
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Continuous Integration over SO(3)
for IMU Preintegration

Cedric Le Gentil
Centre for Autonomous Systems
University of Technology Sydney

Australia
Email: cedric.legentil@student.uts.edu.au

Teresa Vidal-Calleja
Centre for Autonomous Systems
University of Technology Sydney

Australia
Email: teresa.vidalcalleja@uts.edu.au

Abstract—This paper presents a novel method for continuous
integration over the 3D rotation group SO(3). The key idea is to
model the system’s dynamics with Gaussian Processes (GPs) and
learn the GP training data to match the system’s instantaneous
angular velocity measurements. This is formulated as the min-
imisation of a simple cost function that leverages the application
of linear operators over GP kernels. The proposed integration
method over SO(3) is applied to the preintegration of inertial
data provided by a 6-DoF-Inertial Measurement Unit (IMU).
Unlike standard integration that requires the recomputation of
the integrals every time the estimate changes, preintegration
combines the IMU readings into pseudo-measurements that are
independent from the pose estimate and allows for efficient multi-
modal sensor-fusion. The pseudo-measurements generated by the
proposed method are named Unified Gaussian Preintegrated
Measurements (UGPMs). UGPMs rely on GP regression and
linear operators to analytically integrate the acceleration data.
Moreover, a mechanism for IMU bias and time-shift correction
is introduced to allow for seamless multi-modal state estimation.
Over quantitative experiments, we show that the UGPMs out-
perform the current state-of-the-art preintegration methods.

I. INTRODUCTION

A core component of any autonomous system is its ability
to localise itself in the environment. Throughout the years,
an abundance of localisation algorithms has been designed
based on many different sensor modalities. The development
of consumer electronics and especially smartphones made
some sensors, like digital cameras and Inertial Measurement
Units (IMUs), widely available and affordable. IMUs are
lightweight proprioceptive sensors that collect data about a
system’s acceleration and angular velocities. For these reasons,
IMUs are now ubiquitous in the robotics research field and
literature [5, 6, 20, 21].

While inertial data do not provide direct measurements
of the system’s pose (rotation and position) in space, given
initial pose and velocity conditions, one can integrate these
data following the classical mechanics’ equations to obtain
information about the system’s trajectory through time. How-
ever, this operation is not straightforward as rotations lie on
a manifold, called the Special orthonormal group in three
dimensions (SO(3)), and rotations are not commutative. It is
common to compute a discrete numerical integration assuming
piecewise constant angular velocities, which can be inaccurate.
This paper aims to overcome this issue by introducing a

novel continuous integration method based on an optimisation
approach using Gaussian Process (GP) models of the inertial
data.

In the context of pose estimation [12], the original pose
of the system (part of the state variables) is not accurately
known and changes over time during the estimation process.
The concept of preintegration [15] dissociates the computation
of the inertial data integrals from the initial conditions. The
authors of [8, 9] extended the preintegration theory from [15]
to perform computations on the SO(3) manifold instead of
the original Euler angle representation. Overall, preintegra-
tion allows for the pre-processing of the IMU into pseudo-
measurements, greatly improving the efficiency of inertial-
aided multi-sensor localisation algorithms [11, 14, 16, 17].

More recently, different techniques have been proposed to
improve the seminal works on preintegration. The method
presented in [11] relies on the assumption of constant true
acceleration to compute “closed-form” preintegrated measure-
ments as per [7]. A modular method relying on the as-
sumptions of constant angular velocities and accelerations has
been introduced in [22]. The authors claim faster computation
compared to [8] as well as marginal accuracy improvements.
These methods use motion models to create preintegrated mea-
surements. However, relying on arbitrary motion models while
a system’s motion is not constrained leads to inaccuracies.
Our previous work in [13] alleviates the dependence on a
motion model by employing GPs for continuous data-driven
probabilistic representation of the IMU measurements. This
continuous representation of the inertial measurements also
accommodates asynchronous sensors. While this last method
improves the accuracy of the preintegrated measurements by
using analytical integration over GP-modelled signals, it does
rely on the numerical integration of the gyroscope data in the
general scenario. The proper treatment of the angular velocities
is crucial to the overall accuracy as the integrated rotations
directly impact the velocity and position preintegrated mea-
surements. We aim in this paper to overcome the need for
numerical integration for the rotations, addressing a gap in
the preintegration literature.

Processing inertial constraints in a multi-sensor estima-
tion framework by using continuous state representations
has also been addressed in the literature. Generally, these
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representations lead to an increased number of residuals in
the optimisation cost function (one per IMU reading while
preintegration combines many readings into a few pseudo-
measurements), but this type of method can also accommodate
asynchronous sensors. In [3], a linear interpolation mechanism
between estimated poses is used to continuously characterise
the system’s trajectory. It corresponds to the assumption of
piecewise constant velocity. The framework presented in [10]
uses the linear combination of basis functions (B-Splines). The
GP-based approaches in [1] and [2] perform a maximum a
posteriori estimation of state variables and use GP regression
to query the state at any timestamp. The authors embed a
simple motion model in the GP kernel to make the method
computationally efficient. The proposed approach in this paper
combines concepts from [2] to perform continuous integration
of the system’s angular velocities to later produce accurate
preintegrated measurements.

The main contribution of this paper is to address the general
case of angular velocities integration over SO(3) using GPs
for direct inference of the system’s orientation. The proposed
approach entirely inherits the continuous and probabilistic
characteristics of GP regression, offering highly accurate per-
formances without relying on any explicit motion model. Our
novel method is used as part of an IMU preintegration tech-
nique that computes new measurements named Unified Gaus-
sian Preintegrated Measurements (UGPMs). We also provide
the derivations associated with a postintegration correction
mechanism that accounts for the IMU biases and the inter-
sensor time-shift. Finally, through quantitative evaluations, we
show that the proposed approach outperforms the current state-
of-the-art preintegration methods.

