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Abstract—In this work, we analyze and present an algorithm
to find shortest-paths for generic rigid bodies. We derived the
necessary conditions for optimality using Lagrange multipliers,
and compared it to the conditions derived from Pontraygin’s
Maximum Principle. We derived the equations of the necessary
conditions using geometric Jacobian, drawing inspiration from
the similarity between the rigid-body systems and the arm-like
systems. In the previous work [30], the analysis focused on finding
shortest-paths to reach goals in positions only. This work extends
the analysis to find the shortest-path to reach a goal with complete
configuration in 3D. We show that the algorithm is resolution
complete even when the orientations are included. To overcome
the complexity of 3D orientations, we describe the system using
three points in the robot frame, and show that this parameter
system is redundant but can derive the same necessary conditions
as those derived using the minimum parameters (configuration).
We used a 3D Dubins system to demonstrate the correctness of
the analysis and the algorithm.

I. INTRODUCTION

In this work, we study the shortest-path problem for 2D and
3D generic rigid bodies reaching arbitrary configurations. The
shortest-path is time-optimal when each segment is followed
with the same speed, which corresponds to a sequence of con-
stant controls. The early studies of the shortest-path problem
date back to the late 1950s when Dubins presented the shortest
geodesics for what we now know as the Dubins’ car [13].
The model is a simplified version of a jet-airplane cruising at
the same altitude. Further studies of richer kinematic models
have been conducted, leading to known solutions to time-
optimal control structures for Reeds-Shepp car [22], Differ-
ential Drive [2, 9], and Omni-directional vehicle [3, 28]. The
study of such shortest-paths can further extend to 2D generic
rigid bodies, but the extension to 3D has met many challenges.

There have been well-known theorems that give constraints
for shortest-paths. Many of the solutions derived above were
built upon the Pontryagin’s Maximum Principle (PMP) [21].
At the same time, the Hamilton-Jacobi-Bell (HJB) equations
also give strong conditions for optimality, which is less suited
for analysis compared to PMP, but often is the basis for
numerical solutions for optimal-control problems. PMP gave
strong necessary conditions for optimality, introducing an ad-
joint function along the trajectory. To find the adjoint function,

however, requires the integration of complex functions, which
may not always be feasible.

In this work, we study the optimization problem using the
Lagrange multipliers, and show that the Lagrange multipliers
are similar to the adjoint functions introduced in PMP. The
reason we attempt to use the Lagrange multipliers to derive
the necessary conditions is that this process involves mostly
derivation, versus integration when deriving the conditions
using PMP. In 2D, we prove that the necessary conditions
derived from Lagrange multipliers and PMP are in exactly the
same form for full configuration constraints. What is more, in
2D, if we change the representation of the parameters from
configuration (x, y, θ) to two fixed points in the robot frame,
the derived necessary conditions hold. In 3D, however, no
matter what parameterization we choose, the adjoint function
from PMP cannot be easily integrated. We therefore derive the
necessary conditions in 3D using three fixed points in the robot
frame with Lagrange multipliers. Even though the conditions
introduced by the Lagrange multipliers are weaker than that
derived from PMP, combined with geometric reasoning, the
conditions from both derivations can be mostly equivalent .

Based on the derived necessary conditions, we show the
resolution complete algorithm in [30] can be extended to find
shortest-paths reaching arbitrary configurations for generic
rigid bodies. Specifically, we demonstrate the correctness of
the algorithm with a 3D Dubins model and show that the
shortest-path of a 3D rigid body can be found using a three-
dimensional search when the control set is discrete. Such a
3D Dubins model may resemble a submarine more than an
airplane.

In Figure 1, we show the comparison of the paths found with
full configuration constraint (left panel, this work), and with
just position constraint (right panel, previous work [30]). By
approximately reaching the goal, we mean the error between
the actual end-configuration and the goal is small, with respect
to the given search resolution. In the figure, the yellow axes
are the world frame, the blue and green frames are the target
and actual reached goal configurations. The arrows of other
colors represent different rotation axes along the path. On the
right panel, though the path is very short and the goal position
is reached, the final orientation is quite different from what is
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Figure 1. Sample extremal paths, (approximately) reaching the same goal
(light blue). On the left panel, the path reaches the goal in full configuration;
on the right panel, the path reaches goal in position only.

desired, with x-axis of the robot frame aligned with the z axis
of the desired orientation.

