
Robotics: Science and Systems 2020
Corvalis, Oregon, USA, July 12-16, 2020

1

Singularity Maps of Space Robots and their
Application to Gradient-based Trajectory Planning

Davide Calzolari1,2, Roberto Lampariello2 and Alessandro Massimo Giordano1,2
1Department of Informatics, Technical University of Munich (TUM), 85748 Garching, Germany.

2Institute of Robotics and Mechatronics, German Aerospace Center (DLR),
82234 Weßling, Germany. Email: {davide.calzolari, roberto.lampariello}@dlr.de

Abstract—We present a numerical method to compute sin-
gularity sets in the configuration space of free-floating robots,
comparing two different criteria based on formal methods. By
exploiting specific properties of free-floating systems and an
alternative formulation of the generalized Jacobian, the search
space and computational complexity of the algorithm is reduced.
It is shown that the resulting singularity maps can be applied
in the context of trajectory planning to guarantee feasibility
with respect to singularity avoidance. The proposed approach is
validated on a space robot composed of a six degrees-of-freedom
(DOF) arm mounted on a body with six DOF.

I. INTRODUCTION

A robot manipulator mounted on a carrier spacecraft is
generally referred to as a free-floating robot if the spacecraft
is not actuated (see Fig. 1) [37]. In this operational condition,
which is favorable for performing proximity tasks such as
grasping a tumbling target object, the differential kinematics
relationship between the robot end-effector and the robot joints
is affected by the dynamic coupling between the manipulator
and the spacecraft. In particular, the singularities of the Jaco-
bian matrix, which is referred to as the generalized Jacobian
[37], are noticeably modified, when compared to those of the
equivalent fixed-based robot [38, 28]. However, their location
in the workspace or configuration space of the robot is still
today not fully explored. Moreover, their treatment in the
context of motion control is still a challenging problem, for
which only partial solutions exist.

We present here a methodology which allows to com-
pute configuration space singularity maps for free-floating
robots with an open-chain kinematic structure. Furthermore,
we demonstrate the usefulness of the map in solving global
gradient-based trajectory planning problems with nonlinear
programming (NLP), providing guarantees of feasibility with
respect to singularity avoidance at the discretization points.
Such a framework allows formulating the singularity avoid-
ance problem as a collision avoidance problem.

A. Trajectory Planning

Trajectories resulting from motion planners for free-floating
systems are typically defined by smooth continuous functions,
e.g. polynomials, Bezier curves, and B-Splines [19, 29, 34]. In
the most general setting, a planner optimizes the parameters
of such functions, in the attempt to globally minimize a given
cost function while satisfying motion constraints. Solving the

Fig. 1. A free-floating space robot is shown with a target satellite tumbling
with angular velocity ωt. The motion of the target’s grasping point (shown
on the target on the top left) dictates the desired tracking trajectory of the
robot end-effector, xe,des(t), with respect to the inertial frame F stars.

resulting constrained optimal control problem requires numer-
ical methods [17, Section 55.3.8]. The infinitely dimensional
problem is transformed into a finite dimensional NLP, for
which the motion constraints are solved at predefined via
points along the trajectory. The motion constraints typically
include limitations on the robot joint position and velocities,
as well as singularity avoidance and other operational con-
straints. A similar methodology is applied to different robotic
applications in [39, 35, 7].

An example of a trajectory planning task which requires
singularity avoidance, relates to a free-floating robot with n
joints which has to track a given Cartesian space trajectory
xe,des(t) ∈ IR6,νe,des(t) ∈ IR6 (e.g. motion of the grasping
point on a tumbling target, see Fig. 1 with the end-effector:

xe(t) = xb(t) + fk(q(t)) = xe,des(t), (1)

where xe(t) ∈ IR6 is the pose of the end-effector, xb ∈ IR6 is
the pose of the spacecraft, q ∈ IRn are the joint coordinates,
and fk(q) : IRn → IR6 is the forward kinematics of the
manipulator. The equivalent trajectory in joint space, denoted
with qdes(t) ∈ IRn, can be generated with a differential
inverse kinematics approach as

qdes(t) =

∫ tf

t0

J∗−1m (q(t))νe,des(t)dt+ q(t0), (2)

where q(t0) ∈ IRn is the initial joint configuration, and
J∗m(q) ∈ IR6×n is the generalized Jacobian [37]. Clearly,

J∗m(q) needs to be always invertible, otherwise the end-
effector loses mobility in one or more inertial directions. The
singularities of J∗m(q) are also called dynamic singularities,
since they depend on the inertial distribution of the sys-
tem [28]. At singular configurations, the manipulator cannot
physically execute a given maneuver, hence huge tracking
errors will result [28]. Additionally, in the neighborhood of
a singularity, the required joint rates can grow very quickly,
thus, practically, it is not only important to avoid singularities,
but also to keep a safe distance from them.

The trajectory planning for the problem above would in-
volve finding a suitable initial spacecraft pose and robot
configuration. More generally, in the context of trajectory
planning, the problem of singularity avoidance is instead
handled by locally maximizing the manipulability at each via-
point or alternatively satisfying the joint velocity constraints.

B. Related Work

The preliminary analysis conducted by Papadopoulos and
Dubowsky [28] presents the complex problem of handling
singularities for free-floating robotic systems, and develops
the concepts of the Path Independent Workspace (PIW),
i.e., subsets of the workspace in which singularities are not
present, and of the Path Depended Workspace (PDW), where
a dynamic singularity may be encountered, depending on
the path taken by the robot. These concepts are useful for
planar manipulators, but we verified that their application loses
effectiveness in the spatial case, as the entire workspace can
become PDW. This observation can also be drawn from the
analysis carried out in Rybus et al. [33] for different robot
kinematic chains. In [33], the location of singularity sets are
evaluated qualitatively in configuration space for various free-
floating space robots, showing that the singularity sets have a
complex topology.

Nanos and Papadopoulos [27] proposed an analytical
method to find the initial base attitude and joint configuration
such that a maneuver between two workspace points can be
executed without encountering dynamic singularities. While
this method is effective for planar manipulators, the analysis
for spatial systems was carried out considering a spherical
wrist and a fixed orientation of the end-effector, thus only
addressing singularities originating from translational end-
effector motions. However, for the problem presented in (1),
rotational end-effector motion is necessary. Furthermore, an
analytical analysis of all the singularities with the method
presented in [27] is not possible, since the relative equa-
tions explode in complexity and their manipulation becomes
unfeasible. As such, we now turn to alternative numerical
methods with which singularities of robot manipulators can
be analyzed.

