
Topological Mapping with Multiple Visual
Manifolds

Greg Grudic and Jane Mulligan
Department of Computer Science
University of Colorado at Boulder

Boulder, CO, 80309-0430
Email: < grudic | janem >@cs.colorado.edu

Abstract— We address the problem of building topological
maps in visual space for robot navigation. The nodes of our
topological maps consist of clusters along manifolds, and we
propose an unsupervised learning algorithm that automatically
constructs these manifolds - the user need only specify the
desired number of clusters and the minimum number of images
per cluster. This spectral clustering like framework allows each
cluster to optimize a separate set of clustering parameters, and
we demonstrate empirically that this flexibility can significantly
improve clustering results. We further propose a framework for
servoing the robot in our manifold space, which would allow the
robot to navigate from any point on one manifold (topological
node) to any specified point on a second manifold. Finally,
we present experimental results on indoor and outdoor image
sequences demonstrating the efficacy of the proposed algorithm.

I. INTRODUCTION

Autonomous robots require maps of environments in order
to effectively accomplish tasks. As a result, turning internal
and external sensor readings into maps suitable for navigation,
has become a topic of intense interest in robotics research [1].
Mapping techniques can be loosely divided into two types:
topological and geometric approaches. Topological approaches
can be thought of as robot-centric, or representations in sensor
space. In contrast, geometric approaches seek to define sensor
based maps in some world coordinate frame [2].

Numerous image-based approaches to topological mapping
have been described in the past 10 years [3], [4], [5], [6].
Ideally an agent passes through the environment recording
sequential sensor data, and uses this to automatically gen-
erate the places and transitions which provide a topological
description of the space. In this paper we will describe our
approach to clustering regions of the sensor sequence (in our
case images) using proximity on low dimensional manifolds
in sensor space. Our goal is to develop techniques to navigate
on the manifold of clustered sensor sequences. We will not
address mapping of images or landmarks to metric pose [3],
[7].

Appearance-based mapping approaches typically use PCA
representations, However, these inherently map an image to
a point in the eigenspace. If the world exhibits perceptual
aliasing, where several distinct positions in the sequence look
similar, then there may not be enough information encoded
in the eigenspace representation to disambiguate them. One

obvious solution is to consider information about neighbouring
views in space and time. This can be achieved by tracking
(as is generally the case in landmark-based systems) or by
exploiting spatial continuity in the learning data. In topological
maps authors use the spatial solution of traversing nearby
nodes to establish whether the current distinguished place has
been seen before [8], [9].

Maeda et al. [10] propose precomputing active vision strate-
gies for regions of the manifold which are close in eigenspace.
By acquiring additional images they can disambiguate where
the current pose falls. Similarly Kröse and Bunschoten [4]
acquire additional images by rotating in place, in order distin-
guish positions with similar appearance. Kelly [11] composes
extended image sequences into globally consistent mosaics
and then tracks motion over the mosaic to estimate the current
pose. Matsumoto et al. [12] navigate in a sequence of images,
assuming that the robot makes transitions in order from one
memorized image to the next. The method depends on a
difference metric which increases monotonically allowing the
robot to determine which neighbour in the sequence is closer.

Recent developments in learning in manifold space have
lead to algorithms that can effectively find low dimensional
structures in image sequences that lie on a single manifold
[13]. However, such algorithms require and assume that a
single manifold is sufficient to describe the visual data and, in
general, do not function well when this is not true. In this paper
we address the problem of identifying image clusters from
a wide variety of image sequences. We propose a clustering
algorithm that takes as input a user specified number of
clusters, and a minimum number of images (or data points)
per cluster. Given these inputs, the algorithm uses a spectral
clustering [14], [15], [16] like framework to directly specify
separate clustering parameters for each cluster. This property
makes the algorithm significantly different from other spectral
clustering algorithms that use the same clustering parameters
for all clusters [14], [15], [16], and that generally require the
user to specify these parameters. This property allows us to
distinguish such common navigational features as branching
paths, and correctly identify which manifold the robot is on.
The method also provides a probability measure as to whether
the current image view lies on a particular manifold.

We propose the following scenario. The robot moves (either
via teleoperation or using some autonomous search strategy)

throughout the environment it is intended to work in. The
sensor data that it observes is recorded and projected into
manifold space. The data is then clustered in manifold space
using unsupervised learning. Each cluster manifold in sensor
space corresponds to node in a topological map. Building
upon the results in [17], each cluster optimizes its own cluster
parameters, allowing a greater clustering accuracy. We further
propose a framework by which a robot can servo in this
manifold space starting from any position in one one manifold,
to any position on another manifold.

