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Abstract—We present an algorithm for path planning for a
flexible robot in complex environments. Our algorithm computes
a collision free path by taking into account geometric and phys-
ical constraints, including obstacle avoidance, non-penetration
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minimization. We describe a new algorithm for collision detection arterif§

between a deformable robot and fixed obstacles using graphics

processors. We also present techniques to efficiently handle END

complex deformable models composed of tens of thousands
of polygons and obtain significant performance improvement
over previous approaches. Moreover, we demonstrate a practical
application of our algorithm in performing path planning of
catheters in liver chemoembolization.

lliac

5
4
vessels
3

I. INTRODUCTION

. . L . . Catheter
Endoscopic manipulators for minimally invasive surgery, cross-section
power assist suits for human-movement support, and flexible
agents for entertainment are some examples of a growing - 2

number of “deformable robots” populating through many
different applications. One of the major challenges in this area
is controlling and planning the motion and behavior of these
robots in simulated environments.

The problem of cqmputlng a collision free Path for %i . 1. Path Planning of Catheters in Liver Chemoembolization:
robot through an environment has been extensively StUdrﬁ%z deformable catheter (robot), consisting16K triangles, is1.35mm in
for decades. Practical path planning algorithms are knowiameter and approximately, 000mm in length. The obstacles including the
for rigid or ariculated fobots. In contrast, current plannefSE"es 2 er conssLof more bk Harges The danetr of he
for deformable robots are only capable of handling simplgih from the start to end configuration for the deformable catheter. The path
robots in small environments; these planners can take mamyputed by our motion planner is shown in Fig. 6.

hours to compute a collision free path. Motion planning for

deformable robots introduces two major challenges. Fir&atheters in human vess.els fqr planning and -guiding surgical
simulating physically plausible deformation for a robot i rocedures [8], [29]. Manipulation of.catheters in small vesse_ls
still considered a difficult problem in practice. In order t requently causes spasms, preventing adequate flow of fluids

create any planning algorithm for flexible robots, we need { rough the vessels. If the cat_hetgr _has a cross-_sectl_on_al area
model the physical properties and mechanical constraints 05 © that _Of the vessel being |nJecte(_j, the siz€ similarity
the robots. The computational requirements of generating Y | reduce f|y|d flow. Accurate pat_h planr_ung studies can help
accurate deformation using a continuum model can be ratifyFrecome thls obstac!e by_ becomlng an mtegral part of preop-
high. The second challenge is fast and accurate collision &%gtlve surgical planning, i.e. choosing the siz€ and properties
tection between a deformable robot and surrounding obstacl%s{.th_e catr:jete(rj. lf—|owe\ée|r, act:ﬁu:ate geqrr:etfr Itc moc:cetlﬁ of thg
Current algorithms for collision detection between deformabfy ‘€"'€s and a delformable catheter consist of tens of thousands
models have a high overhead. Moreover, in many deformat‘ﬂte|Dr'm't'\’(':'S (e.g. polygons). Existing algorithms for motion
planning scenarios, the free space of a’ robot becomes Vg?nning and collision detection between deformable models
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constrained. The robot is often close to the obstacle bounddty; unaple to handle models of such high combinatorial
leading to an extremely high number of proximity queries. AY mplexity.

a result, collision detection is a major bottleneck in terms dflain Results: We present a novel path planning algorithm
developing efficient planners. for a deformable robot in a complex environment. We treat

The driving application of our work is insertion of flexiblethe motion planning problem as a constrained dynamic sim-



ulation and then transform the planning problem into solvingath and then refines the path by applying geometric-based
a list of constraints. The set of constraints include geometfiee-form deformation to the robot. Gayle et al. [9] a presented
constraints such as obstacle avoidance and non-penetratiomotion planning algorithm for simple closed robots.