The presented work also has a few weaknesses. First, we
skip the proof of the existence of the shortest-paths for generic
3D rigid bodies. Specifically, we do not rule out the possibility
of chatter. We can go around the issue by adding switch costs
to limit the number of controls used in optimal sequence,
though practically, our experiments with many random con-
figurations did not find chatter behavior. Second, we assume
the control set is discrete. Such assumption is valid for many
known systems where the optimal control set is proven to be
the (finite) vertices of the control region in the control space.
However, the assumption has not been proven to be sufficient
for 3D generic rigid bodies. The main contribution of this
work is the inclusion of orientations in the analysis and the
algorithm, and the equivalence of derivations from using PMP
and Lagrange multipliers. However, the resulting algorithm is
derivative from that presented in [30].

A. Related work

Most of the existing work on finding optimal trajectories
is built either on Hamilton-Jacobi-Bell (HJB) equations [5]
or Pontryagin’s Maximum Principle (PMP) [21]. The HJB
equations are often used to find numerical solutions to complex
systems directly as it provides sufficient conditions for opti-
mality. PMP, on the other hand, provides a strong necessary
condition and even local structures of control functions, which
can lead to even analytical solutions for some systems.

Our work follows directly from the long line of investigation
of the shortest geodesics problem, started back in 1957 by
Dubins [13]. These shortest geodesics describe the control
strategy of an airplane cruising at a fixed altitude, or a planar
with a fixed turning radius. The work was further extended
by Reeds and Shepp to allow backward motion [22], and then
further extended in [7, 26]. Control synthesis for this model
was later presented by Soueres and Lamound [23]. Studies
on robotics models such as Differential Drives [2, 9] and
Omni-directional vehicles [3, 28] were derived using PMP.
The work was further extended to generic planar rigid bodies
with arbitrary translations and rotations [17, 16, 15, 29].

Although these kinematic models can lead to nice theoreti-
cal results, they may not model the reality very well. Dynamic
effects and bounded accelerations can dramatically change the
control strategy. It was proved that no analytical solutions
of time-optimal trajectories exist for bounded-acceleration
vehicles [24, 25]. Different variations have been introduced
in the past, including underwater vehicles [10] and vehicles
under constant velocity fields [12].

When the acceleration is not bounded, like in the kinematic
models we study in this work, there is a chance that chattering
behavior may appear. In some systems, though, it can be
proved that there always exists non-chattering trajectories
which are equivalent [14], but the result is not general. By
applying Blatt’s Indifference Principle (BIP) [6], Lyu showed
that some cost associated with switches can be introduced to
simulate bounded accelerations [20, 19]. Those results only
apply when no obstacle is present. Though it is possible to
integrate obstacles into the conditions presented by PMP, the
integration would make the already complex problem even
more challenging. There exists work on measuring distances
between a car-like robot with obstacles [27, 18] and on
planning among simple obstacles for car-like systems [1, 11].

In 3D, the time-optimal trajectories are also more challeng-
ing to find, even for seemingly simple systems. A simplified
example of Dubins car with altitude control was presented
by Chitsaz and Lavalle [8], and the optimal control problem
for Dubins car was also studied in [31]. In recent work, we
have found an approach to find time-optimal trajectories for
generic 3D rigid-bodies, but only for reaching goal positions
rather than full orientations [30]. In this work, we extend the
result to 3D configurations and show a simplified search in
3D can still find time-optimal trajectories when controls are
given from a discrete set.

II. NECESSARY CONDITIONS FOR OPTIMALITY

In recent work [4], the authors showed that the models
of mobile vehicles are similar to that of arm-like systems,
but the analysis and comparison were primarily in 2D. One
of the weaknesses of the previous work in [4] and [30] is
that the Lagrange equations based derivations did not include
orientations. Whether the derived necessary conditions are
equivalent to that derived from PMP when the orientation is
included was not shown.

In this section, we first show that in 2D, the necessary
conditions derived using Lagrange equations and PMP for
full configuration constraints are equivalent. We further show
that when we change the parameterization in 2D from the
configuration ((x, y, θ)) to two points with fixed distance in
the robot frame, the derived conditions are still in the same
form.