A general, state-of-the-art formal numerical method to lo-
cate singularities in the configuration space of mechanisms
can be found in Bohigas et al. [6]. This method is effective
when applied to mechanisms with loops and the number of
DOF is not too high. However, symbolic manipulation of the
differential kinematic equations is required, in particular, non-

linear terms have to be transformed into sets of inequalities.
Unfortunately, in the case of free-floating manipulators, the
complexity of the differential kinematic makes it impossible to
perform this pre-processing. Other methods rely on numerical
approaches which provide formal guarantees on the computa-
tions, e.g. Interval Arithmetic (IA). The application of IA is
not new to singularity analysis; see for example the work of
Merlet [24] and Kotlarski et al. [18] for workspace analysis,
in particular for parallel robots. Benoit et al. [4], proposes to
analyze the configuration space and workspace singularities
using IA. This algorithm requires the symbolic derivative of
the determinant and its interval evaluation, which is unfeasible
for free-floating systems due to the high complexity of their
differential kinematics.

C. Contribution

In this work, we develop a method to compute singularity
maps (S-Maps) for free-floating robots in configuration space.
These maps define sets which potentially contain singular
configurations. The remaining space is guaranteed to be free
from singularities. The benefits of using S-Map for singularity
avoidance are many. First, a global trajectory planning scheme
is possible, since the distance to the singularity surface is
readily available. Notice that this feature provides a concrete
advantage over using only local information, since it is pos-
sible to impose that the solution is always at a predefined
minimal distance from the singularities. As such, guarantees
can also be provided for a given neighborhood of the planned
trajectory, which may include typical tracking control and
modeling errors [21]. Second, for a trajectory planner, calcu-
lating the expressions that relate to the singularity avoidance
constraints and their gradient with respect to the optimization
parameters, is computationally cheaper and numerically more
robust with an S-Map than with the determinant of the gener-
alized Jacobian or the joint velocities. Currently, there are no
other algorithms that are either computationally feasible or that
can provide the same guarantees for the systems considered.

The main contributions of this work are the following:
1) A formal numerical method to obtain, for the first time,

S-Maps of a 6-DOF free-floating robot with guarantees
of completeness using two different criteria, i.e., IA
and Taylor Models. To the best of our knowledge,
the application of Taylor models for the detection of
singularities is a novel approach.

2) A detailed comparison of the two different criteria to
compute the map in terms of efficiency and complexity.

3) The definition of a C1 continuous distance function to
the surfaces represented by the maps, and a demonstra-
tion of the applicability of the results in the context of
gradient-based optimization, addressing the singularity
avoidance problem as a collision avoidance problem.

The rest of the paper is organized as follows. Section II
presents the kinematics and dynamics of free-floating space
robots, and introduces the relevant numerical tools which we
make use of in this work. Section III presents the set of
algorithms required for the computation of the singularity

maps. In Section IV, essential functions for the utilization
of the maps are developed, and an application to a simple
motion planning task is given. Section V provides the results
of the computation of several singularity maps, as well as of
the motion planning task. Finally, Sections VI and VII present
the discussion and the conclusion.

II. PRELIMINARIES

Let us consider a space robot composed of a serial open-
chain manipulator with n revolute joints, mounted on a space-
craft. The space robot is controlled in free-floating mode.

A. Kinematics and Dynamics of a Free-Floating Robot

The equation of motion can be written as [23][
Mb(q) Mbm(q)
MT

bm(q) Mm(q)

] [
ν̇b
q̈

]
+ c(q, q̇,νb) =

[
0
τ

]
, (3)

where q ∈ IRn are the joint coordinates, νb ∈ IR6 is the
spacecraft (or base) body twist, Mb ∈ IR6×6 is the system
inertia matrix around the base body, Mm ∈ IRn×n is the ma-
nipulator inertia matrix, Mbm ∈ IR6×n represents the coupling
between spacecraft and manipulator, c(q, q̇,νb) ∈ IR6+n are
the Coriolis/centrifugal forces, and τ ∈ IRn are the joint
torques. The momentum hb ∈ IR6 of the system around the
base can be written as

hb = Mb(q)νb + Mbm(q)q̇. (4)

The end-effector velocities νe ∈ IR6 are related to the space
robot base body twist νb and joint rates q̇ as

νe = Jb(q)νb + Jm(q)q̇, (5)

where Jb ∈ IR6×6 is the Jacobian which relates the end-
effector wrench to the base body wrench, and Jm ∈ IR6×n

is the manipulator Jacobian. With the hypothesis of zero
momentum (i.e., hb = 0), the conservation of momentum
yields the following equation

Mb(q)νb = −Mbm(q)q̇. (6)

When the momentum is zero, (6) can be used to substitute for
νb in (5) to obtain

νe = J∗m(q)q̇, (7)

J∗m(q) = Jm − JbM−1b Mbm, (8)

where J∗m(q) ∈ IR6×n is the generalized Jacobian [37].
Using the inverse-chain approach, first presented in Abiko

et al. [1], the equations of motion can be re-written for the
same system, however, with an inverted order of the links, such
that the base becomes the end-effector and the end-effector the
base, as follows:[

Mee(q) Mem(q)
MT

em(q) Mic
m(q)

] [
ν̇e
q̈

]
+ ce(q, q̇,νe) =

[
0
τ ic

]
, (9)

where Mee(q) ∈ IR6×6 is the inertia of the system expressed
around the end-effector of the original system, Mem(q) ∈
IR6×n are the couplings between manipulator and end-effector

dynamics, and ce(q, q̇,νe) ∈ IR6+n are Coriolis/centrifugal
forces. With a little abuse of notation, we denote the joint
coordinates with the same symbol q for both the original and
the inverted chain systems.

The momentum equation can now be written with respect
to the end-effector frame as

he = Mee(q)νe + Mem(q)q̇. (10)

Assuming again that the momentum is zero, (10) yields
another factorization for the generalized Jacobian:

J∗m(q) = −M−1ee (q)Mem(q). (11)

B. Dynamic Singularities and Relevant Properties

Dynamic singularities occur whenever J∗m(q) loses rank,
i.e., for a non-redundant robot arm

det (J∗m(q)) = 0. (12)

Common robotic tasks involve trajectories that are defined
in the workspace of the robot [27]. Having a map of singulari-
ties in the workspace would greatly facilitate the planning and
control of the considered systems. Unfortunately, a represen-
tation of singularities in the workspace is not meaningful for
spatial free-floating robots since, practically, the whole Carte-
sian space would appear singular, due to the projection of high-
dimensional surfaces onto lower dimensions [9]. Moreover, for
free-floating space robots, a Cartesian pose may be singular or
not depending on the path taken by the manipulator to reach it
[28]. This does not happen in the configuration space, where
the singularity surfaces are fixed. Since J∗m(q) depends solely
on q, dynamic singularities loci may be found in configuration
space by solving (12). Unfortunately, if the number of degrees
of freedom of the robot arm is relatively high, the problem
becomes analytically intractable. Therefore, considering the
aforementioned arguments, the best way to avoid singularities
is to analyze and plan trajectories in configuration space using
numerical approaches.