as well as physical constraints such as volume preservation )
and energy minimization. We compute an estimated pdeh Collision Detection between Deformable Models

using an approximate medial axis of the workspace and makep thjs section, we give a brief overview of related work in
appropriate adjustments and corrections to the estimated p&flision detection between deformable models. The problem
using our constraint solver to compute a collision-free pathef collision detection has been extensively studied and some
Our planner checks for possible contacts between the robggent surveys are available in [5], [22], [27]. Some of the
and the obstacles during each simulation step. We presggimonly used algorithms for collision detection are based
a new algorithm to detect collisions between a deformabl, hounding volume hierarchies (BVHs). These hierarchies
model and a complex, stationary environment. We compute:dll away portions of a model that are not in close proximity.
potentially colliding set of overlapping primitives usirg®t- Examples of such hierarchies include sphere-trees, AABB-
basedcomputations. Our algorithm uses 2.5D overlap tesfgees, OBB-trees, k-DOP trees, efc. [5] and they are typically
between arbitrary objects and checks for the existence OE&nputed during preprocessing. Recently, algorithms have
separating surface along a view direction. We use graphigsen proposed to lower the overhead of updating the hierarchy
processors (GPUs) to efficiently perform 2.5D overlap tesifuring every step of deformable simulation [16], [20], [28]
and we compute offsets and Minkowski sums to overcomejany collision and proximity computation algorithms ex-
image-precision errors. In practice, our collision detectiqfoit the computational capabilities of graphics processors
algorithm s significantly faster when compared to prior apGpuys) [2], [11], [14], [17]. Recent work also includes meth-
proaches based on bounding volume hierarchies. ods for self-collisions of deformable models [10]. Most of
We have implemented and applied our planner to complgiese algorithms involve no preprocessing, therefore apply-
environments, including path planning of catheters for [IVgag to poth rigid and deformable models. The GPU-based
chemoembolization. Our planner_can compute a FOll'S'OﬁTgorithms perform image-space computations and use the
free path for a deformable robot in a complex environmegpmpytation power of rasterization hardware to check for
consisting of tens of thousands of polygons in a few hoursgyeriaps. However, a major issue with current GPU-based
Organization: The rest of the paper is organized as followsdlgorithms is limited accuracy due to image-space resolution,
We give a brief overview of prior work on motion planningPossibly resulting in missed collisions between small triangles
and collision detection for deformable models in Section 2. \W#ie to sampling errors.
give an overview of our approach in Section 3 and describe our
planning algorithm in Section 4. In Section 5, we present a fast
algorithm for collision detection between a deformable robot | this section, we give an overview of our planner. We

and stationary obstacles. We describe our implementatigfyoduce the notation used in the rest of the paper and present

and its application to path planning of catheters for livesy; framework to solve motion planning as a constrained
chemoembolization in Section 6. dynamical system.

I1l. OVERVIEW

Il. RELATED WORK A. Modeling of Deformable Robots

We briefly present an overview of prior research on planning . . i -
of deformable robots and collision detection between flexible The simplest physically-based deformable models are typi

. cally represented as mass-spring systems, where each object is
bodies. . : )
modeled as a collection of point masses connected by springs
A. Motion Planning for Deformable Robots in a lattice-like structure. In practice, mass-spring systems

Most of the literature in robot motion planning has focusedre easy to construct and can be simulated at interactive
on robots with one or more rigid link. Some of the earlierates on current commodity hardware. More accurate physical
work on deformable robots included specialized algorithnigodels treat deformable objects as a continuum. One of the
for bending pipes [26], cables [23] and metal sheets [24710st commonly used continuous models is the finite element
Holleman et al. [15] and Lamiraux et al. [18] presented gethods (FEM). The object is decomposed into elements
probabilistic planner capable of finding paths for a flexiblgined at discrete node points and a function that solves
surface patch by modeling the patch as a low degrezieB the equilibrium equation is computed for each element. The
patch and used an approximate energy function to model defopmputational requirements of FEM can be high (as a function
mation of the part. Guibas et al. [13] described a probabilistid model complexity) and it is difficult to use them for complex
algorithm for a surface patch by sampling the medial axis ofodels in real-time applications.
the workspace. Anshelevich et al. [1] presented a path planningn this paper, we have chosen mass-spring systems for
algorithm for simple volumes such as pipes and cables byodeling a deformable robot. The main reasons for using
using a mass-spring representation. Bayazit et al. [3] descriibid model is the overall runtime efficiency in representing
a two-stage approach that initially computes an approximaecomplex robot and the ease of implementation.



