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Abstract— In this paper, we study the following motion co-
ordination problem: given n vehicles and n origin-destination
pairs in the plane, what is the minimum time needed to transfer
each vehicle from its origin to its destination, avoiding conflicts
with other vehicles? The environment is free of obstacles and a
conflict occurs when distance between any two vehicles is smaller
than a velocity-dependent safety distance. In the case where the
origin and destination points can be chosen arbitrarily, we show
that the transfer takes Θ(

√

nL̄) time to complete, where L̄ is
the average distance between the origin and destination points.
We also analyze the case in which origin and destination points
are generated randomly according to a uniform distribution,
and present an algorithm providing a constructive upper bound
on the time needed to transfer vehicles from origins to their
corresponding destination, proving that the transfer takesΘ(

√

n)
time for this case.

I. I NTRODUCTION

Problems involving the safe coordinated motion of several
mobile agents in a shared environment are ubiquitous, ap-
pearing in many safety-critical application domains, suchas
surface transportation, air traffic control, and factory floors.
Ground and air traffic involve ever growing numbers of
individual agents; the ability of human controllers to reduce
traffic congestion in major metropolitan areas and to ensure
the efficient and safe operation of the national air space is
approaching its limits. Moreover, as mobile robot technology
progresses, unmanned and autonomously controlled ground,
air and underwater vehicles will increasingly share a com-
mon environment with their human-controlled counterparts.
Eventually, the design and operation of large-scale “swarms”
of autonomous robots will become increasingly realistic and
appealing for a variety of applications, ranging from environ-
mental monitoring, to manufacturing, and national security.
As a consequence, autonomous decision making is playing
an increasing role in the development of large networks of
mobile agents, and the design of algorithms for the safe and
effective coordination of possibly large numbers of vehicles
has attracted a great level of interest in the recent past.

While many multiple-vehicle coordination algorithms have
been proposed by researchers from robotics, computer science,
systems and control, and optimization, the field suffers from
a lack of common language and framework. Many advances
have been made using various models and assumptions, but
the fundamental limits in terms of achievable performance

of the class of coordination algorithms remains unclear. Asa
consequence, it is difficult to characterize the true effectiveness
of the algorithms available in the literature, especially when
the problem involves a very large input size for which an
optimal solution cannot be practically computed.

The aim of this research is to make a contribution in
this direction; namely, to provide (i) a characterization of
the minimum time needed to solve certain classes of motion
coordination problems, and (ii) algorithms for conflict-free
motion coordination, with an asymptotic analysis (asn → ∞,
wheren is the number of vehicles) of their time complexity.
We note that the expressiontime complexityis used here to
denote the time needed to complete a given task by alln
vehicles, and not necessarily thealgorithmic complexity of
the presented algorithm.

This work draws largely upon results from two different
information technology (IT) fields: those of wireless commu-
nications and distributed computing. Perhaps surprisingly, the
insight gained through the analysis of wireless networks and
mesh routing, and many of the results, can be used to yield
novel findings in terms of the time complexity of a class of
motion coordination problem. In that sense, this research also
takes a step in the direction of bridging the gap between IT
and mechanical science.

The need to circumvent the intractability of the problem of
determining an optimal, feasible motion plan for a multiple-
robot system as the number of robots increases has necessi-
tated compromises in the generality of the problem. Most often
it is optimality that is sacrificed, such as in environments where
the motion of robots is restricted to fixed paths, or roadmaps
([1], [2]), or the dynamics of the vehicle is otherwise quantized
([3]). In other work, it is the feasibility of the solution that is
not guaranteed, while optimality may be reached ([4], [5]).

In this work, we focus on algorithm performance in terms of
the order of the time complexity as a function of the number of
agents in the system, disregarding additive and multiplicative
constants. In that sense, the work is closest to that of [6], where
the author develops a characterization of thecommunication
complexity involved in multi-agent coordination. Our workis
inspired by the research of [7] and [8] on the limits of wireless
communication networks.

The paper is organized as follows. In Section II we introduce
the problem of sensor-based vehicle routing, formulate the



notion of its time complexity, introduce some notation, provide
some preliminary results and motivate the problem we wish
to address. In Section III we derive the bounds on time
complexity of the routing problem for arbitrary distribution
of origin-destination pairs, showing the time complexity of the
problem isΘ(

√
nL̄), whereL̄ is the average distance between

the origin and destination points. In Section IV, we provide
upper and lower bounds on the time complexity of the vehicle
routing problem in the case in which origin-destination pairs
are chosen randomly from a uniform distribution, proving that
the problem has time complexityΘ(

√
n) with high probability.