The classical formulation of the generalized Jacobian, given
in (8), does not allow to simplify the analysis of the deter-
minant. In contrast, the formulation given in (11) using the
inverse-chain approach, allows to conclude that all singulari-
ties arise by the sole degeneracy of Mem(q), because

det (J∗m(q)) = −det
(
M−1ee (q)

)
det (Mem(q)) , (13)

where the first term of the product is never zero, since Mee(q)
represents an inertia, thus always invertible. Moreover, in [9],
it was shown that singularities do not depend on the last
link inertial properties, and, most importantly, that they do
not depend on the last joint coordinate. This is very relevant
from a computational point of view, since the search space for
singularities can be reduced by one dimension.

C. Formal Numerical Methods

In this subsection we introduce the two numerical tools
which we make use of in Section III to compute the S-Maps.

Interval Arithmetic: Interval Arithmetic (IA), first intro-
duced by Moore [25], is a model for self-validated numerical
analysis, which guarantees bounds on operations involving
terms modeled by intervals. The interval model represents the
set of possible values for each variable. Formally, we define
an interval as the set

[a, b] = {x ∈ IR | a ≤ x ≤ b}

where a is the infimum and b is the supremum. IA has the
correctness property [16]: arithmetic operations (like addi-
tion, multiplication, etc.) can be defined mathematically for
intervals such that the evaluation of an expression always
yields an interval containing all results. For an introduction
to IA, refer to [16]. In the scope of this article, we denote an
interval quantity with the superscript (·)I , while the operators
mid(xI) and rad(xI) compute the mid-point and the radius of
the interval xI , respectively. When the operators mid(·) and
rad(·) are applied on interval matrices, they operate element-
wise and return a matrix.

Taylor models: Evaluating properties of parametric ma-
trices using their interval representation may result in large
over-estimation. This is due to the following facts: first,
the elements of the matrix may contain long expressions
and involve the same variables many times. Evaluating such
expressions with IA leads to very conservative results, due
to the so called “wrapping effect” [16, 3]. Indeed, this is
the case when considering the generalized Jacobian of spatial
space robots with several DOF. Second, IA does not account
for the dependencies between the elements of the matrix,
which is essential to determine invertibility (i.e., if the set
of attainable values for the determinant contains zero or not),
thus, a substantial degree of conservativeness is introduced.
One way to reduce conservativeness is to reduce the size of
the inputs, or use higher order methods, like Taylor models
introduced by Berz and Hoffstaetter [5]. Taylor models typ-
ically use a representation which involves a polynomial plus
an interval remainder, allowing to enclose expressions in a
more complex way than with simple intervals. In general, IA is
computationally fast, but the results can be quite conservative.
Instead, Taylor models typically require more computation
time, but they can provide much tighter solutions [3].

For the computations performed in this work, we used the
interval analysis and Taylor models implementations of the
CORA Toolbox for MATLAB [2, 3].

III. S-MAP COMPUTATION

The formal methods presented in Section II-C require the
computation of symbolic expressions. While their computation
for the generalized Jacobian may generally be prohibitive,
the minimum set of required matrices, i.e., Jm(q), Jb(q),
Mb(q), and Mbm(q) in (8), and Mem(q) in (11), can be
readily computed symbolically. In this work, the rigid-body
dynamic library in [11] is utilized. The symbolic matrices need
to be computed only once, and then stored on a computer
in a suitable form. In the following, two different criteria to
evaluate the regularity of J∗m over a set are presented.

A. Criterion 1: Regularity of Interval Matrices

To assure invertibility of a matrix over a set of configu-
rations, we will prove its regularity over this set by means
of IA. Consider a set in configuration space defined by an
interval box qI . The interval representation of the generalized
Jacobian, denoted by J∗Im , can be evaluated with IA as follows,
using (8) (see also Section VI):

J∗Im = JIm(qI)− JIb(qI)
[
MI

b(q
I)
]−1

MI
bm(qI), (14)

where the operator [·]−1 performs an enclosing of a matrix in-
verse using the polynomial-time efficient algorithm presented
in Rohn and Farhadsefat [32].

In order to check the regularity of J∗Im , one may use the
sufficient condition presented in Rex and Rohn [31, Corollary
3.2], which we report in the following. Let AI be an interval
matrix and mid(AI) be nonsingular. If

ρ(|mid(AI)−1| rad(AI)) < 1, (15)

holds, then AI is strongly regular. The ρ(·) operator is the
spectral radius, while the | · | operator denotes the absolute
value performed element-wise. One may wonder if the same
conclusion may be drawn evaluating the determinant of an
interval matrix using IA and checking if zero is contained.
The answer is positive, however using condition (15) is a better
choice since it is less conservative. Moreover, condition (15)
can be extended in a straightforward way to check regularity
for non-square matrices as reported in Shary [36].

B. Criterion 2: Determinant Evaluation using Taylor Models

Following the arguments in Sections II-C, we can expect
(15) to be quite conservative when evaluating the regularity of
J∗Im for large ranges of qI . As a consequence, we may be able
to prove regularity of J∗Im only for tiny boxes in configuration
space, thus leading to an inefficient search.

To solve this problem, we consider the evaluation of the
determinant of Mem(q) using Taylor models of 3rd order.
To determine regularity of a set in configuration space using
Taylor models, consider again an interval box qI . The interval
qI is converted to the Taylor models representation, i.e.,
Taylor variables (or symbols), denoted by qtm, together with
Taylor coefficients. Each element of the matrix Mem(qtm)
is evaluated using Taylor models arithmetic. The result is
a matrix, where each element contains polynomials in qtm

variables up to the 3rd order, plus an interval remainder.
Then, the Taylor model of the determinant det(Mem(qtm))
is computed and denoted by Tdet. Since Taylor models do not
directly provide a range of values, a bound B(Tdet) on the
Taylor model must be computed, for example, using a simple
Interval Arithmetic approach [3]. If

0 /∈ B(Tdet), (16)

the regularity of J∗m follows.
In alternative to IA and Taylor models, there exists a further

criterion to determine the regularity of parametric interval
matrices, proposed in Popova [30, Theorem 7]. This criterion

is attractive since it handles parameters that appear multiple
times in the matrix, hence the dependencies between the
elements of the Jacobian could be partially accounted for. Un-
fortunately, this method requires a nontrivial pre-processing of
the interval parameters (in our case, the intervals cos(qIi) and
sin(qIi) in J∗m(qI)), and the generation of specific matrices,
which is too complex for the generalized Jacobian of a 6 DOF
space robot.