B. Notation 3) The robot may deform in an unnatural way due to the

Let R be the deformable robot arfd be the set of obstacles lack of syrface t_enS|on. ) )
in the environment. The environment is composed of a setNext, we will describe our overall planning algorithm that
of obstacles = {o1,0s,...} and the robotR is discretized OVercomes these three problems.
and represented as a set/dfmassesn;, each with varying IV. PLANNING FOR DEFORMABLE ROBOTS
positions over timef, i,1 < i < N. The masses are the | this section, we present our planning algorithm for a
connected by a set of M springs;, Vi1 < j < M. The complex, flexible robot.
areas enclosed by the springs is denotedfpyAlong with

each spring, a stresstress;, and a threshold valué,, used A. Simulation Framework

to define material constraints, are stored. The basic approach of our planning framework is to describe
Associated with each mass is a state vecipft) = each robot as a dynamical system. This system is characterized

(z:(),v;(t)) that represents its position and velocity aby its state variables, stored K(¢) for each timet. Let X (¢)

time ¢. The collection of position vectors X (t) = be the _conflguratlon of the robot_ at some timas defined

[21(t), z2(t), ..., xn(t)], represents the configuration of thdn Section 3; then each constraint can be represented as a

robot at timet. Similarly, we can also define the state of thé!nction of X (¢) as C(X(#)). The virtual force induced by
robot at timet asS(t) = [s1(), s2(t), . .., sn(t)]. As the robot €ach constrain€’(X (#)) is simply:

R deforms when it comes into contact with an obstaglén _OE(C(X(1)))

0, the deformation can cause the total potential enéf@ ) fe= X0

of the system (i.e. the elastic solid of the robot) to change.
where the energy functiorf;(C(X (t))), is defined as

Planning Problem Formulation: The planning problem for
a deformable robot can be stated as follows: E(C(X(1) = &C(X(t)) SC(X (1)
2

Find a sequential set of robot configuratioAg;), ..., X(t;) and K is a generalized stiffness matrix [31].

The simulation steps from timeto time ¢ + h and updates

sugh .that nOX(t’“.) mtersects. any obstag:le i@ and X (t) the state of the robot, subject to the forces induced by the
satisfies geometric and physical constraints of the robot whi

o ) Bnstraints using the following steps:
minimizing the total energy’(X) of the entire system,
BEGIN
where X (t;) and X (t) are the initial and final configuration

of the robot andt; < ), < . Get System State:Get S(t) by concatenating;(t), for

all 4.

Compute Conlstraint Forces: Sum up all virtual forces,
C. Constraint-Based Motion Planning Fe(S(t) = 22521 Fi(S(1)).

. . Update Robot State: Compute S(t + h) from S(t)
We treat the motion planning problem as a boundary value subject toF, (S(1)).

problem. In particular, motion planning can be viewed as a
dynamical system in which the initial and final configurations
represent the boundary values and conditions [7]. By reformgND
lating the motion planning problem as a constrained dynamics
simulation, we transform the planning problem into solvin

a list of constraints, while minimizing the cost function fem emerges as the sequence of sttégt;), ..., S(t), S(t+

(e.g. total potential energy of the deformable robot). Th ,.:.,S(t_+/<:*h)_,...,S(tf)},where the robot is a_t Its |n_|t|al
planning problem can be solved by computing a sequencecgpf'guratlon at time;, and reaches the goal configuration at
ime t;. The simulation runs until the robot reaches its goal

intermediate states that link the boundary values and sati%I . .
each of these constraints. However, prior approaches off ynflguratlon.
work for rigid robots or simple deformable models. Their maif- Robot Deformation
limitations are: Update Robot Stateis computed at each simulation step
1) Earlier algorithms can handle rather simple geometBY using a second-order ordinary differential equation (ODE):
with tens or hundreqls of polygons. The_y do not _sgale MX'(t) n CX(t) +KX(t) = F.(SY) + F.(SY,
well to complex environments due to simple collision
handling. where M and C' are diagonal matrices, an is a banded
2) The quality of the computed path may be poor becausetrix. The i* diagonal element of\/ is simply the value
an initial guiding path was generated using randowf each massn; and similarly the ¥* diagonal element of
sampling with no path smoothing, resulting in unrealisti€' is the dampening constant for the mass. K is banded
deformations. since it must represent spring forces which are functions of the