Finally, in Section V we draw some conclusions and discuss
future directions.

II. PROBLEM FORMULATION

Consider a square environmentQ of areaA. Considern
pairs of points inQ, to which we will refer to as origin-
destination(O,D) pairs, with(O,D)i ∈ Q×Q, i ∈ {1, .., n}.
The ith (O,D) pair is assigned to a mobile agentAi, i ∈
{1, .., n}. Initially each agent isinactive, i.e., is not considered
to be in the environment, and cannot be involved in a conflict.
(In other words, origin and destination points are considered as
“safe havens,” in which agents are protected from traffic: these
may correspond to airports and parking garages in practical
applications.) Lett0,i ≥ 0 be the time at which theith agent is
activated and enters the environment at locationOi; the agent
reverts to the inactive state upon arrival to its destination Di,
at time t0,i + Ti. While active, theith agent moves withinQ
along a continuous, time-parameterized pathγi : [0, Ti] → Q.
The position of an agent as a function of time is given by
the functionxi : t → xi(t) = γi(t − t0,i); by convention, we
will set xi(t) = γi(0) for t < t0,i, andxi(t) = γi(Ti) for all
t > Ti. Finally, let vi(t) be the velocity of agenti at time t,
and assume its magnitude is bounded byvmax > 0. Assume
vmax <

√
A/2. For each active agent, we define anexclusion

zone C, modeled as a disk centered at the agent’s position, and
with radius depending affinely on the agent’s velocity, i.e.,

Ci(t) =
{

z ∈ ℜ2 :‖ z − xi(t) ‖≤ r0 + k ‖ vi(t) ‖
}

, (1)

for given constantsr0 ≥ 0, k > 0. r0 can be understood as
the radius of the smallest circle enclosing each vehicle. Inthe
paper, we will sometime identify an agent with its exclusion
zoneCi(t) at time t. We say that aconflict occurs between
agentsAi andAj if there exists a timetc such that:

• Both Ai andAj are active at timetc and
• Ci(tc) ∩ Cj(tc) 6= ∅.

A routing policy is a mapπ : (O,D) 7→ (t0, T, γ) that,
given a set of(O,D) pairs, assigns to each agent an activation
schedule, and a time-parameterized path. A routing policyπ
is safeif it generates no conflicts. We define the Sensor-Based
Vehicle Routing Problem (SBVRP) as the problem of finding
a safe routing policy, given the(O,D) pairs. Let us indicate
with Tπ(O,D) the time at which the last agent is deactivated
according to policyπ; we will define the time complexity of
SBVRP for the(O,D) pairs as the infimum of this time over

all possible safe routing policiesπ, i.e.,

T ∗(O,D) = inf
π safe

Tπ(O,D).

We write f(n) = O(g(n)) if there exists a positive constant
c1 such thatf(n) ≤ c1g(n) for all n large enough. Similarly,
we writef(n) = Ω(g(n)) if there exists a positive constantc2

such thatf(n) ≥ c2g(n) for all n large enough. We say that
f(n) = Θ(g(n)) if f(n) = O(g(n)) andf(n) = Ω(g(n)).

A. Preliminary results

We have the following trivial bound, showing that our
problem formulation is such that a solution always exists
(hence making the feasibility decision problem trivial, unlike
the generalized movers’ and warehouseman’s problems), and
providing a conservative upper bound on the time complexity.

Proposition 2.1:For any set ofn origin-destination pairs,
the SBVRP is feasible, and its time complexity isO(n).

Proof: Assume agents are labeled by their activation time,
i.e., t0,i ≤ t0,i+1. If agents are activated sequentially, i.e.,
agentAi+1 is activated upon deactivation of agentAi, no
conflicts can arise. Each agent moves with the maximum
velocity along the line joining its origin and destination and
hence the time needed for thei-th agent to reach its destination
can be bounded asTi ≤ diam Q/vmax. Hence, the time at
which the last agent arrives at its destination isTseq(O,D) =
∑n

i=1 Ti ≤ ndiam Q
vmax

, which proves the claim.
Let us consider now the case in whichr0 > 0, i.e., the

area of the exclusion regions is bounded below by a positive
constant. We have the following.

Theorem 2.1:If r0 > 0 in (1), for any set ofn origin-
destination pairs, such thatmini |Oi − Di| ≥ l > 0, the time
complexity of the SBVRP isΘ(n).