C. Complete Search: Branch and Bound

For a considered portion of configuration space, the compu-
tation of the S-Map is carried out using a branch and bound
approach described as follows. At first, the search space is
bisected iteratively N times and a total of 2N boxes are
obtained. Then, each box is tested for regularity of J∗m using
either condition (15) or condition (16). Whenever a box cannot
be proven to be singularity-free, it is bisected along its largest
range, in a similar fashion to other numerical approaches,
e.g. Bohigas et al. [6], Benoit et al. [4] and Merlet [24].
The bisection proceeds recursively up to a given maximum
precision ε ∈ IR+. If the algorithm cannot conclude regularity
of a box at precision ε, then the box is considered as a
singularity set, and the box data are appended to a list. In
case that all bisected sub-boxes of a certain box may contain
singularities, the algorithm stores solely the information of the
biggest enclosing box.

D. Heuristic Pruning

When applying the bisection method over the search space,
in order to isolate singularity sets, the most time consuming
part of the algorithm is when checking sets in the neigh-
borhood of the singularity surfaces. The computational time
invested in these configuration space locations increases with
the search space dimension. An approximation of these close
to singularity locations can be used to prune the search space
and increase the speed of the algorithm. This method is very
useful because it reduces the extent of the search space of the
branch and bound algorithm presented in Section III-C.

In the following, we describe one way to compute a point
cloud close to singular configurations, and then we explain
how to exploit it for the proposed heuristic.

1) Point cloud computation: Starting from many random
initial configurations, (12) can be solved locally in order to
generate a point cloud of close to singular configurations. In
general, these solutions represent hypersurfaces in the manipu-
lator joint space [28]. Solving (12) is equivalent to finding one
global minimum of the manipulability m(q) = |det(J∗m(q))|.
Here, a simple gradient descent method is used to find robot
configurations that locally minimize m(q). Starting from an
initial configuration q0 ∈ IRn, the update equation of the k-th
iteration to minimize m(q) is

qk+1 = qk − α
∂m(qk)

∂q
, (17)

where α ∈ IR+ is a small scalar. The numerical gradient
∂m(q)

∂q is computed analytically. The algorithm is started from

multiple randomly uniformly sampled initial configurations
(e.g. in the range [−π, π] for each joint) in order to find a
significant number of local minima.

The search for the minimum value of m stops whenever
an iteration does not improve the value of the manipulability
by a relative percentage, or a number of maximum iterations
is reached. Each minimization can be carried out in parallel,
thus reducing the computational time. In practice, it may take
many iterations and initial configurations in order to obtain a
sufficient number of samples with very small manipulability to
generate a point cloud that adequately represents the solutions
of (12).

It is important that the minimization finds only very close
local minima to the initial configuration, otherwise many
starting points could converge to “more attractive” surfaces,
leaving some singularity sets of configuration space not ad-
equately represented. To improve coverage of the solution
hypersurfaces, one can first calculate the manipulability for
many random configurations, and following, the minimization
algorithm is applied only to the configurations whose corre-
sponding manipulability is lower than a certain threshold. The
remaining less promising configurations are discarded.

2) Point cloud utilization: We define Sq as a set containing
points with manipulability index inferior to a certain threshold.
We propose to use this information in order to improve the
efficiency of the branch and bound algorithm by means of
the following heuristic: if the volume of the considered set
is below a certain threshold and the set contains a point
belonging to Sq , then the set is considered singular. In this
way, in a neighborhood of singularities, the algorithm does
not have to evaluate and bisect all boxes till the maximum
precision.

IV. S-MAP UTILIZATION

Upon completion, the branch and bound algorithm described
in Section III-C returns a list of singularity sets (in form
of intervals), which we refer to as S-Map. One of the most
useful features of the S-Maps is that they can provide the
distance to the nearest singularity set, as well as its location in
configuration space. Since calculating the distance of a point
to an n-dimensional box can be inefficient, each box of an
S-Map is enclosed within a sphere. The midpoint of the i-th
interval box is used as the center qism ∈ IRn of the i-th sphere,
where i = 1, . . . ,M , being M the total number of intervals
stored in the S-Map. The radius rism ∈ IR of the i-th sphere
is computed as half of the main diagonal of the i-th box, i.e.,
the norm of the interval radius vector.

A. Distance Function
Given a configuration q ∈ IRn, the i-th element of the vector

d ∈ IRM of signed euclidean distances to all singularity sets
is computed as follows

di(q
i
sm, r

i
sm,q) = ‖qism − q‖2 − rism. (18)

The smallest element of d, denoted by ds ∈ IR, is

ds(q) = min
i

(di(q
i
sm, r

i
sm,q)), (19)

and it represents the signed distance to the closest sphere. The
distance measure is signed in the sense that, if a configuration
q is inside a sphere, the corresponding value of ds is negative.
This feature can be used in trajectory planning to detect if a
segment connecting two configurations intersects the S-Map,
as is explained in the following.

B. Segment Intersection

Given an S-Map and configurations qa and qb, the segment
qab = qb−qa is computed. The S-Map is queried to return a
list of j = 1, . . . ,K spheres, for which the j-th sphere satisfies

dj(q
j
sm, r

j
sm,

1

2
(qa + qb)) ≤

1

2
‖qab‖2. (20)

Then, the j-th element of the vector dab ∈ IRK is defined as

dabj = ‖vj‖22 − (rjsm)2, (21)

where vj = ajp − (ajp · n)n, with ajp = qa − qjsm, and n =
qab

|qab| . Here, ‖vj‖2 represents the distance between the center
of the j-th sphere and the segment qab. The necessary and
sufficient condition for the segment qab to intersect the S-Map
is then

min
j

(dabj) ≤ 0. (22)

Since the singularity set could consist of relatively thin
“walls”, we can exploit condition (22) to avoid intersections,
as necessary in the following use case.

C. Trajectory Planning

We present a use case for the S-Map which relates to
trajectory planning. The distance function ds presented in (19)
may be used as an inequality constraint for a motion planner
which minimizes a given cost function, e.g.

min
q

γ(q)

s.t. ds(q) ≥ ∆,
(23)

where ∆ ∈ IR+ is a small scalar, defining the required
minimum distance to the closest singular surface. The distance
function enables to safely minimize the cost function γ(q) in
virtue of a global representation of the singularity sets.