Increment Time: t=t-+h

In this framework, the solution to the motion planning prob-



distance between two massés(S(t)) andF.(S(t)) are3N- Here, we relax the hard volume preservation constraint by
dimensional vectors representing the constraint and exterafibwing the change in volume to be less than a given tolerance
forces acting upon each of th% masses. To help reducee. This problem can be solved by using a global constrained
numerical instability from stiff systems, we solve the ODHninimization technique. Our current implementation uses a
with a semi-implicit Verlet integration scheme. This solvelocal method that checks whether the internal pressure fluctu-
requires only one additional force computation step, keepiagjon is bounded and that the deformation at each eddees

the computational cost low. not exceed certain pre-defined tolerance @teess; < ¢;) to

Next, we must verify if the geometric and physical conachieve the same effects.
straints are satisfied, subject to minimization of the total energ§y Guiding Path Generation

in the system. If not, then we perform the following steps:  \ye yseestimated pathto generate an initial approximation
1) Set the last valid milestone as the next destination to the path. This idea has been used in motion planning [4],

2) Back trace one step on the current roadmap [6], [30]. In particular, we use a medial-axis based approach
3) Find a new path from the last valid milestone to the goghat computes an approximate medial-axis of the work space
configuration using voxelized methods and performs path smoothing. The
4) Compute new constraint forces and solve the ODEstimated path tends to result in smoother final paths that
using the previous state of the robBtand F. maintain the farthest distance from nearby obstacles. However,

5) Set the next robot state to be the new ODE solution this path may not be completely collision-free. The non-
C. Constraints penetration constraint in our planning algorithm resolves any

) . . collision by either deforming the robot or adjusting the final
We impose a number of known geometric, physical, ang.,

mechanical constraints suitable for the problem and to handl@ COLLISION DETECTION FOR ADEFORMABLE ROBOT

deformations [9]; each of which can be classified as either i ) ) . )
hard or soft. The running time of most practical motion planning algo-

) rithms is dominated by collision detection [21]. In the case
Hard Constraintsare those that absolutefiyustbe enforced at of path planning for flexible or deformable robots, collision

each simulation step, such as the non-penetration constrajfghection becomes a greater bottleneck due to the following
The non-penetration constraint is enforced by computing th€zsons:

collision response between the flexible robot and nearby,

The free space of a deformable robot is constrained, and
obstacles when contacts occur.

in several configurations the boundary of the robot comes
Soft Constraintsserve as guides to encourage or influence into close proximity of the obstacle boundary. This close
the objects in the scene to behave in certain ways. These proximity leads to a much higher number of potential
constraints, including goal seeking, obstacle avoidance, path contacts with the obstacles.
following, volume preservation, and enforcement of surface s Most prior collision detection algorithms are based on
tension, are simulated by using penalty forces. Angular con- bounding volume hierarchies. As the robot deforms, the
straints between adjacent edges are used to enforce surface precomputed hierarchy needs to be updated to account
tension. for non-rigid motion. The cost of re-computing a hierar-
chy can be significantly higher for complex deformable
models. Furthermore, the hierarchies may not be able
The elastic deformation energy measures the amount of to provide sufficient culling when the robot is in close
deformation. If the motion is simply a rigid transformation, proximity to the obstacles.
meaning that it preserves the distances between all particlegye present a new collision detection algorithm for a de-
(no stretches), the energy must be zero. formable robot undergoing motion among rigid obstacles. Our
Let E(X) be the energy density function of an elastigogal is to compute a small subset of potentially colliding
solid undergoing deformation. The total energy is obtained By¥imitives (e.g. triangles) and only perform exact interference
integrating/(X) over the entire volume of the solid. We haveests among these primitives. Our algorithm is based on two
chosen the energy function of a spring network that connegfgjn components:

the neighboring nodes. The energy function can be written as1) Reliable 2.5D overlap tests using GPUsSince the

D. Energy Minimization

i robot is close to the obstacle boundary, we perform a
E (X)) = Z E(dj - L,)? tighter overlap test by checking whether there exists any
J separating surface between the robot and the obstacles.