The proposed algorithm is described in Section II. Sec-
tion II-A describes the semi-supervised algorithm upon which
the proposed algorithm is based. Section II-B describes the
extension to clustering. Section II-C describes the algorithm
for estimating a separate set of clustering parameters for each
cluster. Section II-D outlines the outlier detection framework.
Section II-G describes our formulation for servoing on visual
manifolds. Experimental results for synthetic data and real in-
door and outdoor image sequences are presented in Section III.
Conclusion and future work is described in Section IV.

II. ALGORITHM DEVELOPMENT

A. Semi-Supervised Learning

Semi-supervised learning is concerned with building predic-
tive models from both labelled and unlabelled examples.

The algorithm proposed here for learning and servoing on
visual manifolds is based on the Local and Global consistency
method for semi-supervised learning introduced by Zhou et.al.
[18]. We present a brief summary of this algorithm below.

Assume a set of N points (x1,,xN) in d dimensional
space xi ∈ <d. Assume that these points belong to one of Q
classes specified by q ∈ 1, ..., Q, and some of these points are
labelled as belonging to a class, while others are unlabelled.
We define a labelling matrix Y ∈ NN×Q with Yiq = 1 if and
only if point xi has label q and 0 otherwise. This framework
assumes that there is at least one example from each class in
the set of points (x1,,xN).

Next Zhou et.al. [18] define an affinity matrix Wij =
exp(−‖xi − xj‖

2/(2σ2)) if i 6= j and 0 otherwise, where
σ > 0 is user specified. The normalized form of this matrix is
then computed as S = D−1/2WD−1/2 with Dii =

∑n
j=1 Wij

and Dij = 0, i 6= j. Finally, an N by C matrix F is calculated
as follows:

F = (I − αS)
−1

Y (1)

where I is the identity matrix and 0 < α < 1 is user specified.
The unlabelled points in (x1,,xN) are then labelled in
Zhou et.al. [18] using:

yi = arg max
j∈{1,...,C}

Fij (2)

where Fij is the element in matrix F in row i and column j.
It is easy to see that each column i of the matrix (I −

αS)−1 constitutes an ordering of distances, along a manifold,
from training example xi to all other training examples xj ,
for i, j = 1, 2, ..., n. It is this property that we will exploit

for clustering along manifolds [19]. More specifically, we will
look for columns of (I−αS)−1 that define clusters by finding
points that are at the center of large manifolds.

A further observation of this algorithm that is pertinent
to our clustering algorithm, is that both σ and α are user
specified. However, in the clustering formulation proposed
in this paper, σ and α are byproducts of the optimization
procedure, and are automatically chosen for each cluster
(i.e. each cluster many have different values of σ and α).
This makes the proposed algorithm more flexible and more
automated then other spectral clustering implementations [16].

B. Extension to Clustering

From equation (1), it is evident that the solution to the semi-
supervised learning problem only depends on the labels after
the the matrix (I − αS) has been inverted. This matrix only
contains the training data inputs, {x1, ..., xn}, and it is this
property that we exploit to derive our clustering algorithm.
We define a matrix U as:

U = β (I − αS)
−1

=
[

uT
1 , ..., uT

n

]

(3)

and note that U defines a graph or diffusion kernel as described
in [20], [21]. In addition, the columns of U , denoted by
uT

i , define distances between training points on these graphs,
which can be interpreted as distances along a manifold [19].
The ordering of these distances along each manifold is main-
tained independent of scaling. From U , we create a normalized
matrix V , by scaling the columns of U to have unit length
(which we exploit below to efficiently calculate clusters). We
define this V matrix as:

V =

[

uT
1

∥

∥uT
1

∥

∥

, ...,
uT

n
∥

∥uT
1

∥

∥

]

=
[

vT
1 , ..., vT

n

]

(4)

Note that, by definition, ||vi|| = 1. Finally, we define a
distance (along a manifold specified by U) between points
xi and xj to be:

dM (xi, xj) = 1 − viv
T
j (5)

Note that because ||vk|| = 1 and each element in vk is greater
than or equal to zero (for all k = 1, ..., N), it must be the case
that 0 ≤ viv

T
j ≤ 1. If two points identically rank the relative

distances to all other points on a manifold, our framework
considers them identical. If this is the case for points xi and
xj , then dM (xi, xj) = 0. Conversely, if the point xi has
completely different distances along U to other points in the
training data than point xj , then dM (xi, xj) will approach 1.
This leads to our definition of a distance matrix:

DM = 1 −

v1v
T
1 . . . v1v

T
n

...
. . .