II. PROBLEM STATEMENT AND OVERVIEW

A. Inertial system
Let us consider a 6-Degree-of-Freedom (DoF)-IMU made

of a 3-axis gyroscope and a 3-axis accelerometer. Let us also
denote Rti

W , ptiW , and vtiW as the IMU orientation (a rotation
matrix ∈ SO(3)), position, and velocity at time ti, respectively.
The subscript W indicates that the world fixed frame FW
is used as a reference frame and the sensor’s dynamics is
governed by the following differential equations:

Ṙt
W (t) = Rt

W (t)ω(t)∧, (1)

v̇tW (t) = fW (t), (2)

ṗtW (t) = vtW (t), (3)

where ˙ is the differentiation operator with respect to time t,
fW the linear acceleration of the sensor in FW , ω the angular
velocity of the inertial frame relative to FW , and ∧ the operator
that transforms a 3-by-1 vector into a skew-symmetric matrix
as follows

ω∧ =

ω1

ω2

ω3

∧ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4)

The IMU provides proper accelerations f̃(ti) and angular
velocities ω̃(ti) measurements at time ti (i = 1, . . . , Q) in

the inertial frame FI . The link between {f̃(ti), ω̃(ti)} and
{fW (ti),ω(ti)} is as follows:

f̃(t) = Rt
W (t)>(fW (t)− g) + bf (t) + ηf (t),

ω̃(t) = ω(t) + bω(t) + ηω(t),

where g is the gravity vector in FW , bf and bω slowly varying
sensor biases, and ηf and ηω the zero-mean Gaussian noises
of variances σf and σω for the linear accelerations and angular
velocities respectively.

B. Preintegration

As in the seminal preintegration work [15], using the fact
that Rt

W (t) = Rt1
WRt

t1(t) and given known initial conditions
at t = t1, the IMU pose and velocity at t2 > t1 can be
computed by integrating (1), (2), and (3):

Rt2
W =Rt1

W∆Rt2
t1 ,

vt2W =vt1W + g∆t+ Rt1
W∆vt2t1 ,

pt2W =pt1W + vt1W∆t+
g∆t2

2
+ Rt1

W∆pt2t1 ,

with the preintegrated measurements ∆Rt2
t1 , ∆vt2t1 , and ∆pt2t1

defined as

∆Rt2
t1 =

t2∏
t1

exp
(
(ω̃(t)− bω(t))∧

)dt
, (5)

∆vt2t1 =

∫ t2

t1

Rt
t1(t)

(
f̃(t)− bf (t)

)
dt, (6)

∆pt2t1 =

∫ t2

t1

∫ t

t1

Rs
t1(s)

(
f̃(s)− bf (s)

)
dsdt. (7)

Both relevant preintegration works, the original [15] and
the more recent on manifold [8], integrate (5), (6), and (7)
numerically, directly using the discrete IMU measurements.
The rectangle rule for integration is employed in these cases.
It corresponds to the hypothesis of constant inertial mea-
surements between two consecutive measurement timestamps.
This can be intuitively seen as assuming piecewise constant
accelerations and angular velocities.

Our previous work in [13] attempts to solve (1), (2), and
(3) analytically using GPs as continuous models of the inertial
measurements. Unfortunately, (1) does not have any known
general analytical solution [4]. While an analytical method
for the 1-axis-rotation scenario was proposed, they still rely
on the iterative numerical integration of (5) over upsampled
gyroscope readings to solve for the general case (as done
in [14]). Overall, in real-world situations, the solution for
the 1-axis-rotation is not practical due to the presence of
biases in the gyroscope data breaking the property of rotation
commutativity needed to analytically integrate the angular
velocities. Hence, to leverage the 1-axis-rotation analytical
solution in real-world scenarios, one needs to provide the
method with either the perfect knowledge of the rotation axis
or the exact values of the gyroscope biases.

This work addresses the issue of continuous integration
over SO(3) in the general case. It allows for the derivation

 ���



of motion-model-free preintegrated measurements. Alleviating
motion assumptions leads to the reduction of the integration
noise and greater accuracy of the measurements.

C. Method overview

In the proposed method, the integration is first solved for
the rotation part ∆Rt2

t1 of the UGPMs, before the projection
of the accelerometer measurements in FI at time t1 and the
direct inference of ∆vt2t1 and ∆pt2t1 . Fig. 1 shows the block
diagram of the proposed approach. This is similar to the
pipeline proposed in [13] but with a “unified” treatment of
the rotational integration.

The novel SO(3) integration method relies on the simple
concept of finding the optimal (learning) training data for GP
inference. The optimisation is formulated following the non-
linear rules that govern the system’s dynamics over SO(3).
Further, from the optimised state variables (the learned training
data), the system’s orientation can be queried via standard GP
inference with linear operators.

The derivations of the UGPMs in Sections IV and V assume
that the IMU biases are known at the time of integration. As
this is not true in real-world scenarios, Section VI presents a
postintegration mechanism to correct the UGPMs according to
the updated knowledge of the biases. Note that the rotational
preintegrated measurements ∆Rt

t1(t) are equal to the rotation
matrices Rt

t1(t) under the assumption of noiseless inertial
readings and known gyroscope biases.

III. PRELIMINARIES

This section provides the reader with succinct background
knowledge about the SO(3) mathematical tools, GP regression
[18], and the application of linear operators to the covariance
kernels [19].

A. SO(3) mathematical tools

Rotations in SO(3) can be represented with rotation matrices
R ∈ R3×3 or rotation vectors r ∈ R3. A rotation vector can be
expressed as a rotation matrix with the exponential mapping

R = exp(r∧) = I +
sin(‖r‖)
‖r‖

r∧ +
1− cos(‖r‖)
‖r‖2

(r∧)2.

The other way around, a rotation matrix can be expressed
as a rotation vector thanks to the logarithmic mapping

r = log(R)∨ =
φ(R −R>)

2 sin(φ)
with φ = cos-1

( tr(R)− 1

2

)
,

and •∨ the inverse operation of •∧ defined in (4).
The right Jacobian of SO(3), formally defined as

Jr(r) = lim
∂r→0

log
(

exp
(
r∧
)>

exp
(
(r + ∂r)∧

))∨
∂r

,

corresponds intuitively to the mapping of a variation of the
rotation vector ṙ into a variation on the tangent space of the
manifold. It can be expressed in a closed-form solution as

Jr(r) = I− 1− cos(‖r‖)
‖r‖2

r∧ +
‖r‖− sin(‖r‖)

‖r‖3
(r∧)2. (8)

B. Gaussian process regression
GP regression is a non-parametric (data-driven) probabilistic

interpolation method that uses covariance functions to charac-
terise a signal. If we consider a signal h(x) of input space
x ∈ R represented with a zero-mean GP,

h(x) ∼ GP
(
0, kh(x, x′)

)
, (9)

the function kh(x, x′), also called the kernel, describes the
covariance between instances of h(x):

cov
(
h(x), h(x′)

)
= kh(x, x′).