We perform this test using the rasterization capabilities
of the GPU. We also computelinkowski sumsf the
robot and the environment with bounded spheres in order
to overcome image-precision errors.
2) Set-based computationsin order to deal with a high
min E(X(t)) subject toVV (X (¢t)) <e. number of colliding primitives, we compute sets of

wherej is the index of a spring and; is the natural length
of the spring andl; is the distance between two massgs
andz; connected by the spring.

Basically, we would like to comput& by solving



RS and O represent the Minkowski sum @& and© with
' Sy, respectively. In this case, we use the following lemma:

Lemma: If R is fully visible with respect t@°» from any
view direction under orthographic projection or2d discrete

B f// grid with pixel sizep, thanR and S do not overlap.
S, We omit the proof due to space limitations. This lemma
provides us with a sufficient condition that the robot and
IViewz IViewz the obstacle do not overlap. The exact computation of the

Minkowski sum of a primitive with a sphere corresponds to the
Fig. 2. This figure highlights the 2.5D overlap tests used for collisioff 156t Of that primitive. The exact offset representation consists
detection. The query checks whether there exists a separating surface alofd 10n-linear spherical boundaries. Instead, we compute a
;/iew t\i/i_rectifn of delllJth Cgmplezxitly (ES- haﬁtdepth cowplegityt?]ﬁore th?n fznebounding approximation of the offset. In case of obstacles,
From e 325 el s View 2. 1 the gt mage, has dept comexty, we decompose the boundary info triangles, edges and vertices
we use two 2.5D overlap tests to decide tiat and R, are not colliding The offsets of each of these primitives are represented as
with the obstacleg0;). swept sphere volumes: as rectangular swept-sphere (RSS), line
. L o . swept-sphere (LSS) and point swept-sphere (PSS), respectively
potentially colliding primitives as opposed to computing, 9] \we precompute the swept spheres to enclose the obstacle
each pair of overlapping primitives explicitly. The siz&,mitives. Since the robot undergoes deformation, we dynam-
of each set is at mog#(n), whereas the number 21‘ PaIlSically compute a bounding OBB (oriented bounded box) for
in close proximity can be super-linear (or ew®(n") in  gach triangle on the boundary. The cross-section of the OBB
the worst case) for a robot in a constrained free SpacRyg the same plane as the triangle and the height of the OBB
A. Reliable 2.5D overlap tests using GPUs is equal toy/3p. Moreover, we perform the 2.5D overlap test
The robot undergoes non-rigid deformation between succésm a number of fixed directions (e.g. X, Y and Z axes) to
sive steps of path planning. Instead of using BVHs, we chechkeck for the existence of a separating surface.
for overlaps between the robot and the obstacles using {9e get-pased Computations
rasterization capabilities of graphics processing units (GPUSs). . . -
The GPUs are widely available on all commodity PCs and thej Our algorl_thm uses _th(_a_concept of a POtG”t'?‘”V colliding set
computational capabilities are increasing at a rate exceed S) (.Jf preCtS or _pr|m|t|ves [14]. In t.h's section, we pre§ent
Moore’s law. a pemahzet_j algorithm fpr a def_ormmg robot among fixed
We perform visibility computations [11] between the objectgbs.ta.c.les' leen a collect'lor) .Of pr|m|t|vel§, = {pL - onl,
on the GPUs to check wheth@& (robot) and®© (obstacles) we initially insert all the primitives into a PCS. Next, we check