Proof. Each agent has to stay inside the environment and
since the disk of radiusr0 is the minimum radius disk covering
an agent, the center of this disk also lies inside the environment
at any time. Since the environmentQ is chosen as a square,
each active agent claims exclusive ownership of a region inQ
of area at leastπr2

0/4, if r0 ≤
√

A/2; in such a case, at most
na =

⌊

4A/(πr2
0)
⌋

agents can be active at the same time. If
r0 >

√

A/2, then at most one agent can be active at any given
time, i.e.,na = 1. At mostna new agents can be activated no
sooner than everyl/vmax time units, i.e., the minimum time
needed for at least one agent to reach its destination. Hence
the time needed to activate and transfer all agents is at least
⌈n/na⌉ · l/vmax. Therefore, the total time needed to complete
the transfer of all agents can be bounded as

Tr0>0 ≥ n
πr2

0l

4Avmax
,

if r0 ≤
√

A/2, andTr0>0 ≥ nl/vmax otherwise. The lower
bounds, together with the upper bound in Proposition 2.1,
prove the claim.

This result condemns sensor-based vehicle routing problems
with agents of non-zero size to linear time complexity, thatis,
no better than a sequential agent activation, whenn becomes
large. In the remainder of this work, we will study the case in



which r0 = 0 in the definition of the no-conflict constraints,
i.e., the case in which the radius of the exclusion region is
directly proportional to the agent’s velocity and each agent
occupies a point in the environment.

While this is not—strictly speaking—a physically realistic
modeling assumption, one must keep in mind that, in most
problems of interest, conflicts are generated when vehicles
get closer than some safety distance that is much bigger than
the physical dimensions of the vehicle; for example, in air
traffic control, a conflict is generated whenever two aircraft
get within 5 nautical miles from each other. In automotive
traffic, defensive drivers typically maintain a safety distance
from a leading car equivalent at least to the distance traveled
in 2 seconds, which at 50 km/h (about 30 mph) amounts to
about 30 meters (about 90 ft), i.e., several times the lengthof
a standard car. Even pedestrian traffic follows a similar rule,
as people generally regulate their walking speed to maintain
a comfortable distance from others when moving through
crowded areas.

In addition, settingr0 = 0 lets us study the effect of
velocity on traffic congestion, and provides insight into the
nature of cooperation between agents aiming at minimizing
the overall transfer time. The intuition is that as agents move
faster, they need a bigger buffer to avoid collisions with others,
hence reclaiming a larger portion of a shared resource (the
environment), and thereby imposing severe constraints on the
motion of other agents.

III. A RBITRARY (O,D) PAIRS

In this section we will compute the lower and upper
bounds on the time complexity of SBVRP, where the origin-
destination pairs are chosen arbitrarily. Note that “arbitrarily”
here must be understood as “in such a way as to minimize
time complexity.” In other words, while the lower bound
by definition applies to all network configurations, the upper
bound is meant to apply to transportation networks designed
for efficiency (rather than an adversarial worst-case).

In talking about arbitrary networks, we note that the distance
between origin and destination for each agent is an arbitrary
variable that directly affects the time complexity. It can be
made arbitrarily small, hence making the completion time of
the algorithm likewise arbitrarily small. A relevant measure
in the arbitrary case is therefore not completion time, but
time per average distance traveled by the agents. This is
equivalent to including the distance variable in the bound on
time complexity.

A. A lower bound on the time complexity

In the arbitrary case, we have the following lower bound.
Lemma 3.1:For any set ofn (O,D) pairs, such that the

average distance between origin and destination points isL̄,
the time complexity of the SBVRP isΩ(

√
nL̄).

Proof. Let us assume that the motion of all the agents can be
represented as a set of straight-line motions, over a common,
synchronized time schedule of lengthh. For simplicity, let us
assume that each time interval has the common durationτ .

By definition, all agents reach their destination within time
T ∗ = hτ . Let us denote byrj

i the length of the straight-
line segment along which thei-th agent moves during the
j-th time interval. Obviously, we have

∑h
j=1 rj

i ≥ Li, where
Li = |Oi − Di|, and

n
∑

i=1

h
∑

j=1

rj
i ≥ nL̄, (2)

whereL̄ = 1
n

∑n
i=1 Li.

Assuming the velocity of any agenti during a time interval
j stays constant and is denoted byvj

i , we defineδj
i = kvj

i =
krj

i /τ . Hence the exclusion region area at any time during
interval j for agenti is given by

Aj
i = π

(

δj
i

)2

= πk2

(

rj
i

τ

)2

The collision avoidance constraint requires that at any time
during a time interval, the sum of the areas of the exclusion
regions of all agents lying inside the environmentQ cannot
exceed the area of the environment. Since the environment
chosen is a square, this means that at least one fourth of each
exclusion region is withinQ. Hence, the sum of the areas of
the exclusion regions of all agents at any time during any time
interval cannot exceed four times the area of the environment,
i.e.,

πk2

τ2

n
∑

i=1

(

rj
i

)2

=

n
∑

i=1

Aj
i ≤ 4A.