Given noisy observations yi of h(x),

yi = h(xi) + η with η ∼ N (0, σ2
y), (10)

and i = 1, · · · , N , the prediction h∗(x) at any input x is
obtained as

h∗(x) =kh(x,x)
[
Kh(x,x) + σ2

yI
]−1

y (11)

var
(
h∗(x)

)
=kh(x, x)

- kh(x,x)
[
Kh(x,x) + σ2

yI
]−1

kh(x, x),

where y =
[
y1 · · · yN )

]>
, x =

[
x1 · · · xN

]>
,

kh(x,x) =
[
kh(x, x1) · · · kh(x, xN )

]
, kh(x, x) =

kh(x,x)
>, and

Kh(x,x) =


kh(x1, x1) kh(x1, x2) · · · kh(x1, xN )
kh(x2, x1) kh(x2, x2) · · · kh(x2, xN )

...
...

. . .
...

kh(xN , x1) kh(xN , x2) · · · kh(xN , xN )

 .
C. Linear operators and Gaussian process regression

Given the same GP-modelled signal h(x) (9) and noisy
observations yi (10), it is possible to infer analytically any
linear operation of the signal. Applying a linear operator Lxg
to the signal h(x) is written as

g(x) = Lxgh(x).

Note that for linear operators, Lxgh(x) does not correspond
to the multiplication of a matrix or vector Lxg with h(x), but
instead it is the application of the operator Lxg on h(x). As an
example, the differentiation operator ∂

∂x applied to h(x) can
be written as g(x) = ∂h(x)

∂x = Lxgh(x). While this notation
can be confusing at first, it becomes handy when defining the
variance of the inferred values g∗(x). The superscript • of a
linear operator L•? represents on which variable the operator
is applied.

Thus, the signal g(x) can be probabilistically inferred for
any value of the input variable x as

g∗(x) = Lxgkh(x,x)
[
Kh(x,x) + σ2

yI
]−1

y (12)

var
(
g∗(x)

)
= Lxgkh(x, x)Lxg

- Lxgkh(x,x)
[
Kh(x,x) + σ2

yI
]−1

kh(x, x)Lxg . (13)

Note that the right product of the linear operator implies its
application to the second argument of the preceding kernel
function. This is emphasised by the superscript of the linear
operator.
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3D Gyroscope

3D

Accelerometer

Optimisation-based GP

integration over SO(3)
∆R

Reprojection

and GP fitting

GP analytical integral

and double integral

∆v

∆p

ω̃(ti)

f̃(ti) ∆Rf̃(t)

Input Output

Fig. 1. Overview of the proposed preintegration method using Gaussian Processes (GP). It outputs pseudo-measurements called the Unified Gaussian
Preintegrated Measurements.

IV. SO(3) GAUSSIAN PROCESS INTEGRATION

Let us consider the IMU orientation in FI at t1 in its rotation
vector form rtt1(t) = log(Rt

t1(t))∨. The time derivative of
rtt1(t) is denoted ṙtt1(t) and represents a variation of the
orientation in the rotation vector form. The angular velocities
measured by the gyroscope correspond to the variation of the
IMU orientation in the tangent space of the manifold. Note
that using the right Jacobian of SO(3) (8), it is possible to
map ṙtW (t) to the tangent space of the manifold and obtain
the following equality

Jr(r
t
t1(t))ṙtt1(t) = ω(t). (14)

In simple words, the goal of our proposed GP integration
over SO(3) is to learn/optimise the values of ṙtit1 according to
(14) and the given gyroscope readings ω̃ti (i = 1 · · ·Q). The
key idea is that the estimates of the IMU orientation’s time
derivative, noted ˆ̇rtit1 , allow for the direct inference of the IMU
orientation rtt1

∗
thanks to the use of GP regression and linear

operators.

A. GP models

Let us model ṙtt1(t) as three independent GPs

(ṙtt1)j ∼ GP
(
0, krj (t, t

′)
)
,

where (•)j corresponds to the jth component of •. Then, it is
possible to infer ṙtt1

∗ and rtt1
∗

using (11) and (12):

(ṙtt1)∗j =krj (t, t)
[
Krj (t, t) + σ2

rI
]−1
ρj (15)

(rtt1)∗j =Ltrkrj (t, t)
[
Krj (t, t) + σ2

rI
]−1
ρj (16)

with t being the vector of IMU timestamps ti (i = 1 · · ·Q), ρj
the vector of (ˆ̇rtit1)j , and Ltr the integration operator defined
as Ltrh(t) =

∫ t
t1
h(x)∂x.

B. Cost function

Let us formulate the optimisation problem using GP-
inferred orientations and derivatives, and the gyroscope mea-
surements to minimise the cost function C

Ŝ = argmin
S

C(S), with C(S) =

Q∑
i=1

(
‖eiI‖2Ωωi

+‖eigp‖2Ωri
)

(17)

and find the optimal state Ŝ =
[
ρ1 ρ2 ρ3

]
(equal to

stacking ˆ̇rt1t1
> · · · ˆ̇rtQt1

>).

The first residual corresponds to the algebraic manipulation
of (14):

eiI = Jr(r
ti
t1

∗
)ṙtit1

∗ − ω̃ti ,

and Ω−1
ωi in (17) corresponds to the gyroscope’s measurement

covariance matrix.
GP inference in (15) can be seen as a dot product c>ρj

with c computed from the covariance vector and matrices,
and ρj part of the estimated state. As this operation is not
bijective, more than one ρj can lead to the same inference
values. Therefore, additional residuals to properly constrain
the estimated state are required:

eigp = ṙtit1
∗ − ˆ̇rtit1 ,

with Ω−1
ri in (17) corresponding to the diagonal matrix formed

with the GP-inferred variances. Intuitively, this imposes the
state variables to equal the inference at the same timestamps.

The optimisation problem (17) is solved using the
Levenberg-Maquardt algorithm. Once the state has converged,
(16) is used to infer the rotational part of the UGPM ∆Rt

t1 at
any timestamp t. The variance of ∆Rt

t1 is computed as per
(13).