We extend the notations to 3D and show the derived
necessary conditions in 3D that include the full configuration.
We will use the derived conditions to show that the algorithm
from [30] can be updated with minimum changes to find the
shortest path between two arbitrary configurations.
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We briefly restate the results from [4], which is the basis
of the following analysis. The configuration of a mobile robot
after the sequence of controls can be computed using forward
kinematics, just like how we compute the configuration of
the end effector of a robot arm. By control, we mean a
constant velocity motion, either a translation or rotation for
simplicity. Such simplification of controls enables the analysis
of paths with geometrical tools, leading to shortest geodesics,
or referred by some literature, time-optimal trajectories. Under
the assumption of constant velocity controls, for a given a goal
g and sequence of n controls with duration t1, t2, . . . , tn, we
can form the following constrained optimization problem to
find the shortest-paths,

min f(t) =

n∑
i=1

ti (1)

s.t. Tf = g (2)

where Tf is the result of multiplication of sequence of
transformation matrices in the given order. Readers can refer
to [4] for more details on Tf and how it is derived. Let us
denote h(t) = Tf − g. With the introduction of the Lagrange
multipliers, we would like to find a vector t such that

∇tf(t) = λ∇th(t), (3)

at points where h(t) = 0.
In this problem, ∇tf(t) is simply an n-vector of ones.

Writing the Lagrange condition out in matrix form, each
constraint is a column in the matrix, and the matrix is in
the same form as an analytical Jacobian for a serial arm. For
Cartesian coordinates, the analytical Jacobian is identical to
its geometric Jacobian. For rotational control, the geometric
Jacobian is computed as a cross-product between the rotation
axis and the vector pointing from the rotation center to g. For
translation, the geometric Jacobian is just the linear velocity
vector.

The necessary condition from [4] derived using the cross-
product rule with position constraints (Eq. (6)) is almost
identical to the condition derived using PMP [14], which is in
the form of

k1ẋ+ k2ẏ + ω(k1y − k2x+ k3) = H (4)

where ki and H are constants,
√
k2

1 + k2
2 = 1, ẋ and ẏ are

world-frame velocities for the robot, and ω is the angular
velocity. The missing term is associated with orientation,
which was not considered in previous work. We show below
that when we do consider the orientation, Eq. (4) can be
derived using the Lagrange multipliers.

A. Equivalent necessary conditions in 2D
Let the goal be g = (xg, yg, θg), and the configuration of

the robot be q(t) = (x(t), y(t), θ(t)). Let the rotation center
rc be (urx, u

r
y) in the robot frame.

In [4], the necessary condition derived from the Lagrange
multipliers are as follows. There exist constants k1, k2, and
H such that for any segment number i ∈ {1, 2, . . . , n},

k1(−ωi(y−riy)+vipix)+k2(ωi(x−rix)+vipiy) = H, (5)

where ωi is the angular velocity and vi the linear velocity of
control i; and pix and piy are the projections of orientation
of the robot frame to the world x and y frame. Note that
(−ωi(y − riy) + vipix) gives the x velocity of a point on the
robot due to control i, and (ωi(x − rix) + vipiy) gives the
y-velocity. We therefore have

k1ẋ+ k2ẏ = H. (6)

This condition is identical to the condition derived from PMP
without the k3 term [14]. In the above result, the rotation
centers ri are represented in the world frame.

Let us further assume that the consecutive controls can be
the same, i.e. any time t can be a potential switch in the
trajectory. At first glance, this seems to increase the complexity
of the trajectory structure. However, the analysis will show
that the results of derivation are the same. What is more, the
previous analysis in [4] though is simple, only applies at the
time of switch rather than any time along the trajectory. By
considering the control at any time as a potential switch, we
can extend the necessary condition for the entire trajectory,
which is the condition derived from PMP.

Given a shortest-path starting from the origin, we know that
at any time t, the segment between q(t) and g must be optimal.
Let us first consider the case where the control at time t is a
rotation. We therefore have,

rwc (t) =

[
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

]
·
[
urx
ury

]
+

[
x(t)
y(t)

]
In the world frame, let the trajectory before time t and after

time t are of fixed structure, so that if the rotation at time t
were to last t+ ∆t, the location of the endpoint would move.
Therefore, the derivative of this control’s contribution to the
movement of the endpoint with respect to t should maintain
a constant dot product with Lagrange multipliers (~λ), which
is consistent with the use of geometric Jacobian shown in [4].
The derivative can be computed as the cross product between
the rotation axis with the vector pointing from the rotation axis
to the goal/endpoint. We, therefore, have in the world frame,

ω([0, 0, 1]× (g − rwc (t))) · λ = 1 (7)