...
vnvT

1 · · · vnvT
n

=

dM (x1, x1) . . . dM (x1, xn)
...

. . .
...

dM (xn, x1) · · · dM (xn, xn)

(6)

Therefore the (i, j) element of DM defines a distance between
two points xi and xj , which ranges between 0 and 1; 0
meaning that the points are identical, and 1 that they are
furthest apart from one another.

This allows us to set up the following optimization problem
for clustering. In clustering, we want to pick clusters of points
that are most similar to one another, while at the same time
most different to points in other clusters. We start by assuming
that there are c clusters and that each cluster is characterized by
a single point. Thus, for c clusters, we have xl1 , ..., xlc points,
where xli ∈ {x1, ..., xn} is a point in the training data, and
xli 6= xlj for i 6= j. These points xl1 , ..., xlc are used to define
clusters as follows. We define a n by c matrix F ∗

V by taking
the l1, ..., lc columns of V (see equation (4)):

F ∗
V =

[

vT
l1 , ..., v

T
lc

]

(7)

Then, as with semi-supervised learning, we assign a point xi

to a cluster:
yi = arg max

j≤c
F ∗

V ij (8)

where F ∗
V ij is the entry of F ∗

V given by row i and column j.
In in Section II-E we define an optimization framework for

picking points xl1 , ..., xlc given that c is specified. In the next
section we show how the clustering parameters, σ and α, for
each cluster, can be directly estimated from the data.

C. Model Selection For Clustering

Let pj be the set of points that belong to cluster j. Using
matrix DM we can define the mean distance between points
in cluster j as:

D
jj

M = E [DM (pj ,pj)]

where DM (pj ,pj) denotes all entries of DM (see equation
(6)) corresponding to columns and rows of points pj and
E[·] is the average value of these entries. Similarly, the mean
distance between points in cluster j and points in cluster k is
given by:

D
jk

M = E [DM (pj ,pk)]

Given that our goal is to find clusters that maximize the
distances between points in different clusters, while minimiz-
ing the distances between points in the same cluster, we can
state the following optimization problem: find σ, α, c, and
xl1 , ..., xlc to maximize the following

Ω(c) = max
α,σ,c

E

[

D
jj

M

]

{j=1,...,c}
− E

[

D
jk

M

]

{

k=1,...,c
j=1,...,c
i6=j

}

However, there are two problems with this approach. First,
the optimizing over all σ, α, c can be computationally expen-
sive [17]. Second, and more importantly for the current paper,
every cluster will contain the same σ. As is demonstrated by
both synthetic and real data in Section III, this can lead to
significant degradation in clustering performance when points
in different clusters are not equally spaced. To avoid these
difficulties, we take a recursive clustering approach, where the

dataset is split into two partitions at each step of the algorithm.
The criteria used to determine this split is

Ω(2) = max
α,σ

[

min(|p1|,|p2|)
|p1|+|p2|

(

E
[

D
jj

M

]

{j=1}
−

E
[

D
jk

M

]

{

k=1
j=2

}

)] (9)

where |pj | is the number of points in cluster j. This opti-
mization encourages points to be split into two partitions of
approximately equal size. In addition, σ and α are chosen such
that the first cluster of points consists of points that are tightly
clustered on one manifold, while the second cluster includes
points which are far away from the first, but need not be on
a single manifold. Thus σ and α are always optimized with
respect to the first manifold.

This type of recursive partitioning continues until clusters
have a minimum number of points (which is user specified
by Q). This produces a set of C clusters. The user must also
specify the desired number of clusters K. The constraint on
K and Q is that K < C. The C clusters are finally combined
to give the best K clusters that each have maximal values of
Ω(2) in equation (9).

In the next two sections, the description of the proposed
algorithm is completed by first defining the concept of cluster
outliers in manifold space, and then showing how this is used
to define points that seed clusters.