Summing over all intervals in the time schedule, and rearrang-
ing, we get

n
∑

i=1

h
∑

j=1

(

rj
i

)2

≤ 4Ahτ2

πk2
. (3)

Consider a convex functionf : ℜ → ℜ; Jensen’s inequality
states that

f

(

1

P

P
∑

p=1

xp

)

≤ 1

P

P
∑

p=1

f(xp).

Since the functionx 7→ x2 is convex, we can apply Jensen’s
inequality to (3) to obtain





n
∑

i=1

h
∑

j=1

rj
i





2

≤ hn

n
∑

i=1

h
∑

j=1

(

rj
i

)2

≤ 4Ah2τ2n

πk2
,

that is,
n
∑

i=1

h
∑

j=1

rj
i ≤

(

4(T ∗)2An

πk2

)
1

2

. (4)

Thus, from (2) and (4) we get

T ∗ ≥
(

πk2

4A

)
1

2 √
nL̄.

Since we have made no assumptions on the time schedule,
this bound applies in the limit asτ → 0, i.e., for continuous
schedules, which proves the result.



Fig. 1. Illustration of the procedure used in the proof of Lemma3.2 to
select origin-destination pairs that achieve the claimed upper bound on time
complexity. In this case,n = 16.

B. A constructive upper bound on the time complexity

In this section, we demonstrate that there exists a choice
of (O,D) pairs that achieves the same time complexity that
appears in the lower bound in Lemma 3.1.

Lemma 3.2:For any n ∈ N there exist sets ofn (O,D)
pairs, such that the time complexity of the SBVRP isO(L̄

√
n),

where L̄ indicates the average distance between origins and
the corresponding destinations.

Proof. We will prove the statement by presenting a proce-
dure for the selection of(O,D) pairs that admits a safe routing
policy of time complexity proportional tōL

√
n.

Given n ∈ N, partitionQ into p2 openly disjoint identical
squares, where we definep = ⌈√n⌉ if ⌈√n⌉ is even otherwise
p = ⌈√n⌉+ 1. Here⌈x⌉ is the smallest integer larger than or
equal tox. The side length of each such square is then

√
A/p.

Consider a minimum-length tourΓ through the centers of such
squares as shown in Figure 1; the length ofΓ is equal top

√
A.

Notice such a tour can always be constructed sincep is even.
Pick an arbitrary direction onΓ, and assign to each agent a

unique square center as its origin, and the next square center
on Γ as its destination. The distance between all origin and
destination points is the same, and equal toL̄ =

√
A/p.

All agents can be activated at the same time, and can travel
alongΓ at speed equal to

v =
η1

k

√
A

2
√

2p
,

where η1 < 1 can be chosen arbitrarily close to one. This
ensures that no two agents collide during their journey. The
total time taken for transfer of all agents is then given by

T ∗ = L̄/v =
2
√

2k

η1

√
A

pL̄ ≤ 2
√

2k

η1

√
A

(
√

n + 2)L̄.

Let OD(n) be the set of alln (O,D) pairs lying in Q
and L̄(O,D) be the average distance between the origins and
their corresponding destinations for a given(O,D) pair. The
combination of Lemmas 3.1 and 3.2 proves our first main
result:

Theorem 3.1:For any(O,D) ∈ OD(n), the time complex-
ity of the SBVRP isΩ(

√
nL̄(O,D)) and there exists(O,D) ∈

OD(n) such that the time complexity of the SBVRP for this
pair is O(

√
nL̄(O,D)).

Hence the time-average agent velocity toward goal is of order
Θ(1/

√
n). Multiplying by n, we see that the agent-meters

per second throughput metric of the network as a whole is
thereforeΘ(

√
n), which corresponds to analogous bounds of

wireless network capacity in arbitrary networks, as in [7].

IV. RANDOM (O,D) PAIRS

In this section, we will consider the case in which(O,D)
pairs are generated randomly, i.e., origin and destinationpoints
are sampled from a uniform distribution inQ, identically and
independently. Throughout the paper, we will use the phrase
“with high probability” abbreviated aswhp to stand for “with
probability approaching1 asn → ∞.”

A. A lower bound on the time complexity

Lemma 4.1:The time complexity of the SBVRP for a set of
n origin-destination pairs, randomly sampled from a uniform
distribution inQ, is Ω(

√
n), whp.