overlap. In particular, we choose a view direction, usuall hetr:jerp,; (t)verla||os with the rema]lnlng t(f)‘nb]eF(’:CtI?.Siépi}.dlf
along an axis, and check wheth& is fully visible with €y do not overiap, we removyg from the - based on

respect toO along that direction. IfR is fully visible, then this property, we reduce the number of object pairs that need

there exists a separating surface betwReandO (see Fig. 2). FO bg checked for exact coIIi.sion. There. are two mgin .issues
Moreover, the separating surface needs to have a one-to-Bh&5'N9 set-based computations for collision detection:
mapping with a plane orthogonal to the viewing direction or * Set-based overlap test¥Ve need the capability to per-
depth complexity one along the view direction. We call this ~ form overlap tests between two different sets of objects.
the 2.5D overlapquery; this provides a sufficient condition [N particular, we need a simple test to check that the
that the two primitives do not overlap. The 2.5D overlap testis  Objects inSy do not overlap with objects i§,. We use
significantly less conservative and more powerful as compared the reliable 2.5D overlap test described above.

to earlier collision detection algorithms that check whether « Set partitions:A set of n objects ha2" subsets and we
two bounding volumes (e.g. spheres, OBBs, etc.) overlap in ¢annot check every possible pair of subsets for overlap.
3D. For example, in Fig. 2(b) there exists a single separating Rather we want to perform almost linear number of set-

surface betweer®, and the obstacles as well @& and the based overlap tests.
obstacles. In this case, we can verify with two 2.5D querid§le compute two sets for collision detection. These are the
that the robot does not overlap with the obstacles. R-set and theD-set. TheR-set ={ry,ra,...,7r,} CONSiSts

A main problem with a GPU-based overlap test is thef all the polygonal or triangular primitives used to represent
underlying image precision used to perform visibility comthe robot. If the number of triangles in the robot is high, we
putations. In particular, the rasterization®for O introduces group them into small clusters and eaghepresents a cluster
many sampling errors, including projective errors and deptbf triangles. In the same mann&?;set ={o01,02,...,0,} IS
buffer precision errors. In order to overcome these errors, \eset of obstacles in the environment and we ensure that each
compute and render a bounding offset for each object. Let thlestacleo; does not have a high polygon count.
dimension of square pixel used for orthographic projection be We update the vertices of the robot based on the deformation
p. Moreover, letS, represent a sphere of radiy&p/2 and and compute a new bounding OBB for each triangle on its



boundary The Set_based CO”'S'O” proceeds |n tWO passes Scenario | Robot Obstacle Constraint | 2.5D Exact Solve Total

. Complexity CQmpIexity update Overlap | Triangle System | Time
In the first pass, we comput®-PCS andO-PCS. In ftris) {eris) =) fost | Imersection | (51| (9
particular,r; € R-PCS, if r; does not overlap with all the [T m — ———Toon oo ——

obstacles inO-set. Similarly,o; € O-PCS, if o, does not
overlap with all ther;'s in R-set. TheR-PCS is computed
by performing 2.5D overlap test between edgh} and O-

set. Similarly,0-PCS is computed by performing 2.5D overlafyi9: 4. This table gives a breakdown of the average time step for each
scenario. Constraint update refers to the time spent in computing each

tests between eac{bi} andR-set. constraint for the given configuration. The 2.5D overlap test along with the
In the second pass, we perform set-based 2.5D overlap testst triangle intersection test are the two stages of the collision detection

in a recursive manner. We represeRtPCS = {R1,R2}, algc_)rithm.The Solve-System time is that spent in solving the motion equations
. during each step.
where R; and R, have approximately the same number
of elements. Similarly we decompos@-PCS ={0;,0,}.
We perform 2.5D overlap tests between the following set
combinations: R, O1), (R1, O32), (R2, O1) and (R2,0,). If
none or only one of the 2.5D overlap test results in a separating
surface, we terminate the recursion and perform exact collision
checking betweeR-PCS andD-PCS. Otherwise, we remove
eitherR; or R, from R-PCS or remove); or Oy from O-
PCS. The set-based culling algorithm is applied recursively to
the new PCS’s. *
Analysis: The running time of our set-based culling algorithm
is bounded byO(mlogn + nlogm). We assume that the
cost of performing each 2.5D overlap test is constant. The
first pass of the algorithm takes linear time. In the second