V. VELOCITY AND POSITION PREINTEGRATION

While ∆vtt1(t) and ∆ptt1(t) cannot be expressed as linear
operations of the independent inertial signals (angular veloci-
ties and proper accelerations), one can project the accelerom-
eter measurements in FI at time t1 using the rotational prein-
tegrated measurements ∆Rt

t1(t) inferred at ti (i = 1, . . . , Q)
as per described in Section IV. This follows the formulation
introduced in [13]. Therefore, (6) and (7) can be expressed as
linear operations of the GP signals(

∆Rt
t1(t)(f̃(t)− b̄f (t))

)
j
∼ GP

(
0, kfj (t, t

′)
)
,

with b̄f being the prior knowledge of the accelerometer biases
at the time of integration.

Rewriting (6) and (7) as

∆vt2t1 =

(∆vt2t1)
1

(∆vt2t1)2

(∆vt2t1)3

 =

Ltv
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

1

Ltv
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

2

Ltv
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

3

 and

∆pt2t1 =

(∆pt2t1)
1

(∆pt2t1)
2

(∆pt2t1)3

 =

Ltp
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

1

Ltp
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

2

Ltp
(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)

3

 ,
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each component of ∆vt2t1 and ∆pt2t1 is inferred independently
using (12):

(∆vtt1)
j

∗ = Ltvkfj (t, t)
[
Kfj (t, t) + σ2

fjI
]−1

fj , (18)

var((∆vtt1)j
∗) = Ltvkfj (t, t)Ltv

- Ltvkfj (t, t)
[
Kfj (t, t) + σ2

fjI
]−1

kfj (t, t)Ltv,

and

(∆ptt1)j
∗ = Ltpkfj (t, t)

[
Kfj (t, t) + σ2

fjI
]−1

fj , (19)

var((∆ptt1)
j

∗) = Ltpkfj (t, t)Ltp
- Ltpkfj (t, t)

[
Kfj (t, t) + σ2

fjI
]−1

kfj (t, t)Ltp.

The vector fj consists of the set of training data(
∆Rt

t1(t)(f̃(t)− b̄f (t))
)
j

at t = ti (i = 1 · · ·Q).

VI. POSTINTEGRATION BIAS AND INTER-SENSOR
TIME-SHIFT CORRECTIONS

To correct the preintegrated measurements according to
new estimates of the IMU biases, a first-order expansion
mechanism has been presented in [15] under the assumption
of constant biases all along the integration window. In [13],
we extended this concept to inter-sensor time-shift correction.
Here, we are adapting the formulation introduced in [13] to
our novel SO(3) integration method.

In that regard, the preintegrated measurements (5), (6), and
(7) are expanded as

∆Rt2
t1(bω, δt) ≈∆Rt2

t1(b̄ω, δ̄t)

exp

((
∂∆R

t2
t1

∂bω
b̂ω +

∂∆R
t2
t1

∂δt
δ̂t

)∧)
, (20)

∆vt2t1(bf ,bω, δt) ≈∆vt2t1(b̄f , b̄ω, δ̄t) +
∂∆v

t2
t1

∂bf
b̂f

+
∂∆v

t2
t1

∂bω
b̂ω +

∂∆v
t2
t1

∂δt
δ̂t , (21)

∆pt2t1(bf ,bω, δt) ≈∆pt2t1(b̄f , b̄ω, δ̄t) +
∂∆p

t2
t1

∂bf
b̂f

+
∂∆p

t2
t1

∂bω
b̂ω +

∂∆p
t2
t1

∂δt
δ̂t , (22)

with bf = b̄f + b̂f , bω = b̄ω + b̂ω , and δt = δ̄t + δ̂t (•̄ is
the prior knowledge at the time of preintegration, and •̂ is the
correction estimate). The different Jacobians involved in (20),
(21), and (22) are detailed in the rest of this section.

A. Rotation Jacobians

1) Gyroscope biases: When inferring the components of
the UGPM’s rotational part (∆rtt1)

j
(16), one can see that the

inferred values depend on the gyroscope biases solely through
the training data ρj . Consequently,

∂(∆rtt1)
j

∂bω
= Ltrkrj (t, t)

[
Krj (t, t) + σ2

rI
]−1 ∂ρj

∂bω
. (23)

The Jacobians ∂ρj
∂bω

are computed numerically from Ŝ: once
the optimisation (17) converged, one component of the angular
velocity measurements ω̃t is perturbed with a small increment

before performing one step of the Levenberg-Maquardt algo-
rithm. Repeating this operation three times (one for each of the
bias components), the difference between the new estimates
Ŝbωj and Ŝ lead to the numerical differentiation of ∂ρj

∂bω
(j = 1 · · · 3). The Jacobians computed with (23) corresponds
to variations of the rotation vector. To match the Jacobians
in (20), these need to be mapped to the tangent space of the

manifold as
∂∆Rt

t1

∂bω
= Jr(r

t
t1

∗
)
∂∆rtt1
∂bω

2) Inter-sensor time-shift: The use of another linear oper-

ator allows the analytical derivation of
∂∆rtt1
∂δt

:

∂∆rt2t1
∂δt

=
∂

∂t1

∫ t1+∆t

t1

ṙtt1(t)dt =

L
t
rδt

(ṙtt1(t))1

Ltrδt (ṙtt1(t))2

Ltrδt (ṙtt1(t))3

 ,
with ∆t = t2 − t1. This is inferred following (16) using
Ltrδt instead of Ltr. As in the previous paragraph, the rotation
vector variation needs to be mapped to the tangent space of

the manifold with
∂∆Rt

t1

∂δt
= Jr(r

t
t1

∗
)
∂∆rtt1
∂δt

.

B. Velocity and position Jacobians

1) Accelerometer and gyroscope biases: Looking at (18)
and (19), one can see that ∆vt2t1 and ∆pt2t1 depends on bf
and only through the training data fWj . Consequently, the
Jacobians with respect to the accelerometer and gyroscope
biases in (21) and (22) can be inferred as

∂(∆vtt1)j
∂b•

= Ltvkrj (t, t)
[
Krj (t, t) + σ2

ωjI
]−1 ∂fWj

∂b•
(24)

∂(∆ptt1)j
∂b•

= Ltpkrj (t, t)
[
Krj (t, t) + σ2

ωjI
]−1 ∂fWj

∂b•
(25)

where b• is either bω or bf , the gyroscope and accelerometer
biases, respectively. The training data fWj depends on bω due
to the dependence of ∆Rt

t1(t) on bω . The Appendix provides
the expression of ∂fWj

∂bf
and ∂fWj

∂bω
.