Proof. Denote byLi the distance betweenOi andDi, i =
1, . . . , n. Since origin and destination points are independently
and identically distributed (i.i.d.), the distancesLi are i.i.d.
random variables. The expected distance between two points
sampled from a compact set is bounded. In particular, the
expected distance between two uniformly distributed random
points in a square of areaA can be computed as

E[Li] =
2 +

√
2 + 5 ln(1 +

√
2)

15

√
A ≈ 0.521

√
A (5)

Similar arguments can be made to show that the variance of
the distance is bounded. The weak law of large numbers [9]
ensures that the average distanceL̄ between origin and desti-
nation points convergeswhp to the common mean—given in
(5) in the case of a square environment—asn increases. In
other words for anyǫ > 0,

lim
n→∞

Prob

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

Li − E[Li]

∣

∣

∣

∣

∣

≥ ǫ

]

= 1.

Using Lemma 3.1, we can conclude that

T ∗ ≥ k

2
E[Li]

√

πn

A
, whp

In other words,T ∗ ≥ 0.462k
√

n, whp.



B. An upper bound on the time complexity

In this subsection, we present an algorithm to compute
a safe routing policy for the case of random(O,D) pairs,
such that it takesO(

√
n) time, whp, to route all agents from

their origins to their destinations. The policy can be splitinto
three stages of vehicle routing, namely: i) Initializationphase,
ii) Main phase and iii) Termination phase, in this order. We
show that the initialization and final phases can be executedin
O((log n)3/2) time whp, and the main phase can be finished in
O(

√
n) whp. Hence the overall algorithm terminates inO(

√
n)

whp.
Our algorithm relies on the definition of the following

square tilings ofQ:

• A coarsetiling Pc(n), obtained by partitioning the envi-

ronment into
⌈
√

n
K log n

⌉2

squares of equal area (coarse

cells), whereK > 1
log(4/e) (e is the base of natural

logarithms). Let

lc(n) =

√
A

⌈
√

n
K log n

⌉

be the side length of such squares. Letµ∗ ∈ (0, 1) be the
sole root of the equation

−µ∗ + (1 + µ∗) log(1 + µ∗) =
1

K

• A mediumtiling Pm(n), obtained by partitioning each

cell in Pc into
⌈

√

2(µ + 1)K log n
⌉2

squares of equal
area (medium cells), withµ > µ∗. Let

lm(n) =

√
A

⌈
√

n
K log n

⌉ ⌈

√

2(µ + 1)K log n
⌉

be the side length of such squares.
• A fine tiling Pf(n), obtained by partitioning each cell

in Pm into nine squares of equal area (fine cells). Let
lf(n) = lm(n)/3 be the side length of such squares.

As explained in the following, the coarse tiling will be
used in the initialization phase, to identify regions in the
environment in which agents can be activated and moved inde-
pendently. The medium tiling will provide the main structure
for the actual routing of agents, through the solution of a
specialized version of the permutation routing problem in 2-D
meshes. The fine tiling will ensure the existence of a buffer
to safely accommodate agents temporarily sharing a medium
cell.

1) Initialization and Termination phase:In the initialization
phase, all agents are activated, and moved in such a way that
over-crowding is avoided; more specifically, at the end of the
initialization phase, agents will be placed at rest at the center of
cells in the medium tiling, with at most one agent occupying
each cell. In the termination phase, the opposite process is
implemented, in the sense that agents are moved from the
centers of cells in the medium tiling to their destination, and
deactivated. In order to minimize the execution time of the

initialization and termination phases, a large number of agents
are activated at the same time; the absence of conflicts in these
phases is achieved by concurrently activating agents that are
sufficiently far from one another.

The following result stated in Lemma 3.1 in [10] is critical
in proving some of the results in this section.

Lemma 4.2:Each coarse cell inPc contains no more than
(µ + 1)K log n origins (destinations),whp.

Since each coarse cellpc ∈ Pc contains at least2(µ +
1)K log n medium cells, an immediate consequence of Lemma
4.2 is that in each coarse cell there are at least(µ+1)K log n
medium cells that do not contain origin points,whp. (The same
can be said about destination points.) Therefore, it is possible
to associate to each agentAi, i = 1, . . . , n, two intermediate
way-points,O′

i andD′
i, with the following properties:

P1) If Oi (resp.,Di) is in the coarse cellpc, thenO′
i (resp.,

D′
i) is in the same coarse cell.

P2) Each cell in the medium tiling contains at most one of
the points in{O′

i : i ∈ 1, . . . , n}, and at most one of the
points in{D′

i : i ∈ 1, . . . , n}.
P3) If a medium cell contains a point in{O′

i : i ∈ 1, . . . , n}
(resp.,{D′

i : i ∈ 1, . . . , n}), then it does not contain any
point in {Oi : i ∈ 1, . . . , n} (resp.,{Di : i ∈ 1, . . . , n}).