D. Outlier Detection

We define a cluster independent outlier point to be one that
is, on average, furthest away from all other points. This can be
directly calculated from equation (6) by taking the average of
the columns of DM , and defining a outlier cluster independent
vector Od as follows:

Od =
1

n

[

∑

DT
M1, ...,

∑

DT
Mn

]

= [Od1, ..., Odn] (10)

where the element Odi is the average distance (along a
manifold) between point xi and all the other points and
DM =

[

DT
M1, ..., D

T
Mn

]

. By ordering the values of Odi in
decreasing order, we order the points from furthest to closest,
and the points appearing first in the list constitute the outliers.

Similarly, we can find outliers within a cluster j by looking
at the Djj

M = DM (pj ,pj) matrix defined above. Specifically,
we obtain an outlier Oj

d vector for cluster j as follows:

Oj
d =

1

n

[

∑

DjjT
M1 , ...,

∑

DjjT
Mn

]

=
[

Oj
d1, ..., O

j
dn

]

(11)

where Oj
di is the mean distance of xj to all other points in

its cluster. Thus the point which has maximum Oj
di is the one

which is most outside the cluster (i.e. the greatest outlier),
while the point that has minimum Oj

di is most inside of the
cluster.

E. Seeding Clusters

As outlined above, the points xl1 , xl2 are used to specify
clusters Ω(2) in equation (9). These points can be identified
by looking at the cluster independent outlier vector Od defined
above. In this paper we use the following greedy heuristic
to identify xl1 , ..., xlc . First we assign xl1 to the point that
is closest to all other points, which is defined by the point
that has the smallest value Odi. To find xl2 , we multiply each
element of 1−Od by the corresponding element in the column
vector DT

Ml1
, to obtain an new, re-weighted vector of O2

d as
follows:

O2
d =

[

O1
d1D

T
Ml1 (1) , ..., O1

dnDT
Ml1 (n)

]

=
[

O2
d1, ..., O

2
dn

]

(12)
where O1

di = Odi. This re-weighting serves to separate out
points in the first cluster seeded by xl1 . The point xl2 then
corresponds to the point which has minimum O2

di.

F. Assigning New Points to Clusters

Let pj be the set of points in cluster j, let σj be the
associated Gaussian kernel parameter, and let xlj be the
point which defines the center of the cluster (as defined
above). Symbolize the new point being classified into one
of the clusters as x, and p

∗
j = pj

⋃

x be the set of points
that includes points in cluster j and the new point x being
classified. These points are used to calculate an affinity matrix
W j (using σj) and corresponding Sj . Finally, we can calculate

F j = β
(

I − αSj
)−1

Y j (13)

Where α = 0.99 (set arbitrarily), and Y j is a vector of the
same length as p

∗
j , containing zeros everywhere except at the

position associated with the center of cluster j, namely xlj .
If the index of the new point x is k, then the value of F j(k)
defines how close this new point is to the center of cluster j
- the larger F j(k) is, the closer this point is to the center of
the cluster. Therefore, we assign point x to cluster y using:

y = arg max
j

F j (k)

G. A formulation for Servoing on Visual Manifolds

Our formulation of servoing on the manifold is based on
the formulation given in the previous section. Assume that
Y j is a vector of the same length as p

∗
j , containing zeros

everywhere except at the position associated with the robot’s
desired position on the manifold of cluster j. If the index of the
robot’s current position (i.e. what the robot currently sees) x

is k, then the value of F j(k) defines how close this new point
is to the desired manifold position. Therefor, we propose to
servo the robot to maximize the signal F j(k) until it reaches
the desired manifold location. In the initial implementation
this minimization is done via minimization in sensor space.

This framework allows the robot to establish any position
and any visual manifold that it has previously encountered. It
also allows traversal from the end of one manifold to the start
of another.

H. Implementation Details

The optimization problem in equation (9) is solved using
the matlab function fmincon. This gives a two dimensional
optimization formulation in σ and α space to maximize Ω(2)
in equation (9).

III. EXPERIMENTAL RESULTS

A. Synthetic Data

Four synthetic data sets, shown in Figure 1, were used to
illustrate the functioning of the proposed algorithm. The first
three show points along paths in 2 dimensional space, and the
last shows points sampled from paths in 3 dimensional space.

For all the synthetic data sets, the number of clusters was
set to K = 3, and minimum number of points per cluster
was set to Q = 20. In order to illustrate the properties of the
proposed algorithm, we compared it to the Normalized Cuts
algorithm [14] on four synthetic data sets.