For solving the problem above, we propose the following
gradient-based procedure. An initial configuration q0 is given.
At the beginning of each k-th iteration, the distance measure
ds(qk) is evaluated. If a step β∗ ∈ IR+ in any direction could
violate the constraint (23), i.e., if

ds(qk) < β∗ + ∆, (24)

then the optimizer projects the gradient of the cost function
γ(qk) onto the plane tangent to the constraint, represented by
the normal vector ĥ(qk) ∈ IRn, thus obtaining the projected
gradient g(qk) ∈ IRn. The plane is computed as the numerical
gradient of the distance function. The next iteration qk+1 is
found using the following approach. First, the intermediate
step q∗k is performed in the direction of the normalized
projected gradient ĝ(q):

q∗k+1 = qk − βĝ(qk), (25)

where β ∈ IR+ is the size of the step. The update equation
for the k-th iteration is

qk+1 = q∗k+1 + δĥ(q∗k+1), (26)
δ = max(0,∆− ds(q∗k+1)), (27)

such that qk+1 is pushed away from the local surface at a
minimum distance ∆. The size β is found through line search:
from the initial maximum step βmax, the step β is halved
iteratively until satisfaction of the constraint in (23) at qk+1,
thus guaranteeing that the step qk → qk+1 does not intersect
the S-Map. The size of the step also ensures that the external
boundaries of the map are not violated. The optimization stops
either when the projected gradient has a small magnitude or
when the feasible step size β falls below the threshold βmin.

Note that the approximation of the singularity surfaces
with spheres locally presents recurring cusps (due to the
overlapping of the spheres). Therefore, this method can incur
into numerical inefficiency. In fact, the distance function ds is
a continuous C1 function, while in general C2 continuity is
preferred in the context of gradient-based optimization. How-
ever, in [10], [8], and [35] it was shown that, when searching in
high dimensional spaces, having smoother constraint functions
translates rather into higher efficiency than better converge
properties of the optimizer. A more robust implementation
would consist in fitting a mesh on the boundary of the S-Map
and retrieving the gradient, for example, with the technique
proposed in [22].

V. RESULTS

We present an example of application of the proposed
methods for the computation of the S-Maps for a planar and
a spatial free-floating robot. Then, we proceed to show the
results of a motion planning task utilizing the S-Maps.

We consider a free-floating system consisting of a 6-DOF
manipulator mounted on a spacecraft with mass 322 [kg] and
with body inertia

Ib = [46.87, 32.11, 40.52,−1.61,−2.58,−1.29] [kg·m2],

where the representation I = [Ixx, Iyy, Izz, Ixy, Ixz, Iyz] is
used. The first joint of the manipulator is mounted with an
offset r0 =

[
0.2, 0.0, 0.4775

]T
[m] with respect to a reference

frame attached at the center of mass of the spacecraft. The
kinematic and dynamic parameters of the manipulator can be
found in [12], where the third joint is fixed to obtain a 6-DOF
robot arm. An additional payload of mass 3 [kg] is attached
at the end-effector of the robot.

A. S-Map computation for a planar 3-DOF space robot

We present a comparison of the singularity maps computed
for a planar 3-DOF free-floating robot using the two criteria
described in Sections III-A and III-B. The robot is obtained by
fixing joints 1, 6, and 7 of the arm, and by scaling the mass and
inertia of the spacecraft down to 50% of the original values.
The algorithms are fed dynamics matrices that are explicit
function of all joints (including the last joint, even if it does
not play a role for dynamic singularities). The reason behind

(a) Interval Arithmetic (b) Taylor models

Fig. 2. Comparison of the singularity maps of the 3-DOF planar free-floating
robot presented in Section V-A computed using the different algorithms
presented in Sections III-A and III-B. The S-Maps represent an envelope
of the singularity surfaces. The remaining space is guaranteed to be free of
singularities. Contrary to fixed-based robots, the singularity curve is not a
line. The envelopes resemble the known results for the 2-DOF case, which
can be found in the literature [28, 27].

this choice is to highlight the importance of accounting for
the dependencies between the elements of the Jacobian in
order to conclude its regularity, a feature that only higher
order formal methods like Taylor models can provide. The
maximum precisions of the algorithms are tuned in order to
obtain results of comparable conservativeness. The portion of
analyzed search space, denoted by the interval qIsearch, is

qIsearch =

 −π2 ≤ q1 ≤ +π
2

−π2 ≤ q2 ≤ +π
2

−π4 ≤ q3 ≤ +π
4

 [rad],

and it is split into an initial set of 28 boxes. The computations
were performed on a 3.7GHz processor with 6 cores. The
resulting S-Maps, projected on the plane q1, q2, are depicted
in Fig. 2. To notice is that the maps result to be an enclosure
of the solutions of 12. The IA-based method required 3300
[sec], while the one based on Taylor models only 225 [sec].
This reflects the fact that Taylor models greatly reduce over-
estimation of the invertibility of J∗m, thus requiring far fewer
bisections. Using Taylor models, the computational time to
obtain a map with roughly the same precision is reduced to
less than 7% of the time required for IA. Nonetheless, IA
has a much simpler implementation, and criterion (15) could
straightforwardly handle kinematic redundancy.

B. S-Map computation for a spatial 6-DOF space robot

To compute this S-Map, the IA-based method presented
in Section III-A is used together with the heuristic pruning
described in Section III-D. We do not present a comparison
with Taylor models because they require a performant software
implementation which is planned as future work.

For the heuristic, 2 million configurations are randomly
generated in the range [−π,+π] [rad] for each joint. For this

case, the portion of analyzed search space is

qIsearch =

0 ≤ q1 ≤ +π

4
−π2 ≤ q2 ≤ −π6
+ π

60 ≤ q3 ≤ +π
2

0 ≤ q4 ≤ + π
20

−π2 ≤ q5 ≤ − π
12

q6 = 0

 [rad], (28)

which is initially split into 216 boxes to be checked. The
computations were performed on a 2.9GHz processor with 8
cores, considering a maximum precision ε = 0.0157 [rad],
and taking a total of 170 hours to complete the search. The
computational time may seem large, but one must account for
the following. First, the curse of dimensionality affects any
type of branch and bound algorithm of this kind. Second, we
obtained the first S-Maps for a complex free-floating robot.
Finally, the algorithm is in fact designed to be performed on
a heavily parallelized architecture with an efficient implemen-
tation which reduces the computational time by several order
of magnitudes. Moreover, given the kinematic and dynamic
structure of the space robot, this analysis has to be carried
out only once and only for the useful joint ranges. The result-
ing S-Map defines ≈200k boxes, corresponding to 2.5MBs
of compressed data (approximately 18MBs of uncompressed
data). Projections of the S-Map are depicted in Fig. 3. The
evaluation of the distance function presented in (19)) using
this S-Map for random configurations takes 3 [ms] on average,
while the detection of an intersection between a segment and
the map (condition (22)) takes 30 [ms] in average.

C. Example of trajectory planning using the S-Map

Using the S-Map of the 6-DOF space robot computed in the
last section, an example for the algorithm presented in Section
IV-C is provided. We consider a problem with cost function
γ(q) = q3 to be minimized, and with the constraint presented
in (23), which forces the solution to have a minimum distance
to the S-Map. For this example, the parameters ∆ = 0.03,
β∗ = 0.15, βmin = 0.001, and βmax = 0.25 are used. The
optimization takes place only for the variables q1, q2, and q3,
i.e., the last 3 entries relative to q4, q5, and q6 of the gradient
in (27) are forced to be zero. Consider the following initial
condition:

q0 =
[
0.66,−0.72,+1.5,+0.10,−0.5, 0

]T
[rad].

