially with robots that have a flexible wrist.
This limitation could be mitigated by using the actual approach
direction of the end-effector position over some window of time
points. We will investigate such alternatives, as well as explore
ways of incorporating mapping, more geometric sensing, and
data driven techniques, for finding effective viewpoints.

Conclusion—Our work highlights the potential of using
a moving camera that considers the task and environment
as part of a robot manipulation system. Our results indicate
that an external viewpoint that is able to coordinate with the
manipulation point, subject to the environment and task, plays
an integral role in manipulation performance. This phenomenon
could not only apply to telemanipulation systems but also to
fully autonomous systems, where adaptable viewpoints could
influence the quality of learned grasp or manipulation policies.
We plan to investigate the possible benefits of this viewing
paradigm in real-time telemanipulation, shared-control, and
supervisory-control settings for applications such as remote
home-care, telenursing, or nuclear materials handling, and also
explore the methods discussed in this work to inform fully
autonomous motion and task policies.
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