P4) All intermediate way-points{O′
i,D

′
i : i = 1, . . . , n} are

at the center of a cell in the medium tiling. Note that since
each medium cell contains nine fine cells, the center of
a medium cell also coincides with the center of a cell in
the fine partition.

At the end of the initialization phase, all agents will be
active, and at rest at the respective first intermediate way-point
O′. Similarly, at the start of the termination phase, all agents
will be at rest at their second intermediate way-pointD′. Next
we wish to show that it is possible to move all agents in such
a configuration in a safe manner, within timeO((log n)3/2).

Lemma 4.3:Let O be a set ofn origin points sampled
at random from a uniform distribution, andO′ a set of
intermediate way-points, satisfying properties P1-4. Then, n
agents can be activated and moved from points inO to points
in O′ within time O((log n)3/2), whp.

Proof. We will prove the result by providing an algorithm
that solves the problem with a cost satisfying the stated
bound. The algorithm that we propose for the initialization
phase, called SPREADOUT , requires the solution of a coloring
problem on the tilingPc, in such a way that no neighboring
cells have the same color (including cells touching at one
point only, i.e., diagonally). It is straightforward to seethat
four colors would suffice to color such a square tiling on a
plane in this manner (e.g., see [11] to see standard coloring
problems).

Given the pointsOi and O′
i, and a coloring scheme, the

SPREADOUT algorithm works as follows (see Figure 2 for a
pictorial representation). Choose a colorc and, concurrently
in all coarse cells with the same color, activate agents in turn,
moving them to their first intermediate way-point. (If an origin
point lies at the boundary between two or more coarse cells,
assign the corresponding agent to one of the cells arbitrarily.)



Fig. 2. Zoomed-in sketch of the algorithm used in the initialization phase.
The figure shows a typical agent configuration within a coarsecell that is
divided into medium cells. Empty dots represent the location (origin) of
inactive agents. Filled dots represent the location of active agents, at rest at
their first intermediate way-point which is the center of an exclusive medium
cell. Lightly-shaded cells do not contain origin points, whereas darkly shaded
cells contain an active agent at their centers. The thick curve represents the
pathγinit

i
of the agentAi, that has been recently activated. The point where

the curve starts isOi and the point where the arrow ends isO′

i
. Location of

the agent and its exclusion region are also shown at a time instant during its
transfer fromOi to O′

i
.

The pathγinit
i followed by agentAi is chosen as the shortest

continuous curve joiningOi to O′
i, without intersecting the

interior of medium cells already containing an active agent.
Agents travel along their paths at speedvinit = η2lm/2k,
where η2 < 1 can be chosen arbitrarily close to one. Once
all agents with origin point in cells with colorc are active and
at rest at their first intermediate way-point, choose a different
color, and repeat until all agents have been activated.

Because of property P1, the length of the pathsγinit is
bounded by2lc: as a consequence, each agent reaches its first
intermediate way-point within time4k

η2

⌈

√

2(µ + 1)K log n
⌉

after it is activated. Since there are at most(µ + 1)K log n
agents per coarse cellwhp by Lemma 4.2, activation and
transfer of all agents in a coarse cell will be completed within
time 4k

η2

(µ + 1)K log n
⌈

√

2(µ + 1)K log n
⌉

, whp. Since all
coarse cells with the same colors are processed concurrently,
and there are four colors, the execution time of SPREADOUT

is bounded by16
√

2k
η2

((µ+1)K log n)3/2+ 16k
η2

(µ+1)K log n,
whp.

Now we need to show that the SPREADOUT algorithm is
safe, i.e., it does not generate conflicts. The exclusion region
of agents moving according to the SPREADOUT algorithm has
radiusδinit = kvinit = η2lm/2. The SPREADOUT algorithm

moves at most one agent at a time in each coarse cell with
a given color. Since neighboring coarse cells have different
colors, active and moving agents are at least a distancelc >
2δinit = η2lm away from each other. As a consequence, no
conflicts can arise between agents in motion. Finally, active
agents are either moving or at rest at the center of a medium
cell (because of property P4); by construction, the pathsγinit

are greater thanδinit distance away from the centers of cells
occupied by active agents at rest, thus avoiding conflicts
between agents in motion and agents at rest.

The termination phase starts with all agents active and
at rest at their second intermediate way-pointD′. During
this phase, all agents are moved to their destination and
deactivated, without conflicts. It can be recognized that a minor
modification to the SPREADOUT algorithm (wherein theγterm

paths join theD′ and D points) will achieve this goal, with
the same cost of the initialization phase:

Lemma 4.4:Let D be a set ofn destination points sampled
at random from a uniform distribution, andD′ a set of
intermediate way-points, satisfying properties P1-4. Then, n
agents can be moved from points inD′ to points inD and
deactivated within timeO((log n)3/2), whp.