After 11 iterations, the optimizer converges to

qf =
[
0.00,−1.37,+0.31,+0.10,−0.5, 0

]T
[rad].

The optimization steps, together with the corresponding slice
of the S-Map, are depicted in Fig. 4. At each iteration, the
optimizer performs a step that satisfies the constraints, and
that does not violate the boundary of the S-Map. Additionally,
Fig. 4 shows that an optimization scheme based on a constraint
for the manipulability measure can fail to detect an unfeasible
step. Instead, using an S-Map, singularities are avoided.

(a) Slice at q4 = 0.10, q5 = −0.5. (b) Slice at q2 = −1.5, q3 = 0.27.

(c) Slice at q2 = −1.56, q3 = 0.23. (d) Slice at q3 = 0.36, q4 = 0.12.

Fig. 3. Projections of the S-Map of the spatial 6-DOF robot for the portion
of configuration space defined in (28). Note that these figures depict slices of
the S-Map of size ±0.03[rad]. These might not necessarily contain the true
singularity surface, which could remain hidden underneath them. The S-Maps
represent a conservative envelope of the singularity surfaces. The remaining
portion of space is guaranteed to be singularity-free.

1 2 3 4 5 6 7 8 9 10 11

-0.03

-0.02

-0.01

0

1 2 3 4 5 6 7 8 9 10 11

Iterations

0

0.5

1

Fig. 4. Minimizing q3 using the singularity map presented in Fig. 3a as
constraint (solid red line). Determinant and distance function shown in the
top right and bottom right figures respectively. The dashed black line depicts
the required minimum distance. The S-Map is sliced to reveal the steps of
the optimization based on a constraint for the manipulability measure (dashed
green line), which crosses a singularity (the determinant switches sign), since
the steps are performed without global knowledge of the location of all
singularities.

VI. DISCUSSION

Formal numerical methods are powerful tools which can
find relevant applications in robotics [24]. However, in prac-
tice, an efficient application of these methods is not trivial.
For example, in the case of free-floating robots, Taylor models
are shown to be effective when considering the det (Mem).
However, if they were used to compute det (J∗m), the resulting
algorithm would be inefficient, due to the matrix multiplica-
tions necessary to obtain the full matrix in (8), which are
especially time consuming for Taylor models. Instead, IA loses
effectiveness if applied on Mem, since this matrix was found
not to be as well-behaved as J∗m, and as such, for the same
input ranges, condition 15 is more difficult to be satisfied.

We emphasize that the simple motion planning task in Sec-
tion IV-C should be interpreted as a typical motion constraint
at a via-point along a trajectory [20]. In a general robot
trajectory planning setting, such constraint would be applied to
each via-point on the trajectory to provide the weak guarantee
of feasibility of an NLP (due to the discretization of the
optimal control problem). Moreover, the empirical parameter
∆ needs to be defined. In order to guarantee feasibility with
respect to joint velocities in the vicinity of singularities, a
conservative choice for the value might be considered, at the
cost of an optimal use of the robot workspace. This choice
is justified by the fact that our prime goal is to guarantee
feasibility rather than optimality.

Singularity maps may also be effective for online singularity
avoidance in free-floating feedback control methods, e.g. [23,
26, 13]. Furthermore, the proposed method may be applicable
also for feedback controllers which use base actuation, and
whose singularity is determined by J∗m, e.g. [14, 15].

VII. CONCLUSION AND FUTURE WORK

We presented a numerical technique to obtain singularity
maps of free-floating robots using two different criteria based
on formal methods, namely Interval Arithmetic and Taylor
models. The results show that the proposed approaches are
computationally feasible for a spatial 6-DOF system, and that
the computed maps can be used for the scope of trajectory
planning with emphasis of feasibility with respect to singu-
larity avoidance. Guarantees are provided in an NLP context.
Furthermore, we carried out a comparison of the two criteria,
displaying the net superiority of the approach exploiting an
alternative formulation of the generalized Jacobian and Taylor
models. While this method seems promising, it requires an
efficient implementation to express its full potential.

Future research will primarily focus on extending the
method to handle kinematic redundancy, and on improving
the representation of the singularity sets with a more efficient
and smooth enclosure. We expect that, thanks to the global
knowledge of the singularity locations, guaranteed singularity-
free paths can be planned much more efficiently than with
current solutions.

REFERENCES

[1] S. Abiko, R. Lampariello, and G. Hirzinger. Impedance
Control for a Free-Floating Robot in the Grasping of
a Tumbling Target with Parameter Uncertainty. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1020–1025, Oct 2006. doi: 10.1109/
IROS.2006.281785.

[2] M. Althoff and D. Grebenyuk. Implementation of
Interval Arithmetic in CORA 2016. In Proc. of the
3rd International Workshop on Applied Verification for
Continuous and Hybrid Systems, pages 91–105, 2016.

[3] M. Althoff, D. Grebenyuk, and N. Kochdumper. Im-
plementation of Taylor models in CORA 2018. In
5th International Workshop on Applied Verification of
Continuous and Hybrid Systems, volume 54 of EPiC
Series in Computing, pages 145–173. EasyChair, 2018.
doi: 10.29007/zzc7.

[4] R. Benoit, N. Delanoue, S. Lagrange, and
P. Wenger. Guaranteed detection of the singularities
of 3R robotic manipulators. Mechanical Sciences, 7(1):
31–38, 2016. doi: 10.5194/ms-7-31-2016.

[5] M. Berz and G. Hoffstaetter. Computation and Appli-
cation of Taylor Polynomials with Interval Remainder
Bounds. Reliable Computing, 4:83–97, February 1998.
doi: 10.1023/A:1009958918582.

[6] O. Bohigas, D. Zlatanov, L. Ros, M. Manubens, and J. M.
Porta. A General Method for the Numerical Computation
of Manipulator Singularity Sets. IEEE Transactions on
Robotics, 30(2):340–351, April 2014. doi: 10.1109/TRO.
2013.2283416.

[7] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone.
GuSTO: Guaranteed Sequential Trajectory optimization
via Sequential Convex Programming. pages 6741–6747.
International Conference on Robotics and Automation
(ICRA), 2019. ISBN 978-1-5386-8176-3. doi: 10.1109/
ICRA.2019.8794205.

[8] Chong Jin Ong and E. G. Gilbert. Robot path planning
with penetration growth distance. In Proceedings of
the IEEE International Conference on Robotics and
Automation, pages 2146–2152 vol.3, May 1994. doi:
10.1109/ROBOT.1994.350965.