pass, the algorithm takes linear time during the first iteration. . . .
During each successive iteration we reduce the number owe highlight the performance of our algorithm in these

objects in one of the PCS’s by half and therefore, performirﬁlv'fgmemsf'r:hthe table ant(_j graph. Ft'g.‘ 4 shpws atdetallet?c
O(mlogn + nlogm) 2.5D overlap tests in the worst case. ceakdown of the average ime spent in various stages o
a simulation step. Constraint update is the time required to

C. Exact Collision Detection process the list of constraints. The collision detection and
Given the potentially colliding setsk-PCS andO-PCS, response phase consists of both the 2.5D overlap tests along
we perform exact tests between the primitives to check faith the exact triangle-triangle intersection tests. Finally, we
collisions. If the number of primitives is small, we check alhighlight the time spent in solving the motion equations and
pairwise combinations. Otherwise, we compute a bounditige total time spent on a time step. One curious result is that
box for each primitive ofR-PCS andO-PCS. We perform more time was spent on exact test in the Walls scenario even
pairwise overlap tests between the bounding boxes by ptbeugh it is a simpler environment. This result is due to greater
jecting the bounding box along th&, Y and Z-axes and culling effectiveness in the catheterization case.
compute the overlapping intervals using insertion sort. If the Fig. 5 compares the effectiveness of the 2.5D overlap
projections of any bounding box pair overlaps along any axigsts as a function of the scene complexity. To measure the
we explicitly check whether the corresponding 3D boundingerformance of our new collision detection algorithm, we
boxes overlap and perform exact intersection tests between ¥heed the scene complexity of the Walls environment and ran
primitives. our algorithm with and without the GPU-based 2.5D overlap
V1. APPLICATION AND RESULTS tests. The case of no overlap test reduces to solely using the

bounding volume hierarchies. In the graph, we see a greater

We have implemented the algorithms described in this paRgfoequp in collision detection as the obstacle complexity
and tested them on a PC with a 2.8 GHz Pentium IV processQlreases.

1 GB of main m_er_nt;ry, and a NVidia GeForce_FX 6800 €A% path Planning of Catheters in Liver Chemoembolization
We used of NVidia’s occlusion query extension along witl
offsets to perform visibility queries for reliable 2.5D overlap We use our path planning algorithm as a guidance tool for
tests. a catheterization procedure, specifically chemoembolization of
liver tumors. Liver chemoembolization involves the injection
of chemotherapy drugs directly into the hepatic artery that
In order to test the effectiveness of our algorithm, we hawgpplies a tumor. The procedure takes advantage of the fact
used it for two scenarios: that liver tumors obtain their blood supply exclusively from
« Serial Walls. This scenario is based on a Parasol Benckhe branches of the hepatic artery. Under X-ray guidance, a
mark [12] in which a stick-like robot must navigatesmall tube orcatheter is inserted into the femoral artery and
through a series of walls with holes (shown in Fy.We is then advanced into the selected liver artery supplying the

Catheter 10080 80086 0.0159 0.1596 0.0062 0.0227 0.204

have extended the benchmark by changing the robot into
a soft-body sphere with280 polygons and the walls are
represented usintg8K polygons. The sphere’s diameter is
set to be larger than the holes, but small enough so that
the robot’'s material constraints allow it to fit through,
forcing it to deform to reach its goal configuration. It
takes about 6 minutes to compute a collision-free path.
Liver Chemoembolization. This scenario demonstrates
the ability of our planner to work in a realistic complex
environment. We attempt to plan the path of a tube-
like cylinder, called a catheter, through a set of arteries
in order to mimic the catheterization process in liver
chemoembolization. More details are given below.