2) Inter-sensor time-shift: According to (18) and (19),
∆vt2t1 and ∆pt2t1 depends on the inter-sensor time-shift δt
both through Ltvkfj (t, t), Ltvkfj (t, t), and fWj (as per the
projection with ∆Rti

t1 ). Consequently,

∂(∆vtt1)
j

∂δt
=Ltvδt krj (t, t)

[
Krj (t, t) + σ2

ωjI
]−1

fWj

+ Ltvkrj (t, t)
[
Krj (t, t) + σ2

ωjI
]−1 ∂fWj

∂δt
,

(26)

with Ltvδt = ∂
∂t1
Ltv = Lt1d Ltv . The computation

∂∆p
t2
t1

∂δt
follows

(26) using Ltpδt = ∂
∂t1
Ltp = Lt1d Ltp instead of Lvδt . One can

obtain ∂fWj

∂δt
numerically or deducing it from

∂(∆rtt1
)
j

∂δt
.

VII. EXPERIMENTS

In this section, we present quantitative evaluations of the
UGPMs compared with state-of-the-art IMU preintegration
approaches. All the quantitative experiments shown in this
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section have been computed over 100-trial Monte-Carlo sim-
ulations. We also provide the reader with an example of the
seamless integration of the UGPMs in a lidar-inertial locali-
sation and mapping framework to validate the postintegration
bias and time-shift corrections and the overall soundness of
the UGPMs.

A. Implementation

To perform the estimation of the state Ŝ, we provide the
minimisation problem (17) with a prior based on a variant
of the Gaussian Preintegrated Measurements (GPMs) using
linear interpolation between IMU measurements instead of
GP regression. We name this computationally efficient variant
Linear Preintegrated Measurement (LPM).

Due to the matrix inversion in (11), GP regression suffers
from a cubicO(n3) computational complexity. To mitigate this
issue, we propose to divide a given integration window [t1, t2]
into a succession of smaller intervals, e.g. [t1, ta] and [ta, t2]
with t1 < ta < t2. The resulting preintegrated measurements
are combined as ∆Rt2

t1 = ∆Rta
t1 ∆Rt2

ta , ∆vt2t1 = ∆vtat1 +
∆Rta

t1 ∆vt2ta , and ∆pt2t1 = ∆ptat1 +(t2−ta)∆vtat1 +∆Rta
t1 ∆pt2ta .

This “divide-and-conquer” strategy will be referred as UGPM
(chunk) and will be compared to the direct computation of the
UGPMs over the full window [t1, t2].

Our UGPM implementation1 is based on the square expo-
nential kernel parameterised by a length scale and the signal’s
variance (the so-called hyperparameters) [18]. For the velocity
and position part of the UGPMs, it is possible to learn these
hyperparameters directly from the data. For the rotational part,
we use a simple arbitrary heuristic as the current stage of the
UGPMs cannot learn these hyperparameters from the data.
The length scale is set as five times the period of the IMU
readings, and the variance is empirically computed from the
state S prior. Learning the hyperparameters for the rotations is
part of our future work, as we believe it can further improve
the accuracy of the UGPMs.

The computations of the UGPMs and GPMs between t1 and
t2 leverage the IMU measurements collected in a time window
equal to [t1 − o, t2 + o], with o being a temporal overlap
of 150 ms. All the methods tested have been implemented in
C++ using Ceres2 to solve the optimisation problem (17) of
the UGPMs.

B. Simulation

1) Accuracy: With this set-up we aim at evaluating the
accuracy of the proposed UGPMs against different techniques:
the standard Preintegrated Measurements (PMs) [8], the GPMs
[13], and the LPMs (a variant of the GPMs using linear
interpolation instead of GP regression, equivalent to constant
jerk and constant angular acceleration motion models). This
panel of methods represents the range of methods present
in the literature with the PMs using a restrictive motion
model (constant accelerations and angular velocities at IMU
frequency), the LPMs based on a very permissive model

1https://github.com/UTS-CAS/ugpm.
2Non-linear optimisation library http://ceres-solver.org/.

(constant jerk and angular acceleration at high frequency), and
the GPMs as a motion-model-free approach. The UGPMs and
GPMs use a type of covariance kernel parameterised with a
few hyperparameters that can be either learnt from the data
at hand or empirically set. In this experiment, we evaluate
both methods with and without the hyperparameter training.
However, as mentioned above for the rotational part of the
UGPMs, the hyperparameters are only heuristically set. The
arbitrary priors detailed in Subsection VII-A are used in this
case.

The preintegration methods are benchmarked over integra-
tion windows from 50 ms to 1 s of length. These durations
can typically be found in Visual-Inertial Odometry (VIO)
frameworks to constrain the system’s motion estimate between
consecutive keyframes. The simulated IMU provides data at
100 Hz with realistic noise of 0.04 m/s2 and 0.01 rad/s. Two
motion types are used: Slow and Fast. Respectively, they
correspond to average velocities of 9.7 m/s and 32.2 m/s, and
average angular velocities of 3.4 rad/s and 19.4 rad/s. These
are constructed based on sinusoidal functions of frequencies
between 0.05Hz to 1Hz for the rotation and 0.05Hz to 1.5Hz
for the velocity. The results are shown in Table I.

For slow trajectories, the LPMs, GPMs and UGPMs perform
quite similarly, with a slight advantage for the UGPMs on
longer integration windows. It is interesting to observe that
the GPM hyperparameter learning is needed to outperform the
simple LPMs in this scenario. We believe that the inertial data
from these slow trajectories can be well approximated with
high-frequency piecewise linear models and that the represen-
tativity of the GPs offers only a marginal improvement.

In the case of fast motion, the UGPMs significantly outper-
form any other technique. The 4-fold gap between the UGPMs
and GPMs shows how important the integration of the angular
velocities is for the overall accuracy (rotation and position) as
both methods share the same pipeline for the generation of the
position measurements. Additionally, it seems that learning the
hyperparameters for the position part of the UGPMs does not
improve significantly the method’s accuracy. Also, it is worth
noting that the per-chunk UGPM variant (based on intervals
of maximum 0.2s) performs similarly to the standard UGPMs
while being computationally much more efficient as it will be
shown in Subsection VII-B4.

2) Robustness to noise: This set-up analyses the impact that
the sensor noise has on the preintegrated measurements gener-
ated with three different methods. The graph in Fig. 2 shows
the independent variations of the accelerometer and gyroscope
noises (if variating the accelerometer noise, the gyroscope
noise is null, and vice-versa). Fast and slow trajectories over
1.0 s are used in the experiment. Here both the UGPMs and
GPMs use learnt hyperparameters when applicable.