[9] F. Cusumano, R. Lampariello, and G. Hirzinger. Devel-
opment of tele-operation control for a free-floating robot
during the grasping of a tumbling target. In International
Conference on Intelligent Manipulation and Grasping,
July 2004.

[10] A. Escande, S. Miossec, M. Benallegue, and A. Kheddar.
A Strictly Convex Hull for Computing Proximity Dis-
tances With Continuous Gradients. IEEE Transactions on
Robotics, 30(3):666–678, June 2014. ISSN 1941-0468.
doi: 10.1109/TRO.2013.2296332.

[11] G. Garofalo, C. Ott, and A. Albu-Schäffer. On the closed
form computation of the dynamic matrices and their
differentiations. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2364–2359,

Nov 2013. doi: 10.1109/IROS.2013.6696688.
[12] C. Gaz, F. Flacco, and A. De Luca. Identifying the

dynamic model used by the KUKA LWR: A reverse
engineering approach. pages 1386–1392, May 2014.
ISSN 1050-4729. doi: 10.1109/ICRA.2014.6907033.

[13] A. M. Giordano, G. Garofalo, M. De Stefano, C. Ott,
and A. Albu-Schäffer. Dynamics and control of a free-
floating space robot in presence of nonzero linear and
angular momenta. In IEEE 55th Conference on Decision
and Control (CDC), pages 7527–7534, Dec 2016. doi:
10.1109/CDC.2016.7799432.

[14] A. M. Giordano, G. Garofalo, and A. Albu-Schaffer.
Momentum dumping for space robots. In IEEE 56th An-
nual Conference on Decision and Control (CDC), pages
5243–5248, Dec 2017. doi: 10.1109/CDC.2017.8264434.

[15] A. M. Giordano, D. Calzolari, and A. Albu-Schäffer.
Workspace fixation for free-floating space robot oper-
ations. IEEE International Conference on Robotics
and Automation ICRA, 2018. doi: 10.1109/icra.2018.
8460478. URL https://elib.dlr.de/126555/.

[16] T. Hickey, Q. Ju, and M. H. Van Emden. Interval
arithmetic: From principles to implementation. Journal
of the ACM (JACM), 48(5):1038–1068, 2001. doi:
10.1145/502102.502106.

[17] O. Khatib and B. Siciliano. Springer handbook of
robotics. Springer International Publishing, 2016.

[18] J. Kotlarski, R. de Nijs, H. Abdellatif, and B. Heimann.
New interval-based approach to determine the guaranteed
singularity-free workspace of parallel robots. In Proc.
IEEE Int. Conf. Robotics and Automation, pages 1256–
1261, May 2009. doi: 10.1109/ROBOT.2009.5152221.

[19] R. Lampariello and G. Hirzinger. Generating feasible
trajectories for autonomous on-orbit grasping of spinning
debris in a useful time. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 5652–
5659, Nov 2013. doi: 10.1109/IROS.2013.6697175.

[20] R. Lampariello, D. Nguyen-Tuong, C. Castellini,
G. Hirzinger, and J. Peters. Trajectory planning for
optimal robot catching in real-time. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 3719–3726, June 2011. doi: 10.1109/
ICRA.2011.5980114.

[21] R. Lampariello, H. Mishra, N. Oumer, P. Schmidt, M. De
Stefano, and A. Albu-Schäffer. Tracking Control for the
Grasping of a Tumbling Satellite With a Free-Floating
Robot. 3:3638–3645, 2018. ISSN 2377-3774. doi: 10.
1109/LRA.2018.2855799.

[22] C. Luo, I. Safa, and Y. Wang. Approximating Gradients
for Meshes and Point Clouds via Diffusion Metric.
Computer Graphics Forum, 28(5):1497–1508, 2009. doi:
10.1111/j.1467-8659.2009.01526.x.

[23] Y. Masutani, F. Miyazaki, and S. Arimoto. Sensory
feedback control for space manipulators. In Proceedings,
International Conference on Robotics and Automation,
pages 1346–1351 vol.3, 1989.

[24] J-P Merlet. Interval analysis and robotics. In Robotics

https://ieeexplore.ieee.org/document/4058497
https://ieeexplore.ieee.org/document/4058497
https://ieeexplore.ieee.org/document/4058497
https://www.i6.in.tum.de/Main/Publications
https://www.i6.in.tum.de/Main/Publications
https://easychair.org/publications/paper/9Tz3
https://easychair.org/publications/paper/9Tz3
https://www.mech-sci.net/7/31/2016/
https://www.mech-sci.net/7/31/2016/
https://link.springer.com/article/10.1023%2FA%3A1009958918582
https://link.springer.com/article/10.1023%2FA%3A1009958918582
https://link.springer.com/article/10.1023%2FA%3A1009958918582
https://ieeexplore.ieee.org/document/6637092
https://ieeexplore.ieee.org/document/6637092
https://ieeexplore.ieee.org/document/8794205
https://ieeexplore.ieee.org/document/8794205
https://ieeexplore.ieee.org/document/350965
https://ieeexplore.ieee.org/document/350965
https://www.semanticscholar.org/paper/Development-of-tele-operation-control-for-a-robot-a-Cusumano-Lampariello/f49756f6a73c71917428a2d9220fee8046f35b4a
https://www.semanticscholar.org/paper/Development-of-tele-operation-control-for-a-robot-a-Cusumano-Lampariello/f49756f6a73c71917428a2d9220fee8046f35b4a
https://www.semanticscholar.org/paper/Development-of-tele-operation-control-for-a-robot-a-Cusumano-Lampariello/f49756f6a73c71917428a2d9220fee8046f35b4a
https://ieeexplore.ieee.org/document/6710113
https://ieeexplore.ieee.org/document/6710113
https://ieeexplore.ieee.org/document/6696688
https://ieeexplore.ieee.org/document/6696688
https://ieeexplore.ieee.org/document/6696688
https://ieeexplore.ieee.org/document/6907033
https://ieeexplore.ieee.org/document/6907033
https://ieeexplore.ieee.org/document/6907033
https://ieeexplore.ieee.org/document/7799432
https://ieeexplore.ieee.org/document/7799432
https://ieeexplore.ieee.org/document/7799432
https://ieeexplore.ieee.org/document/8264434
https://ieeexplore.ieee.org/document/8460478
https://ieeexplore.ieee.org/document/8460478
https://elib.dlr.de/126555/
https://dl.acm.org/doi/10.1145/502102.502106
https://dl.acm.org/doi/10.1145/502102.502106
https://ieeexplore.ieee.org/document/5152221
https://ieeexplore.ieee.org/document/5152221
https://ieeexplore.ieee.org/document/6697175
https://ieeexplore.ieee.org/document/6697175
https://ieeexplore.ieee.org/document/6697175
https://ieeexplore.ieee.org/document/5980114
https://ieeexplore.ieee.org/document/5980114
https://ieeexplore.ieee.org/document/8410765
https://ieeexplore.ieee.org/document/8410765
https://ieeexplore.ieee.org/document/8410765
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8659.2009.01526.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8659.2009.01526.x
https://ieeexplore.ieee.org/document/100167
https://ieeexplore.ieee.org/document/100167
https://link.springer.com/chapter/10.1007/978-3-642-14743-2_13

research, pages 147–156. Springer, 2010.
[25] R. E Moore. Interval analysis, volume 4. Prentice-Hall

Englewood Cliffs, NJ, 1966.
[26] H. Nakanishi and K. Yoshida. Impedance Control

for Free-flying Space Robots -Basic Equations and
Applications-. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3137–3142, 2006.