At the same time, the orientation of the endpoint should be
equal to the summation of the rotation control duration. The
contribution of the angular velocity to the final orientation
with respect to t should be equal to the angular velocity. Let
the angular velocity at time t be ω, we therefore can extend
Eq. (7) as,ω(sin(θ(t))urx + cos(θ(t))ury − yg + y(t))

ω(xg − cos(θ(t))urx + sin(θ(t))ury − x(t))

θ̇

λ1

λ2

λ3

 = 1

ω(sin(θ(t))urx + cos(θ(t))ury − yg + y(t))λ1 +

⇒ ω(xg − cos(θ(t))urx + sin(θ(t))ury − x(t))λ2 +

ω · λ3 = 1 (8)

During the same rotational control, the rotation center does
not move. Therefore, if we apply the same rotational control
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for ∆t longer, we have θ(t+ ∆t) = θ(t) + ω∆t and

sin(θ(t+ ∆t))urx + cos(θ(t+ ∆t))ury + y(t+ ∆t)

= sin(θ(t)) · urx + cos(θ(t)) · ury + y(t) (9)

⇒ y(t+ ∆t)− y(t)

∆t

= −urx
sin(θ(t) + ω∆t)− sin θ(t)

∆t

− ury
cos(θ(t) + ω∆t)− cos θ(t)

∆t
(10)

⇒ ẏ = ω(ury sin(θ(t))− urx cos(θ(t))) (11)

Similarly, we can derive ẋ = ω(sin(θt) · urx + cos(θt) · ury).
Define a constant c = λ3 +λ2xg−λ1yg , as xg , yg , λ1, λ2, and
λ3 are all constants throughout the trajectory. Rewrite Eq. (8)
as,

ẋλ1 + ẏλ2 + ω(λ1y(t)− λ2x(t) + c) = 1

Scale λ1 to k1 and λ2 to k2 so that
√
k2

1 + k2
2 = 1, and

scale c accordingly to k3, we have

k1ẋ+ k2ẏ + ω(k1y − k2x+ k3) = H, (12)

which is exactly the same equation derived from Pontryagin’s
Maximum Principle (PMP) for the 2D cases [14]. This con-
dition holds for any moment along the trajectory.

The necessary condition for the time-optimal trajectory
derived using Lagrange multipliers is in the exact same form
as the Hamiltonian derived from PMP. However, the condition
derived using Lagrange multipliers lacks the maximization
condition for the Hamiltonian.

On the 2D plane, we know that two points uniquely deter-
mine the configuration of a rigid body. Therefore, finding the
time-optimal trajectory for a rigid body should be equivalent
to finding a coordinated time-optimal trajectory for two points
of fixed distance on the same rigid body. We can derive the
same necessary condition using the parameterization with two
points, where the two points are being described by their
Cartesian coordinates. The parameterization would allow the
use of Geometric Jacobian to replace the Analytical Jacobian
in the derivatives of the constraints.

Let us describe the system using the position of two fixed
points in the robot frame: q = (xo, yo, x1, y1), where po =
(xo, yo) and p1 = (x1, y1) are the world-frame coordinates of
(0, 0) and (1, 0) in the robot frame, respectively. Let g and g1

be the goal for po and p1. Consider a rotational control i, we
havek1

k2

0

 · (ŵi × ~rig) +

k3

k4

0

 · (ŵi × ~rig1) = 1 . (13)

The distance between the two points is fixed along the
trajectory. Now, to compare Eq (13) to the equation derived
from PMP, we need the rotational velocity, denoted as ω = θ̇.
For simplicity, let the rotation axis always points along the
positive z axis, making ω a signed value.

We can rewrite ŵi× ~rig as ŵi×( ~ripo+ ~pog), so that the first
part of the cross product becomes the velocity ṗo = (ẋo, ẏo),

and the second part becomes the ŵi × g − ŵi × p. We know
that ŵi is fixed and points along the positive z axis in 2D
problems, and g is fixed. We can rewrite the equations above
as follows,

k1ẋo + k2ẏo + ω · ŵ · (
(
k1

k2

)
× ~p+ ~g ×

(
k1

k2

)
+

k3ẋo + k4ẏo + ω · ŵ · (
(
k3

k4

)
× ~p+ ~g1 ×

(
k3

k4

)
) = H

Let ~k = (k1, k2)T + (k3, k4)T = (kx, ky)T , we have,

kx · ẋo + ky · ẏo + ω · (kx · yo − ky · xo + c) = H , (14)

where c = gxk2−gyk1+gx1k4−gy1k3, which is a constant in 2D
cases. We can see that this equation is also equivalent to that
derived from PMP, provided that proper scaling is performed
to get kx, ky , c, and H .