While the plots confirm the global superiority of the UGPMs
in terms of accuracy, it also shows that the proposed method
reduces the integration noise to negligible values. Indeed, on
both plots, the errors of the UGPMs (rotation and position)
converge towards zero as the sensor noise standard deviation
goes towards zero. In the case of the LPMs and GPMs, the
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Slow motion - Average absolute and relative rotation and position errors

∆t [ ms]
(t2 − t1) Error type PM [8] LPM GPM [13] GPM

[13](train) UGPM UGPM
(train)

UGPM
(chunk)

Rot abs. er. [ mrad] 4.18 ± 2.88 0.372 ± 0.149 0.322 ± 0.143 0.255 ± 0.119 0.337 ± 0.142 0.337 ± 0.142 0.337 ± 0.14
Rot rel. er. 9.63% 1% 0.849% 0.677% 0.911% 0.911% 0.91%

Pos abs. er. [ mm] 2.25 ± 1.29 0.037 ± 0.016 0.035 ± 0.014 0.020 ± 0.011 0.035 ± 0.014 0.020 ± 0.011 0.035 ± 0.014
0.05

Pos rel. er. 2.48% 0.0403% 0.0384% 0.0214% 0.0384% 0.0215% 0.0384%

0.1

Rot abs. er. [ mrad] 5.08 ± 3.19 0.521 ± 0.224 0.49 ± 0.204 0.428 ± 0.16 0.463 ± 0.199 0.463 ± 0.199 0.462 ± 0.199
Rot rel. er. 5.66% 0.641% 0.599% 0.528% 0.564% 0.564% 0.563%

Pos abs. er. [ mm] 5.12 ± 2.76 0.108 ± 0.046 0.108 ± 0.047 0.073 ± 0.033 0.108 ± 0.047 0.073 ± 0.033 0.108 ± 0.047
Pos rel. er. 2.64% 0.0524% 0.0522% 0.0351% 0.0523% 0.035% 0.0523%

Rot abs. er. [ mrad] 6.54 ± 3.79 1.39 ± 0.504 1.73 ± 0.796 1.38 ± 0.508 1.17 ± 0.48 1.17 ± 0.48 1.16 ± 0.484
Rot rel. er. 1.69% 0.405% 0.468% 0.397% 0.344% 0.344% 0.342%

Pos abs. er. [ mm] 24.9 ± 14.6 1.38 ± 0.56 1.79 ± 0.925 1.33 ± 0.543 1.41 ± 0.554 1.34 ± 0.548 1.39 ± 0.552
0.5

Pos rel. er. 2.7% 0.138% 0.176% 0.133% 0.141% 0.133% 0.138%

1

Rot abs. er. [ mrad] 9.5 ± 5.14 1.76 ± 0.819 3.65 ± 2.27 1.77 ± 0.827 1.47 ± 0.638 1.47 ± 0.638 1.47 ± 0.634
Rot rel. er. 1.18% 0.226% 0.44% 0.227% 0.19% 0.19% 0.189%

Pos abs. er. [ mm] 53.5 ± 28.2 4.75 ± 1.72 12.2 ± 9.22 4.84 ± 1.76 4.64 ± 1.75 4.41 ± 1.78 4.49 ± 1.72
Pos rel. er. 2.74% 0.249% 0.633% 0.252% 0.241% 0.227% 0.233%

Fast motion - Average absolute and relative rotation and position errors

∆t [ ms]
(t2 − t1) Error type PM [8] LPM GPM [13] GPM

[13](train) UGPM UGPM
(train)

UGPM
(chunk)

Rot abs. er. [ mrad] 25.2 ± 15.1 1.33 ± 0.49 1.34 ± 0.486 1.31 ± 0.491 0.326 ± 0.142 0.326 ± 0.142 0.327 ± 0.142
Rot rel. er. 10.6% 0.621% 0.626% 0.608% 0.157% 0.157% 0.158%

Pos abs. er. [ mm] 27.2 ± 14.4 0.82 ± 0.409 0.063 ± 0.028 0.057 ± 0.028 0.039 ± 0.016 0.034 ± 0.015 0.039 ± 0.016
0.05

Pos rel. er. 7.2% 0.215% 0.017% 0.0153% 0.0105% 0.00897% 0.0105%

0.1

Rot abs. er. [ mrad] 28.9 ± 16 2.73 ± 1.06 2.75 ± 1.05 2.72 ± 1.05 0.483 ± 0.194 0.483 ± 0.194 0.483 ± 0.194
Rot rel. er. 6.32% 0.634% 0.641% 0.635% 0.112% 0.112% 0.111%

Pos abs. er. [ mm] 63.7 ± 31 2.02 ± 0.781 0.374 ± 0.223 0.37 ± 0.222 0.128 ± 0.060 0.127 ± 0.061 0.128 ± 0.060
Pos rel. er. 8.41% 0.277% 0.0501% 0.0497% 0.0175% 0.0174% 0.0176%

Rot abs. er. [ mrad] 66.7 ± 25 8.19 ± 2.6 8.21 ± 2.6 8.2 ± 2.61 1.18 ± 0.487 1.18 ± 0.487 1.18 ± 0.485
Rot rel. er. 2.82% 0.345% 0.346% 0.346% 0.0503% 0.0503% 0.0504%

Pos abs. er. [ mm] 300 ± 111 19.5 ± 9.61 14.6 ± 8.2 14.6 ± 8.16 2.89 ± 1.52 2.89 ± 1.5 2.89 ± 1.52
0.5

Pos rel. er. 7.47% 0.489% 0.36% 0.359% 0.0716% 0.0718% 0.0716%

1

Rot abs. er. [ mrad] 49.3 ± 22.3 5.79 ± 2.27 5.73 ± 2.24 5.74 ± 2.23 1.59 ± 0.759 1.59 ± 0.759 1.59 ± 0.756
Rot rel. er. 1.07% 0.124% 0.123% 0.124% 0.0338% 0.0338% 0.0337%

Pos abs. er. [ mm] 574 ± 211 50.9 ± 22.8 42.6 ± 20.2 42.4 ± 20.3 8.7 ± 3.62 8.72 ± 3.65 8.7 ± 3.64
Pos rel. er. 7.28% 0.642% 0.532% 0.531% 0.11% 0.11% 0.11%

TABLE I
AVERAGE ABSOLUTE AND RELATIVE ERROR OF PREINTEGRATED MEASUREMENTS FOR DIFFERENT TRAJECTORIES IN SIMULATED ENVIRONMENTS

(OVER 100 TRIALS) FOR DIFFERENT FIXED INTEGRATION WINDOWS.

errors do not get under a certain value even when considering
noiseless inertial data. The Gyroscope noise variation plots
of Fig. 2 also shows the importance of accurate preintegrated
rotations for the overall accuracy. One can see that an increase
in the gyroscope noise (with noiseless accelerometer mea-
surements) eventually lead to position inaccuracies because of
the rotational errors that are larger than when applying only
accelerometer noise.