10 20 30 40 50 60 70 80 90

1

2

3

Proposed Algorithm

Data Point Index

D
at

a
P

oi
nt

 C
lu

st
er

 L
ab

el

True Label
Predicted Label

a) Proposed Algorithm

10 20 30 40 50 60 70 80 90

1

2

3

Normalized Cut Algorithm

Data Point Index

D
at

a
P

oi
nt

 L
ab

el

True Label
Predicted Label

b) Normalized Cuts
Fig. 2. Line Data Results.

The first synthetic data set consists points sampled from
three parallel lines 2D (see Figure 1a). The points are equally
spaced for each line. Figure 2b shows the results obtained
with algorithm proposed in this paper. The Y axis shows the
clusters and the X axis shows the point indices. The red stars
indicate the true labels and blue squares indicate the predicted
labels. Similarly, Figure 2c shows the results obtained with
Normalized Cuts algorithm with σ = 0.085. Note that both
algorithms successfully clustered this data set.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
1

x 2

Three Lines (Different Spacing)

a) Line Data

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
1

x 2

Three Lines (Different Spacing)

b) Line Data (Variable
Spacing).

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Two Diverging Paths (Different Spacing)

c) Path Data

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
1

Three 3D Spirals

x
2

x 3

d) Spiral Data

Fig. 1. Synthetic datasets.

10 20 30 40 50 60

1

2

3

Proposed Algorithm

Data Point Index

D
at

a
P

oi
nt

 C
lu

st
er

 L
ab

el

True Label
Predicted Label

a) Proposed Algorithm

10 20 30 40 50 60

1

2

3

Normalized Cut Algorithm

Data Point Index

D
at

a
P

oi
nt

 L
ab

el

True Label
Predicted Label

b) Normalized Cuts
Fig. 3. Synthetic Line Data (Variable Spacing).

In contrast the second data set contains points sampled at
different intervals from each of three lines (see Figure 1b). Fig-
ure 3a shows the results obtained with algorithm proposed in
this paper. The Y axis shows the clusters and the X axis shows
the point indices. The red stars indicate the true labels and
blue squares indicate the predicted labels. Similarly, Figure
3b shows the results obtained with Normalized Cuts algorithm
with σ = 0.075. This value for sigma constitutes the lowest
clustering error (see [16] for a definition of clustering error)
for the Normalized Cuts algorithm. Note that the proposed
algorithm was able to successfully cluster this data, while
the Normalized Cuts algorithm was not. This is because the
algorithm proposed in this paper selected a different sigma for
each cluster, while the Normalized Cuts algorithm was limited

to a single sigma for all three clusters.

5 10 15 20 25 30 35 40 45

1

2

3

Proposed Algorithm

Data Point Index

D
at

a
P

oi
nt

 C
lu

st
er

 L
ab

el

True Label
Predicted Label

a) Proposed Algorithm

5 10 15 20 25 30 35 40 45

1

2

3

Normalized Cut Algorithm

Data Point Index

D
at

a
P

oi
nt

 L
ab

el

True Label
Predicted Label

b) Normalized Cuts
Fig. 4. Synthetic Path Data.

The third data set contains points sampled at different
intervals from each of three paths that that converge at a
single point (see Figure 1c). Figure 4a shows the results
obtained with algorithm proposed in this paper. The Y axis
shows the clusters and the X axis shows the point indices.
The red stars indicate the true labels and blue squares indicate
the predicted labels. Similarly, Figure 4b shows the results
obtained with Normalized Cuts algorithm with σ = 0.079.
This value for sigma constitutes the lowest clustering error (see
[16] for a definition of clustering error) for the Normalized
Cuts algorithm. As with the second data set, the proposed
algorithm was able to successfully cluster this data, while the
Normalized Cuts algorithm was not. Once more, this is the

algorithm proposed in this paper selected a different sigma
for each cluster, while the Normalized Cuts algorithm was
limited to a single sigma for all three clusters.

50 100 150 200 250

1

2

3

Proposed Algorithm

Data Point Index

D
at

a
P

oi
nt

 C
lu

st
er

 L
ab

el

True Label
Predicted Label

a) Proposed Algorithm

50 100 150 200 250

1

2

3

Normalized Cut Algorithm

Data Point Index

D
at

a
P

oi
nt

 L
ab

el

True Label
Predicted Label

b) Normalized Cuts
Fig. 5. Synthetic Spiral Data.