[27] K. Nanos and E. Papadopoulos. Avoiding dynamic
singularities in Cartesian motions of free-floating manip-
ulators. IEEE Transactions on Aerospace and Electronic
Systems, 51(3):2305–2318, July 2015. ISSN 2371-9877.
doi: 10.1109/TAES.2015.140343.

[28] E. Papadopoulos and S. Dubowsky. Dynamic Singulari-
ties in Free-floating Space Manipulators, pages 77–100.
Springer US, Boston, MA, 1993. ISBN 978-1-4615-
3588-1.

[29] E. Papadopoulos, I. Tortopidis, and K. Nanos. Smooth
Planning for Free-floating Space Robots Using Polyno-
mials. pages 4272–4277, 2005. ISBN 0-7803-8914-X.
doi: 10.1109/ROBOT.2005.1570777.

[30] E. D. Popova. Enclosing the solution set of parametric
interval matrix equation A(p)X = B(p). Numerical
Algorithms, 78(2):423–447, Jun 2018. ISSN 1572-9265.
doi: 10.1007/s11075-017-0382-1.

[31] H. G. Rex and J. Rohn. Sufficient Conditions for
Regularity and Singularity of Interval Matrices. SIAM
Journal on Matrix Analysis and Applications, 20, 10
1998. doi: 10.1137/S0895479896310743.

[32] J. Rohn and R. Farhadsefat. Inverse interval matrix: a
survey. Electronic Journal of Linear Algebra, 22(1):46,
2011.

[33] T. Rybus, J. Lisowski, K. Seweryn, and T. Barciński.
Numerical simulations and analytical analyses of the
orbital capture manoeuvre as a part of the manipulator-
equipped servicing satellite design. In Proceedings, 17th
International Conference on Methods Models in Automa-
tion Robotics (MMAR), pages 154–159, Aug 2012. doi:
10.1109/MMAR.2012.6347926.

[34] T. Rybus, T. Barciński, J. Lisowski, K. Seweryn,
J. Nicolau-Kukliński, J. Grygorczuk, M. Krzewski,
K. Skup, T. Szewczyk, and R. Wawrzaszek. Experi-
mental demonstration of singularity avoidance with tra-
jectories based on the Bézier curves for free-floating
manipulator. In 9th International Workshop on Robot
Motion and Control, pages 141–146, July 2013. doi:
10.1109/RoMoCo.2013.6614599.

[35] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Brad-
low, J. Pan, S. Patil, K. Goldberg, and P. Abbeel. Mo-
tion planning with sequential convex optimization and
convex collision checking. The International Journal
of Robotics Research, 33(9):1251–1270, 2014. doi: 10.
1177/0278364914528132. URL https://doi.org/10.1177/
0278364914528132.

[36] S. P. Shary. On full-rank interval matrices. Numerical
Analysis and Applications, 7(3):241–254, Jul 2014. ISSN
1995-4247. doi: 10.1134/S1995423914030069.

[37] Y. Umetani and K. Yoshida. Resolved motion rate control
of space manipulators with generalized Jacobian matrix.
IEEE Transactions on Robotics and Automation, 5(3):
303–314, June 1989. ISSN 2374-958X. doi: 10.1109/70.
34766.

[38] Y. Umetani and K. Yoshida. Workspace and Manipu-
lability Analysis of Space Manipulator. Transactions of
the Society of Instrument and Control Engineers, 26:188–
195, 01 1990. doi: 10.9746/sicetr1965.26.188.

[39] A. Werner, R. Lampariello, and C. Ott. Optimization-
based generation and experimental validation of optimal
walking trajectories for biped robots. pages 4373–4379,
2012. ISBN 978-1-4673-1735-1. doi: 10.1109/IROS.
2012.6386154.

https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/4058877
https://ieeexplore.ieee.org/document/1570777
https://ieeexplore.ieee.org/document/1570777
https://ieeexplore.ieee.org/document/1570777
https://link.springer.com/article/10.1007/s11075-017-0382-1
https://link.springer.com/article/10.1007/s11075-017-0382-1
https://epubs.siam.org/doi/10.1137/S0895479896310743
https://epubs.siam.org/doi/10.1137/S0895479896310743
https://eudml.org/doc/233362
https://eudml.org/doc/233362
https://ieeexplore.ieee.org/document/6347926
https://ieeexplore.ieee.org/document/6347926
https://ieeexplore.ieee.org/document/6614599
https://ieeexplore.ieee.org/document/6614599
https://ieeexplore.ieee.org/document/6614599
https://ieeexplore.ieee.org/document/6614599
https://journals.sagepub.com/doi/10.1177/0278364914528132
https://journals.sagepub.com/doi/10.1177/0278364914528132
https://journals.sagepub.com/doi/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364914528132
https://link.springer.com/article/10.1134/S1995423914030069
https://ieeexplore.ieee.org/document/34766
https://ieeexplore.ieee.org/document/34766
https://www.jstage.jst.go.jp/article/sicetr1965/26/2/26_2_188/_article
https://www.jstage.jst.go.jp/article/sicetr1965/26/2/26_2_188/_article
https://ieeexplore.ieee.org/document/6386154
https://ieeexplore.ieee.org/document/6386154
https://ieeexplore.ieee.org/document/6386154

	Introduction
	Trajectory Planning
	Related Work
	Contribution

	Preliminaries
	Kinematics and Dynamics of a Free-Floating Robot
	Dynamic Singularities and Relevant Properties
	Formal Numerical Methods

	S-Map Computation
	Criterion 1: Regularity of Interval Matrices
	Criterion 2: Determinant Evaluation using Taylor Models
	Complete Search: Branch and Bound
	Heuristic Pruning
	Point cloud computation
	Point cloud utilization

	S-Map Utilization
	Distance Function
	Segment Intersection
	Trajectory Planning

	Results
	S-Map computation for a planar 3-DOF space robot
	S-Map computation for a spatial 6-DOF space robot
	Example of trajectory planning using the S-Map

	Discussion
	Conclusion and Future Work