3) Biases, time-shift, and corrections: This series of ex-
periments aim at both analysing the sensitivity of the UGPMs
with respect to non-Gaussian perturbations of the input signals,
and demonstrating the postintegration correction mechanism
developed in this paper. In that regard, the gyroscope and ac-
celerometer measurements have been offset individually with
constant additive biases. Table II (a) and (b) show the relative
errors of the “raw” UGPMs (without any prior knowledge of
the biases present in the data, and without any correction) for
different magnitudes of biases. The numbers are consistent
with the curves of the previous experiment in the fact that pre-
integration is more sensitive to perturbation on the gyroscope

data than on the accelerometer data. Table II also provides the
pose error of the UGPMs after correction using the first-order
Taylor expansion presented in (20) and (22). One can see that
for reasonable bias offset (< 0.3rad/s and < 1m/s2) with
respect to the prior knowledge of the biases, the postintegration
correction performs well and leads to errors in the same order
of magnitude as for the bias-free scenario.

Additionally to the gyroscope and accelerometer bias anal-
ysis, Table II (c) shows the effect of inter-sensor temporal
asynchrony. To simulate the issue of time-shift between an
IMU and another sensor, preintegration has been performed
using erroneously stamped inertial data (constant offset). The
results show that for slow motion UGPMs can be corrected to
bias-free levels when the time-shift is under ≈ 50ms. In the
case of fast motion, the assumption of local linearity between
the preintegrated measurements with respect to the time-shift
is much weaker and decent correction can only be expected
when the asynchrony is under ≈ 10ms.

4) Computation time: In this subsection, we discuss the
computation time of the different methods benchmarked in
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UGPM relative error [%] vs gyroscope biases perturbation - Raw UGPMs and corrected UGPMs (“Cor.”)
Bias norm [rad/s] → 0.01 0.05 0.1 0.2 0.4 0.6 0.8 1
Motion and error type ↓ Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor.

Slow Rot er. 1.31 0.21 6.49 0.21 13 0.23 25.9 0.33 51.9 0.98 77.8 2.13 104 3.75 130 5.77
Fast Rot er. 0.15 0.03 0.75 0.03 1.51 0.04 3.01 0.08 6.03 0.32 9.05 0.71 12.1 1.26 15.1 1.95

Slow Pos er. 0.71 0.26 3.24 0.27 6.45 0.30 12.9 0.69 25.7 2.57 38.4 5.75 51 10.2 63.4 15.8
Fast Pos er. 0.25 0.11 1.11 0.11 2.2 0.12 4.39 0.23 8.77 0.83 13.1 1.86 17.5 3.31 21.9 5.17

(a)

UGPM relative error [%] vs accelerometer biases perturbation - Raw UGPMs and corrected UGPMs (“Cor.”)
Bias norm [m/s2] → 0.01 0.05 0.1 0.2 0.4 0.6 0.8 1

Motion and error type ↓ Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor.
Slow Pos er. 0.37 0.26 1.35 0.26 2.67 0.26 5.33 0.26 10.6 0.27 16 0.26 21.3 0.26 26.6 0.26
Fast Pos er. 0.12 0.11 0.26 0.11 0.49 0.11 0.97 0.11 1.94 0.11 2.92 0.11 3.89 0.11 4.86 0.11

(b)

UGPM relative error [%] vs inter-sensor time-shift - Raw UGPMs and corrected UGPMs (“Cor.”)
Time-shift [s] → 0.001 0.005 0.01 0.02 0.04 0.06 0.08 0.1

Motion and error type ↓ Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor. Raw Cor.
Slow Rot er. 0.24 0.21 0.70 0.24 1.37 0.31 2.73 0.48 5.46 0.88 8.19 1.33 10.9 1.82 13.7 2.36
Fast Rot er. 0.13 0.06 0.65 0.27 1.3 0.54 2.6 1.07 5.19 2.15 7.75 3.31 10.3 4.57 12.7 5.96

Fast Pos er. 0.30 0.26 0.93 0.26 1.83 0.26 3.65 0.27 7.31 0.36 11 0.64 14.6 1.08 18.2 1.62
Slow Pos er. 1.43 0.11 7.13 0.30 14.2 1.12 28.3 4.47 55.5 17.9 80.5 40 103 70.4 121 108

(c)

TABLE II
AVERAGE RELATIVE POSE ERRORS OF THE UGPMS (OVER 100 TRIALS WITH INTEGRATION WINDOWS OF 1s) IN THE PERSENCE PERTURBATIONS OF THE
INERTIAL DATA (ADDITIVE BIASES AND CONSTANT TIME-SHIFT). BOTH THE ERROR FOR THE RAW UGPMS AND THE CORRECTED UGPMS ACCORDING

TO THE FIRST-ORDER TAYLOR EXPANSION ARE REPORTED IN THIS TABLE.

VII-B1. We compute the preintegrated measurements over
different integration intervals with a low-end desktop computer
equipped with an Intel i5-4590 CPU working at 3.30 GHz, and
24 GiB of RAM.

While GP regression is an accurate, probabilistic inter-
polation method, it suffers from a cubic computation com-
plexity with respect to the number of noisy observations.
Consequently, the UGPMs and GPMs can be computationally
intensive for longer integration windows. Table III shows the
average run time over 100 runs for each method. UGPMs are
significantly slower than the other methods but still are able
to perform in real-time for integration intervals under 3.5 s
(accounting for the fact that the hyperparameters’ training in
the UGPMs can be omitted due to the marginal improvement
of the results, c.f. Subsection VII-B1). However, the per-
chunk variant of the UGPMs displays a linear computational
complexity O(n) by dividing long integration intervals in a
succession of intervals under 0.2s. This allows for real-time
operations regardless of the length of the integration windows
and without any significant difference in accuracy as discussed
in Subsection VII-B1.