The final data set contains points sampled at different
intervals from each of three spirals in 3D space (see Figure
1d). Figure 5b shows the results obtained with algorithm
proposed in this paper. The Y axis shows the clusters and
the X axis shows the point indices. The red stars indicate
the true labels and blue squares indicate the predicted labels.
Similarly, Figure 5c shows the results obtained with Normal-
ized Cuts algorithm with σ = 0.051. This value for sigma
constitutes the lowest clustering error (see [16] for a definition
of clustering error) for the Normalized Cuts algorithm. As with
the previous two data sets, the proposed algorithm was able
to successfully cluster this data, while the Normalized Cuts
algorithm was not. Once more, this is the algorithm proposed
in this paper selected a different sigma for each cluster, while
the Normalized Cuts algorithm was limited to a single sigma
for all three clusters.

These synthetic sets show that the Normalized Cuts algo-
rithm is very sensitive to sampling intervals within cluster
points.

The running times of the proposed algorithm (matlab im-
plementation) on these datasets ranged from a few seconds to
a few minutes (on a 1.8 GHz Pentium 4 running Windows
XP).

B. Indoor and Outdoor Image Data

The real world data sets consists of 6 sets of 320 by 240
RGB images (therefore each image is defined by 3x320x240
pixels). Each sequence contains 150 images, for a total of
900 images. These images are summarized in Figure 7. Each
row in Figure 7 shows one of 8 clusters. The first cluster
(in the first row) shows images down an indoor hallway. The
second cluster (in the second row) shows images obtained after
exiting the hallway and turning left. The third cluster (in the
third row) shows images obtained after exiting the hallway
and continuing straight. The fourth cluster (in the fourth row)
shows images obtained after exiting the hallway and turning
right.

The last 4 rows show outdoor scenes. The fifth cluster (in
the fifth row) shows images obtained while walking on a
lawn towards a driveway. The sixth cluster (in the sixth row)
shows images obtained after leaving the lawn and turning left.
The seventh set of images (in the seventh row) shows images
obtained after leaving the lawn and continuing straight. Finally,
the eighth cluster (in the eighth row) shows images obtained
after leaving the lawn and turning right.

75 images from each sequence were used to construct the
manifolds and the remaining 75 images (every second one)
were used to test the localization on each manifold. The results
on the test data for the algorithm proposed in Section II-F
are given in Figure 6a (we set K = 8 clusters and Q = 35
minimum points per cluster). The 8 clusters are defined on
the Y axis. The red stars indicate the true labels and blue
squares indicate the predicted labels. The clustering error of
the proposed algorithm on the test data is 2.89%.

The results obtained for the randomized cuts algorithm with
a single sigma set to 186.5 (experimentation indicated that
this sigma resulted in the best clustering error) are given
in Figure 6b. The test data was classified using the out-of-
sample algorithm derived in [22]. The clustering error for this
algorithm on the test data was 34.4%.

Thus the algorithm proposed in this paper gave a 92%
improvement in clustering error over the Normalized Cuts
algorithm by allowing each cluster to individually optimized
for sigma.

The running time of the proposed algorithm on these real
datasets (matlab implementation) was 16 minutes on a 1.8
GHz Pentium 4 running Windows XP.

IV. SUMMARY AND CONCLUSIONS

We proposed a formulation for autonomously building topo-
logical maps in a robot’s visual space. Each node in the
topological map consists of the cluster along a manifold.
The algorithm presented allows each cluster to independently
optimize it’s own clustering parameters. This results in a spec-
tral clustering like procedure that can significantly outperform
the clustering performance of algorithms which constrain all
clusters to have the same affinity matrix parameters. The
proposed algorithm requires the user to specify the desired
number of clusters and the minimum number of points per

50 100 150 200 250 300 350 400 450

1

2

3

4

5

6

7

8

Proposed Algorithm

Data Point Index

D
at

a
P

oi
nt

 C
lu

st
er

 L
ab

el

True Label
Predicted Label

a) Proposed Algorithm

50 100 150 200 250 300 350 400 450

1

2

3

4

5

6

7

8

Normalized Cut Algorithm

Data Point Index

D
at

a
P

oi
nt

 L
ab

el

True Label
Predicted Label

b) Normalized Cuts Algorithm
Fig. 6. Results on Image Data.

cluster - the affinity matrix parameters are completely defined
by these two parameters.