The above derivation is also consistent with the geometric
interpretation we concluded from the PMP-derived equations:
the location of the control line k1y−k2x+k3 = 0 is important
for determining the path length. Some non-shortest-paths can
share the same control line directions, i.e. (k1, k2)T , but have
different k3 values. This derivation also shows one additional
feature we did not analyze in the previous interpretation of the
control line: the relations between the offset of the control line
and the orientation of the control line. From Eq. (14), we can
see that the offset of the control line can be computed from
the orientation of the control line and the goal.

B. Extending to 3D

We have shown that using the Lagrange multipliers and
using PMP can lead to the same necessary condition. We
have also shown that in 2D, using the two-points parame-
terization and the configuration (x, y, θ) can also derive the
same necessary optimality condition. In 3D, the orientation
parameterization becomes much more complex, and different
representations have different advantages and flaws. The angle-
based parameterization can be hard to take derivatives or to
integrate. We will describe the 3D system using three fixed
points in the robot frame. Based on the analysis in 2D, the two
parameterizations can lead to the same necessary condition.

Let us denote the configuration of a 3D rigid body as a
collection of three points, q = (po, px, py), where pi ∈ R3

and i = {o, x, y}. For simplicity, let po, px and py be (0, 0, 0),
(1, 0, 0), and (0, 1, 0) from the robot frame respectively. Then,
the problem of finding the optimal trajectory becomes finding
the path that can lead all three points to their respected goal
positions simultaneously in the shortest amount of time. As
the three points are fixed in the robot frame, their distances
are maintained throughout the trajectory.

Given a sequence of n controls, we need the three points to
reach the goal simultaneously. Using forward kinematics, we
can find matrices T of , T

x
f , T

y
f , and find the shortest path using

 ���



the following constrained optimization:

min f(t) =

n∑
i=1

ti (15)

s.t. h1(t) = T of − go = 0 (16)
hx(t) = T xf − gx = 0 (17)
hy(t) = T yf − gy = 0 (18)

Using the Lagrange multipliers, we have ∇tf(t) =
λo∇th1(t) + λx∇th2(t) + λy∇th3(t). Denote λo =
(λ1, λ2, λ3), λx = (λ4, λ5, λ6), and λy = (λ7, λ8, λ9), we
can rewrite the optimal condition as

(λ1, λ2, λ3)T · (ω · ŵi × ~rigo) (19)
+ (λ4, λ5, λ6)T · (ω · ŵi × ~rigx) (20)
+ (λ7, λ8, λ9)T · (ω · ŵi × ~rigy) = 1 , (21)

when the control i is a rotation around ŵi at angular velocity
ω, or

(λ1, λ2, λ3)T · (ẋ(t), ẏ(t), ż(t)) (22)
+ (λ4, λ5, λ6)T · (ẋ(t), ẏ(t), ż(t)) (23)
+ (λ7, λ8, λ9)T · (ẋ(t), ẏ(t), ż(t)) = 1 , (24)

when the control i is a translation with linear velocity v =
(ẋ(t), ẏ(t), ż(t)). For simplicity, in the text below, we assume
the rotations all have the same angular velocity, and let ω̂i =
ωŵi.

We can rewrite the above equations into a single necessary
condition, by integrating them together. By replacing ω̂i× ~rig
with ω̂i × ( ~ripo +~g− ~po), we have the first part of the cross-
product equal to the linear velocity. Thus, we have

~λ(ẋ(t), ẏ(t), ż(t)) + ω̂i(~λ× ~p+ ~go × ~λ+ ~cα) = 1 (25)

where ~λ = (λ1, λ2, λ3) + (λ4, λ5, λ6) + (λ7, λ8, λ9), and
~cα = ~gogx×(λ4, λ5, λ6)T + ~gogy×(λ7, λ8, λ9)T . As all λ are
constant Lagrange multipliers, and the goal positions are fixed,
~c is a constant vector for a given goal. It is easy to show that
if the system state are described as q = (po, dx, dy) where
dx = ~popx and dy = ~popy , the resulting condition can be
reorganized into the same form. Let ~λ = α ·~k, and ~cα = α ·~c,
we then have

~k · (ẋ(t), ẏ(t), ż(t)) + ω̂i · ( ~pog × ~k + ~c) = H (26)
~k · (ω̂i × ~rig) + ω̂i · ~c = H (27)

Eq. (25) through Eq. (27) are equivalent. There are two parts
in Eq. (27), one is the dot product between ~k and control
moment, which is ω̂i × ~rig for rotation and (ẋ, ẏ, ż)T for
translation. This control moment is the geometric Jacobian for
Cartesian components with respect to rotation and translation.
There is another term in Eq (27): the dot product between
the rotation axis ω̂i and a constant vector ~c. Note that the
geometric Jacobian for an orientation is the corresponding
rotation axis in world frame.