Table III also shows the efficiency of the LPMs. They
represent a great alternative to the GPMs for fast computations,
giving similar performances, as shown in Table I.

C. Real-world validation

In real-world data, the IMU measurements are subject to
slowly varying additive biases. As these are not accurately
known at the time of integration, a mechanism is needed
to later compensate these data collection artefacts. This set-
up aims at demonstrating the soundness of the UGPMs and

Computation time [ms]

∆t
[ms] PM [8] LPM GPM

[13]
GPM

[13](train) UGPM UGPM
(train)

UGPM
(chunk)

50 0.013 0.44 1.81 4.08 5.56 8.91 5.04
100 0.019 0.52 2.13 4.84 7.79 10.2 6.04
500 0.069 0.62 8.05 20.3 40.0 55.9 29.7
1000 0.13 3.08 25.9 65.8 176 231 134
1500 0.20 1.61 52.7 131 420 537 136
2000 0.27 1.19 109 235 833 1059 105
2500 0.32 1.44 181 389 1397 1778 127
3000 0.39 1.81 269 624 2180 2798 158
3500 0.45 2.23 383 937 3246 4180 182

TABLE III
AVERAGE COMPUTATION TIME OF PREINTEGRATED MEASUREMENTS

(OVER 100 TRIALS) FOR DIFFERENT INTEGRATION INTERVAL LENGTHS
∆t = t2 − t1 . IMU FREQUENCY 100 Hz, UPSAMPLED FREQUENCIES

500 Hz (GPMS’ ROTATIONS AND LPM).

their first-order Taylor expansion for postintegration IMU bias
and time-shift correction in a real-world scenario. The second
objective of this experiment is to show the applicability of the
UGPMs for inertial-aided multi-modal state estimation.

For that purpose, we have integrated the UGPMs into a
lidar-inertial localisation and mapping framework [14]. This
framework uses the UGPMs to asynchronously characterise
the system’s motion while moving in the environment. It
allows for the rigorous correction of the motion distortion in
the lidar scans and constrains the system’s pose between two
consecutive pose estimates. The lidar data is used in frame-to-
frame constraints based on the minimisation of point-to-line
and point-to-plane distances.

Data have been collected in an indoor environment using a
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Fig. 2. Average preintegrated error in simulated environments (over 100
trials) for different levels of IMU noise. The position error (pos. error) plots
correspond to the left axis and the rotation error (rot. error) to the right axis.
The integration interval length is 1.0 s. IMU frequency 100 Hz, upsampled
frequencies 500 Hz (GPMs’ rotations and LPM).

Velodyne VLP-16 lidar and an Xsens Mti3 IMU. The dataset
has a duration of 30 s. Fig. 3 shows the resulting map and
trajectory. It demonstrates the ability for the UGPMs to be
integrated seamlessly in any inertial-aided state estimation
framework.

VIII. CONCLUSION

We presented a novel continuous integration method over
SO(3). This is a challenging task as there is no known closed-
form solution to the differential equations that govern the
rotational dynamics of a system. The proposed method uses
GPs to model the temporal derivatives of the system’s rotation
vector. The training data of these GPs are found through the
minimisation of a cost function that relates the GP-modelled
dynamics and the system’s angular velocity measurements.
Using GP regression and the application of linear operators to
the kernels, the orientation of the system can be inferred at any
timestamp. This integration method is used for the generation
of UGPMs that are our proposed new type of preintegrated
measurements for analytical inference of the acceleration inte-
grals. Through experiments, we demonstrated that the UGPMs

2.25 m

Fig. 3. Validation of the applicability of the proposed preintegrated
measurements (UGPMs) for inertial-aided state estimation (here with a lidar-
inertial localisation and mapping framework). Top: Top-view of the resulting
map and trajectory. Bottom left: Inner view of the map. Bottom right: Camera
picture for reference (not used in the estimation process).

outperform the current state-of-the-art preintegration methods
and that they are suited for seamless integration in multi-modal
inertial-aided navigation systems. Our results also highlight the
importance of the proper treatment of the angular velocities
as inaccuracies in the integrated rotations lead to inaccurate
position preintegrated measurements.

To date, the UGPMs’ components are not correlated (diag-
onal covariance matrix) as per the use of independent GPs.
Additionally, the kernels’ hyperparameters for the rotational
part are set according to an arbitrary heuristic. Our future work
includes the investigation of multi-output GP regression for the
generation of correlated UGPMs, and studying the literature
on GP hyperparameter optimisation.

APPENDIX
JACOBIANS FOR IMU BIASES CORRECTION

This appendix provide the expression of ∂fWj

∂bf
and

∂fWj

∂bω
used in (24) and (25). The projected accelerome-

ter values are represented by the fWj vectors: fWj =[ (
∆R

t1
t1

(t1)(f̃(t1)−b̄f (t1))
)
j

···(
∆R

tQ
t1

(tQ)(f̃(tQ)−b̄f (tQ))
)
j

]
. As ∂ f̃(t)

∂bf (t) = I, ∂fWj

∂bf
=[

[∆R
t1
t1

(t1)]
(j,:)

···
[∆R

tQ
t1

(tQ)]
(j,:)

.

]
with [M](j,:) being the operator that isolates

the jth row of M.
As ∆Rti

t1(ti) depends on bω ,

∂fWj

∂bω
=

 ∂

(
∆R

t1
t1

(bω,δt )(f̃(t1)−b̄f (t1))

)
j

∂bω···
∂

(
∆R

tQ
t1

(bω,δt )(f̃(tQ)−b̄f (tQ))

)
j

∂bω

 =

[
J1
fj
···
JQfj

]
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where

J ifj = [
(
∆Rti

t1(b̄ω, δ̄t)
)>

qj
(
f̃(ti)− b̄f (ti)

)>
]
(:)T

∂[exp
(

(a)∧
)

]
(:)T

∂a

∣∣∣∣
a=0

∂∆R
ti
t1

(t)

∂bω
,

q1 = [ 1 0 0 ]>, q2 = [ 0 1 0 ]>, q3 = [ 0 0 1 ]>, [M](:)T the
operator that transforms a r-by-c matrix M into a rc-by-1
column-major vector, and

∂[exp
(

(a)∧
)

]
(:)T

∂a

∣∣∣∣
a=0

=
[

0 0 0 0 0 1 0 -1 0
0 0 -1 0 0 0 1 0 0
0 1 0 -1 0 0 0 0 0

]>
.
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