2) Main Phase:As a prelude to describing the algorithm
for the main phase, we review a related problem studied in
the parallel and distributed computing research community.
Consider a square ofm2 processing units (PUs) withm PUs
in each row and column. Each PU is connected to its vertical
and horizontal neighbors with a communication link. Each
processing unit can send and receive one packet along each
communication link in a time slot. (Thus every PU can receive
and transmit at most four packets simultaneously in a time
slot.) In addition, each PU is able to store in a buffer a queue
of packets waiting to be transmitted.

Suppose each PU is the source and destination of exactly
one packet. The problem of routing the totalm2 packets to
their destinations is a well studied problem in the paralleland
distributed computing literature under the name ofpermutation
routing. The following result characterizes the performance
of permutation routing algorithms with minimal queue length
requirements at the PUs.

Theorem 4.1:[12] Permutation routing in am × m mesh
can be performed deterministically inNPR = 2m − 1 time
steps and with maximum queue size equal to 2.

An algorithm achieving this performance characteristics is
given in [12]. We will refer to such an algorithm as Permu-
tation Routing (PERMROUTING ) algorithm. In our proposed
solution to SBVRP problems, at the start of the main phase,
all agents are active and at rest at the intermediate way-points
{O′

i : i = 1, . . . , n}; at the start of the termination phase, all
agents must be active and at rest at the intermediate way-points
{D′

i : i = 1, . . . , n}. Consider the medium partitionPm(n).
Because of property P2, each cell in this partition containsat
most one of the points inO′ and at most one of the points in
D′. Hence, the problem of routing agents from the respective
first intermediate way-point to the second one can be cast as a
permutation routing problem, in which medium cells play the



role of processing units. In mesh routing, the PERMROUTING

algorithm associates to each packet and time step a processing
unit; in our case, the PERMROUTING algorithm outputs a map
S : {1, . . . , n}×{1, . . . , NPR +1} → Pm, associating to each
agent and time step a cell in the medium partition. We will use
the shorthandSq

i = S(i, q) to indicate the cell assigned to the
i-th agent at the beginning of time stepq. Naturally,O′

i ∈ S1
i ,

andD′
i ∈ SNPR+1

i , for all i = 1, . . . , n. If Sq
i = Sq+1

i the i-th
agent is held in a queue at time stepq, i.e., it must wait before
being transfered to the next cell on its path.

A difference between our routing problem and the one
considered in [12] is that in the case of vehicle routing “com-
munication links” are not full duplex, i.e., it is not possible
to travel at the same time in both directions across a single
link. We obviate this problem by splitting each time slot into
four rounds. In each round, only cell transfers in a specified
direction (e.g., North, South, East, or West) are allowed,
in turn. Let Neigh : Pm × {North, South, East, West} →
Pm ∪ null be a map that associates to each medium cell its
neighbor in a given direction (if it exists,null otherwise).

At most four agents will be transferred out of a medium
cell during each time slot, one per round. The following
result will be useful in the analysis of the application of the
PERMROUTING algorithm to Sensor-Based Vehicle Routing:

Proposition 4.1:The maximum number of agents in any
medium cellpm ∈ Pm at the start of a routing time slot is 6,
i.e.,

max
pm∈Pm

{

max
q∈{1,...,NPR+1}

card({i ∈ {1, .., n} : Sq
i = pm})

}

≤ 6

Proof. We prove the claim by contradiction. Assume there
exists an integerq and a cellpm ∈ Pm such thatcard({i ∈
{1, .., n}|Sq

i = pm}) > 6. Since during the time slotq at most
4 agents can leave the cellpm, this implies that cellpm will
have to buffer more than two agents during theq-th time slot,
which is a contradiction by Theorem 4.1.