The time-optimal necessary condition can be interpreted as
the two components of the geometric Jacobian dot product

with two constant vectors, the sum of which need to remain
a constant for all control segments. This observation is inter-
esting when studying robot arms of more than six degrees of
freedom, and may help to solve inverse kinematics faster for
complex systems.

The derived necessary condition ( Eq. (26)) is an extension
of Eq. (4) in 2D. The dot product between the Lagrange
multipliers and the velocity of the system appears in both
equations, and the remaining term is governed by rotational
components. In 2D, all rotation axes are parallel to z-axis,
simplifying the Eq. (27) into (λo + λx) · (ẋo, ẏo)T + ω(g ×
λo + gx× λx− po× (λo + λx)) = 1, which can be written as
λ · (ẋo, ẏo)T + ω(λ× po + c) where λ = λo + λx. This is the
same condition derived from PMP in our previous work [29].
However, in 3D, the rotational axes no longer point along
the same direction. Similar simplification of the necessary
condition cannot be performed.

Let us look at the same problem from the PMP’s perspec-
tive. First, we need to represent the Hamiltonian H(t), which
is the dot product between the adjoint function λ(t) and the
velocity of the system q̇(q, u). The velocity depends on the
configuration and the control for the robot. Using the three
points parameterization, we have q̇ = (ṗo, ṗx, ṗy), which is
the transformation of the control in the robot frame to the
world frame. In the robot frame, we have u(t) = ( ˙pRo ,

˙pRx ,
˙pRy ),

the velocities of the three corresponding points in the robot
frame. Denote the transformation matrix of u(t) to q̇(t) as R,
which is a tridiagonal matrix of dimension nine by nine. The
tridiagonal elements are the displacement of the same three-
by-three matrix R, which transforms a vector in the robot
frame at time t to the world frame. The matrix R can be
written as,

R =
[
dTx dTy dTz

]
, (28)

where dz = dx × dy . Now, if we take derivatives of H(t)
with respect to q = (po, px, py), we will have non-zero matrix
for all ∂H

∂qi
, as dx = ~popx and dy = ~popy . It is possible

that we can use another parameterization for the configuration,
q∆ = (po, dx, dy). Then, we have the derivatives of the adjoint
function as follows:

dλ

dt
= −∂H

∂q
(29)

⇒ λ̇ = − ∂

∂q
〈λ, q̇(q, u)〉 (30)

The first three terms are 0 because the matrix R is now
independent of po, with elements from dx and dy . Therefore,
we know that the first three dimensions of the adjoint function
λ are constants, agreeing to the results derived from Lagrange
multipliers. The remaining dimensions of the adjoint function,
however, are not so simple. For example, the derivatives of R
with respect to dxx is

∂

∂dxx
R =

1 0 0
0 0 −dyz
0 0 dyy

 (31)
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This matrix appears in ∂R(t)/∂q∆
4 , which computes the

derivative of the fourth element of the adjoint function (de-
noted as λ:

λ̇4 = λ1u(pxo) + λ2(−dyzu(pyo)) + λ3d
y
yu(pzo)

+ λ4u(dxx) + λ5(−dyzu(dxy)) + λ6d
y
yu(dxz )

+ λ7u(dyx) + λ8(−dyzu(dyy)) + λ9d
y
yu(dyz)) , (32)

where u(dxx) is the x component of u(dx).
This shows that the derivatives of the remaining dimensions

of the adjoint functions are not straight 0s. In other words,
the necessary condition derived from PMP is not obviously
equivalent to that derived using the Lagrange multipliers.
The equivalence only holds when Eq. (32) and other similar
equations would all equal to 0 for feasible controls. This is a
reasonable condition to satisfy. Essentially, we are requiring
the intersection of the null space of a matrix function A(t)
to be non-empty, for all candidates of optimal controls at
configurations on the optimal trajectory. We know that there
are limitations of what controls at what configurations can
be optimal. Therefore, what we need is to find the set of
controls at given configurations that forces λ̇ to be 0. What is
more, the constraint is independent of position. Therefore, for
any given system, the constraints for each orientation may be
pre-computed. Such information can be used to study control
synthesis directly. This analysis is not the main focus of this
work but will be studied in future work.

