Robotics: Science and Systems XVI

Eyes-Closed Safety Kernels: Safety of Autonomous Systems Under Loss of Observability

Forrest Laine, Chih-Yuan Chiu, Claire Tomlin

Abstract:

A framework is presented for handling a potential loss of observability of a dynamical system in a provably safe way. Inspired by the fragility of data-driven perception systems used by autonomous vehicles, we formulate the problem that arises when a sensing modality fails or is found to be untrustworthy during autonomous operation. We cast this problem as a differen- tial game played between the dynamical system being controlled and the external system factor(s) for which observations are lost. The game is a zero-sum Stackelberg game in which the controlled system (leader) is trying to find a trajectory which maximizes a function representing the safety of the system, and the unobserved factor (follower) is trying to minimize the same function. The set of winning initial configurations of this game for the controlled system represents the set of all states in which safety can be maintained with respect to the external factor, even if observability of that factor is lost. This is the set we refer to as the Eyes-Closed Safety Kernel. In practical use, the policy defined by the winning strategy of the controlled system is only needed to be executed whenever observability of the external system is lost or the system deviates from the Eyes-Closed Safety Kernel due to other, non-safety oriented control schemes. We present a means for solving this game offline, such that the resulting winning strategy can be used for computationally efficient, provably-safe, online control when needed. The solution approach presented is based on representing the game using the solutions of two Hamilton-Jacobi partial differential equations. We illustrate the applicability of our framework by working through a realistic example in which an autonomous car must avoid a dynamic obstacle despite potentially losing observability.

Download:

Bibtex:

  
@INPROCEEDINGS{Laine-RSS-20, 
    AUTHOR    = {Forrest Laine AND Chih-Yuan Chiu AND Claire Tomlin}, 
    TITLE     = {{Eyes-Closed Safety Kernels: Safety of Autonomous Systems Under Loss of Observability}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2020}, 
    ADDRESS   = {Corvalis, Oregon, USA}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2020.XVI.096} 
}