A. Benchmark and Performance
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Fig. 3. Spherical robot through Walls: This scenario consists of a robot (deformable sphere w0 polygons) moving through six

walls (18,432 polygons) with small holes. The robot is larger than the holes and needs to deform to generate a collision-free path the initial

configuration to the final configuration.

Speedup in Collision Detection vs. Scene Complexity for a flexible catheter to a specific hepatic artery that is
supplying a tumor inside the liver. The 3D models of the

-
o

liver and the blood vessels, that make up the environment,
o - were obtained from the 4D NCAT phantom [25]. The flexible,
3 j snake-like, catheter was modeled as a cylinder with a length
g of 100 cm and a diameter of.35 mm. Figure 6 shows a 3D
‘§ 5 — rendering of the models used in this study with the starting
§ 4 (insertion of the catheter) and ending (tumor supplying vessel)
$ locations marked.
g, / Despite the scenario’s complexity, our planner was able
1 to successfully plan a path for this problem. A breakdown
0 : : : of the step time averages is given in Fig. 4. As the table
0 5000 10000 15000 20000 shows, a large portion of the computation time is spent done
Triangles in Obstacle in the collision detection phase (more th&0%). Further

Fig. 5.  This graph highlights the speedups obtained by utilizing th&ftlmlzaﬂons in GPU-based 2.5D overlap tests would improve

2.5D overlap tests in our collision detection algorithm, as we increase tHa€ performance of the overall planner.

polygonal complexity of our scene. We observe nearly an order of magnitude\\e use a large number of material constraints and are

gﬁjrr?q"eemgp;réﬂiggmp'ex scenes over prior algorithms based on boundigg) 1 generate fairly smooth deformations throughout the
simulation (as shown in Fig. 6). An additional path smoothing

tumor. Chemotherapy drugs, followed by embolizing agent'%t,ep further helps to improve the quality of the deformation.

are then injected through the catheter into the liver tumor.
During this procedure, careful manipulation of catheters is
essential [8], [29]. Manipulation of catheters in small vessels We present a new algorithm for computing a collision-
frequently causes spasms, which prevent adequate flowfree path for a deformable robot in a complex static envi-
carry the chemoembolization material into the tumor. Anotheonment. We generate an initial path for a robot based on the
problem may arise if the catheter has a cross-sectional agggroximate medial axis of the workspace and probabilistic
close to that of the vessel being injected. In this case, th@admap planner. We present a novel collision detection al-
size similarity will also reduce fluid flow and increase thgorithm to check for overlaps between the deforming robot
risk of reflux of chemoembolization material into other arand the obstacles. We have applied our planner to different
teries. Accurate planning studies can help to overcome thesmfigurations, including path planning of catheters in liver
difficulties. Preoperatively, path planning can be used as pahtemoembolization. The initial results are very promising.
of surgical planning techniques to help choose the size andThere are several directions for future research. We plan
properties of the catheter used. We used a geometric modeldevelop more physically accurate algorithms based on
of the catheter and arteries shown in Fig. 1 (along with theEM and combine them with multiresolution techniques to
relative dimensions). The catheter is modeled usifgd80 accelerate overall performance. We would also like to handle
triangles. The model of the arteries consist0f006 triangles scenarios where the obstacles are not rigid or stationary
and the liver is represented usiig, 459 triangles. The start and can deform as well, e.g. guiding flexible tubes among
and end configuration of the catheter are shown in the sageformable organs. We also plan to validate the results of our
figure. planning algorithms for catheterization procedure on clinical
We used our motion planning algorithm to compute a pathals.

VII. CONCLUSION AND FUTURE WORK
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Fig. 6. Path Planning of Catherers in Liver Chemoembolization: We (18]
highlight the collision-free computed by our algorithm for the catheter shown
in Fig. 1. We show the overall path from the start to the end configurati ig]
in the rightmost image. The left images highlight the zoomed portions of t
path, showing bends and deformations.

. o 20
We would also like to explore new applications of ouF !

planners in virtual prototyping, engineering design, and othi]
applications. Our collision detection algorithm only checks for
collisions between the robot and the obstacles and we wogg

like to handle self-collisions in the future.
23
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