This paper suggests a number of open research questions.
First, the optimization procedure posed was solved using an
off the shelf optimization algorithm (matlab optimization in
2D). Reanalyzing the theory behind this optimization may
allow a more direct solution to this optimization problem.
Second, we outlined a procedure for servoing the robot along
the manifolds it has previously encountered, but we have not
yet evaluated this formulation on a real robot. This constitutes
the most important experimental next step in our overall
formulation. It will allow the robot to traverse from any
point on one manifold, to any point on another manifold.
Third, the user is required to specify the number of desired
clusters. The framework developed here may allow the number
of clusters to be directly optimized for. Finally, the initial
results presented appear promising and further experimental
investigation appears warranted.

ACKNOWLEDGMENT

This work has been supported in part by NSF CNS-
0430593.

REFERENCES

[1] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel,
editors, Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

[2] Emilio Remolina and Benjamin Kuipers. Towards a general theory of
topological maps. Artificial Intelligence, 152:47–104, 2004.

[3] Fabrice Pourraz and James L. Crowley. Continuity properties of the
appearance manifold for mobile robot position estimation. In Symposium
for Intelligent Robotics Systems, SIRS’98, 1998. To Appear., 1998.

[4] B. J. A. Kröse and R. Bunschoten. Probabilistic localization by
appearance models and active vision. In Proc. of the 1999 IEEE
International Conference on Robotics and Automation, pages 2255–
2260, Detroit, MI, May 1999.

[5] Iwan Ulrich and Illah Nourbakhsh. Appearance-based place recognition
for topological localization. In Proc of the 2000 IEEE Int. Conf. on
Robotics and Automation, pages 1023–1029, San Francisco, CA, April
2000.

[6] Benjamin Kuipers and Patrick Beeson. Bootstrap learning for place
recognition. In Proc of the 18th Natnl Conf on AI (AAAI02), 2002.

[7] Robert Sim and Gregory Dudek. Comparing image-based localization
methods. In Proc Int. Joint Conf. on AI (IJCAI03), 2003.

[8] B. J. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Journal of
Robotics and Autonomous Systems, 8:47–63, 1991.

[9] Gregory Dudek, Michael Jenkin, Evangelos Milios, and David Wilkes.
Robot exploration as graph construction. IEEE Transactions on Robotics
and Automation, 7(6):859–865, Dec 1991.

[10] S. Maeda, Y. Kuno, and Y. Shirai. Active navigation vision based on
eigenspace analysis. In Proc. 1997 IEEE/RSJ International Conference
on Intelligent Robots and Systems, volume 2, pages 1018–1023, 1997.

[11] Alonzo Kelly. Mobile robot localization from large scale appearance
mosaics. International Journal of Robotics Research, 19(11):1104–1125,
2000.

[12] Yoshio Matsumoto, Masayuki Inaba, and Hirochika Inoue. View-based
approach to robot navigation. In Proceedings of 2000 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’2000),
pages 1702–1708, Takamatsu, Japan, Nov 2000.

[13] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image
manifolds by semidefinite programming. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Patter
Recognition (CVPR’04), 2004.

[14] Jiambo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transaction on Pattern Analysis and Machine Intelligence,
22(8):888–905, 2002.

[15] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems
(NIPS), volume 14, 2002.

[16] Deepak Verma and Marina Meila. A comparison of spectral cluster-
ing algorithms. Technical Report 03-05-01, Department of Computer
Science and Engineering , University of Washington, 2003.

[17] Markus Breitenbach and Greg Grudic. Clustering through ranking on
manifolds. In The 22nd International Conference on Machine Learning
(ICML 2005), 2005.

[18] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning
with local and global consistency. In Advances in Neural Information
Processing Systems (NIPS), volume 16, 2004.

[19] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. Ranking
on data manifolds. In Advances in Neural Information Processing
Systems (NIPS), volume 16, 2004.

[20] J. R Anderson. The Architecture of Cognition. Harvard University Press,
Cambridge, Massachusetts, 1983.

[21] J. Shrager, T. Hogg, and B. A. Huberman. Observation of phase
transitions in spreading activation networks. Science, 236:1092–1094,
1987.

[22] Pascal Vincent Yoshua Bengio, Jean-Francois Paiement. Out-of-sample
extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In
Advances in Neural Information Processing Systems (NIPS), volume 16,
2003.

Fig. 7. Images along 8 manifolds in indoor and outdoor environments.