The main source of complication in the derivation and
analysis of the necessary condition in 3D is the varying
rotational axes. In Eq. (27), for each given ω̂ of fixed direction,
the corresponding segment of a path can be treated as part
of a planar path, satisfying geometric constraints for any
planar shortest-paths. The geometric constraints on a plane
can be described in association with a line. For all the possible
rotation axes directions, all the associated lines is most likely
to be bounded within a cylinder associated with ~k and ~c.
However, we are not yet able to prove the existence and derive
the configuration of this cylinder. If such a cylinder can be
proved to exist, then based on our previous experience, the
search for the cylinder can be more efficient in assist of the
search for the shortest paths.

C. Simplifying the search
Given a start s and a goal g, if a trajectory reaches the goal

g in full configuration, it will satisfy the condition specified
in Eq. (27). In the previous work [30], if one only require the
agent to reach the goal in position, we only need to satisfy
the same equation without the component associated with ~c.
In other words, reaching goal position is a necessary condition
for reaching goal with full orientation. Therefore, there would
also exist a vector λ, which maybe different from ~k that satisfy
the following equations:

λ · (ẋ, ẏ, ż)T = 1 (Translation control) (33)
λ · (ω̂ × ~rg) = 1 (Rotational control) (34)

We know that the path reaching a goal with full config-
uration must also be a path reaching the goal in position,

satisfying all the geometric constraints. Such paths usually are
not the shortest path reaching the goal in position only. On the
other hand, if a path reaches the goal position satisfying the
conditions in Equations 33 and 34, and happens to reach the
goal in the desired orientation, this path can be a candidate of
the shortest-path reaching the goal in full configuration. The
following lemma shows that these paths satisfy the necessary
conditions to reach the goal in full configuration.

Lemma 1: Given a path following a sequence of controls
reaching goal position gp in orientation Ω̂ and a corresponding
vector λ satisfying necessary condition specified in Equa-
tions 33 and 34. Then there exist constants ~k, ~c, and H so
that Eq. (27) can be satisfied using the same control sequence
with ~k, ~c, and H to reach goal g = (gp, Ω̂).

Proof: There always exists a vector ~k that is parallel to λ
and a zero vector ~c that satisfies both necessary conditions at
the same time. When λx is parallel to gogx, and λy is parallel
to gogy , ~c is zero. This would produce non-trivial Lagrange
multipliers, and still, both necessary conditions can be satisfied
at the same time. Thus, the given trajectory is a candidate for
the shortest-path reaching goal g = (gp, Ω̂). This does not rule
out other possibilities for vector ~k and ~c.

Note that, for any path with translations that are parallel
to λ or with more than three translation controls that are not
co-linear, λ vector and ~k must be parallel, and ~c must be a 0
vector to maintain both necessary conditions to be satisfied at
the same time. If there are more than one translation control
on the same trajectory, λ and k must be on the same plane.

Following the Lemma, if we can find all trajectories reach-
ing the goal position with the specified orientation, one of
them must be the shortest path. Therefore, it is sufficient to just
search for paths satisfying the necessary conditions associated
with λ (3 dimensional search), and enforce the goal orientation
geometrically. The direct search for ~k and ~c is a 6-dimensional
search. In this work, as we assume the controls are selected
from a discrete set, the last control that may satisfy the goal
configuration can be computed analytically, thus simplifying
the search for the shortest path.

We can show that the derived necessary condition not only
maintain a constant dot product but also hints at the maximiza-
tion of H . The dot products with λ vector in Equations 33
and 34 can be interpreted as the velocity projections on λ. It
is straightforward for the translation component. For rotation
controls, the dot product is how fast the current rotation
is moving the goal relative to λ, analogous to a velocity
projection. The shortest-path is the one with the largest dot-
product with a constant λ, i.e. H , among all paths that can
reach the goal satisfying Eq. (33) and Eq. (34). This additional
geometric interpretation makes the necessary condition derived
using Lagrange multipliers equivalent to the conditions derived
from PMP in the previous work [29].

III. ALGORITHM AND SAMPLE SHORTEST-PATHS

To find shortest paths satisfying Eq. (33) and Eq. (34)
while reaching the goal at the desired orientation, we can
select the last control to be the ones that are aligned with
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the goal configuration. The first and last control provides
two equations/constraints and we need one more constraint
to finalize λ.

Extending from the work in [30], an almost identical proce-
dure can be used to find the shortest paths reaching different
goal configurations. We select the first and last control aligned
with the start and goal configuration, then loop over the
duration for the first control, and loop over the possible
next control. With three equations, a corresponding λ can be
computed, which enables the simulation of the corresponding
path. If the goal control can be (approximately) reached (based
on the search resolution), the path will be compared to the
shortest found so far, until no more possible path can be found.

Algorithm 1: Find shortest-path
Input: g(oal) T ← Find a path that can reach g;
for All possible one segment or two segment paths that
can reach g do

Update the upper bound T to the shortest-path;
k ← 1;
for All possible combinations of first and last control

satisfying configurations do
for All possible duration for first k controls that do

not exceed T do
if The some of the first k controls are co-linear
then
k ← k + 1;
continue;

Compute corresponding λ;
Starting from the second control, simulate the

remaining path;
Run DFS until reach last control, or exceeds

upper bound;
if Found path can reach last control shorter
than T then

Update the upper bound T ;

return the upper bound T to be the shortest-path;

The λ and specified last control is sufficient to find the
corresponding k and c vector necessary for the condition
derived in Eq. (27). This algorithm is resolution complete,
follow directly from our previous proof in [30].

We have implemented the algorithm in Julia, and present
solutions for a 3D Dubins car model. The algorithm applies to
generic rigid bodies in 2D and 3D. In 3D, the Dubins model
is one of the most well-studied and understood models, so
we use this model to demonstrate our algorithm. Comparisons
are made between the results for paths with goal orientation
constraints and previously derived results for shortest paths
with position-only constraints. In Figure 1, a path reaching
goal configuration optimally and a path only reaching goal
position optimally are shown. These two paths differ greatly
in duration. The path that reaches the goal configuration takes
more than 10 units, while the path that reaches the goal
position costs less than 3.5 units.

Figure 2. Sample extremal paths, (approximately) reaching the same goal
drawn in light gray.

In Figure 2, two different paths reaching the same goal
configuration are shown. The path structures are almost iden-
tical: translation and/or spin first, followed by a rotation, and a
translation/spin is used to reach the goal. However, in the left
panel of Figure 2, the first rotation is a pitch motion, while in
the right panel of Figure 2, it is yaw motion. Initially, the spin
motion needed to move one of the rotation axes into position
is shorter if the next control is yaw, compared to pitch motion.
However, the remaining orientation difference to the goal is so
great that extra translation is needed before the yaw motion to
admit sufficient spin motion. On the other hand, on the shortest
path, despite the initial spin is longer to move the pitch rotation
axis into place, the remaining orientation difference is small
enough so that the spin needed is minimal after pitch. The
shortest path cost 7.3 units while the other path in the same
structure cost 10.7 unit.

In Figure 3, two additional time-optimal trajectories reach-
ing different goal configurations are shown.

Figure 3. Sample extremal trajectories, (approximately) reaching the respec-
tive goals drawn in light gray.

When the switch of controls has no cost, the path may have
many different control segments, but our experiment with a
large set of random configurations did not encounter such
situation. On the other hand, if there is a cost on switches,
the shortest-path can be bounded much easier, and the search
for different control sequence can be bounded as well. Our
algorithm can find the shortest path with cost associated with
control switches.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we present a generic approach to find the
kinematic shortest path for rigid bodies, especially in 3D. We
show that for a path to be time-optimal/shortest, there exists
a λ vector so that necessary conditions can be satisfied. The
proposed approach first finds valid λ vectors and compare the
shortest path for different λs. We show that for any given
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goal, the proposed approach can find a path that reaches the
goal within a given resolution and is approximately optimal.
We have found that algebraically, the Lagrange multiplier-
based approach derives a weaker condition, but integrated with
geometric analysis, two can reach almost identical necessary
conditions.

One future work we would like to conduct is to further
analyze the PMP-derived necessary conditions in 3D, and link
it with the conditions derived from the Lagrange multiplier in
this work. The goal is to find alternative and possibly simpler
ways to search for the shortest paths. The analysis may drive
simpler synthesis analysis on the overall time-optimal control
strategy for any rigid body.
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