We are now ready to explain our algorithm for the main
phase, to which we will refer as MAIN ROUTING . The first
step consists of solving the permutation routing problem with
the PERMROUTING algorithm. For each time slotq in the rout-
ing schedule, perform the following. In each round of the time
slot, pick one directiondir ∈ {North, South, East, West}.
Concurrently, for each cellspm ∈ Pm, pick (if it exists)
the unique agentAi such that Sq

i = pm, and Sq+1
i =

Neigh(Sq
i , dir). If D′

i /∈ Sq+1
i , then move the agent to the

center of an empty fine cell insideSq+1
i , other than the middle

one, and put it to rest. Proposition 4.1 and the fact that at most
one agent enters a medium cell every round and at most one
leaves every round ensure that at most 7 agents are inside
a medium cell at the start of a round if there is an agent
to be transferred to this cell during the round (notice there
are only 4 rounds). This ensures that an empty fine cell is
always available for the agent to be transferred to. Otherwise,
if D′

i ∈ Sq+1
i , move thei-th agent to its second intermediate

way-point D′
i, which is the center of the middle fine cell in

Fig. 3. The figure at the top shows the transfer of vehicles in around
in three consecutive cells in a row of the medium partition. The figure at
the bottom shows the vehicle positions halfway through the round. The dots
are the vehicles at rest at the center of an exclusive fine celland the moving
vehicles are depicted by small arrows with the circular exclusion zones around
them.

Sq+1
i , and put it to rest. Repeat the above for all four directions,

one per round.
Next we characterize the time needed to execute one single

round of the MAIN ROUTING algorithm safely:
Lemma 4.5:Each round of the MAIN ROUTING algorithm

can be performed with no conflicts in timeTround ≤ 24k/η3,
whereη3 < 1 is an arbitrary constant chosen close to one.

Proof. Let q be the current routing time slot; because of
the symmetry of the problem, we can restrict our analysis
to the case in whichdir = East. Let IEast be the set of
indices of agents moving East in the current round. For all
i ∈ IEast, choose an empty destination fine cellpf ∈ Sq+1

i and
defineγq

i : [0, Tround] → Q as the shortest continuous time-
parameterized trajectory satisfying the following properties:
Q1) γq

i (0) is the location of the agent at the beginning of the
q-th routing time slot.

Q2) γq
i (Tround/2) lies on the boundary betweenSq

i andSq+1
i .

Q3) γq
i (Tround) is the center of the destination fine cell for

the i-th agent at theq-th routing time step.
Q4) All points in γq

i are at least at a distancelf/2 from the
boundary ofSq

i ∪ Sq+1
i .

Q5) No point inγq
i lies in the interior of a fine cell containing

any other agent at rest at its center.
Such a trajectory can always be designed, see Figure 3 for an
example. The length of the the segment ofγq

i within Sq
i (and

Sq+1
i ) is bounded by2lm; agents can move along these paths

at speedη3lf/2k, whereη3 < 1 can be chosen arbitrarily close
to one. Hence, the exclusion zones of each moving agent has
radius< lf/2 throughout the motion. This and property Q5



ensure moving agents do not collide with agents at rest. Since
it would take at most12k/η3 time for any agent to reach the
boundary it is crossing and at most the same time from there to
the center of its destination cell, choosingTround = 24k/η3

ensures that property Q2 and Q3 are satisfied. Property Q2
ensures that the agent maintains separation between agents
being transferred from the left and right neighboring medium
cells and does not collide with them. Property Q4 ensures that
the agent maintains separation and does not collide with the
moving agents in neighboring medium cells in the above and
below row of medium cells (recall thatlm = 3lf ).

Based on this intermediate result, we can conclude that:
Lemma 4.6:Considern pairs of intermediate way-points

(O′,D′) satisfying properties P1-4. Then, all agents at rest
at their respective intermediate first way-point inO′ can
be routed to their corresponding second way-point inD′ in
O(

√
n) time.

Proof. According to theorem 4.1, permutation routing can
be performed in2m − 1 steps, where in our casem is the
number of cells in a row in the medium partitionPm, i.e.,
m =

√
A/lm =

⌈
√

n
K log n

⌉ ⌈

√

2(µ + 1)K log n
⌉

. Since each

routing step is composed of four rounds, one for each direction
of motion, and each round takes at most24k/η3 time, the
total time taken for routing agents from their respective first
way-points to their respective second way-points is at most
96k
η3

(2(
√

n
K log n +1)(

√

2(µ + 1)K log n+1)−1). This proves

the result.
Lemmas 4.3, 4.4 and 4.6 together give the following second

main result of this paper:
Theorem 4.2:For any set ofn (O,D) pairs randomly

chosen from a uniform distribution inQ, the time complexity
of the SBVRP isΘ(

√
n) whp

V. CONCLUSION

In this paper, we have studied the time complexity of
sensor-based vehicle routing problem where conflict is defined
by the intersection of velocity-dependent exclusion regions.
We first showed that if the area of the exclusion region is
bounded away from zero, the time complexity of the routing
problem isΘ(n), i.e., is no better than the trivial worst-case
bound. We then focused on the case in which the exclusion
region can be made arbitrarily small by reducing the agent’s
velocity, and showed that for the case in which origin and
destination pairs can be chosen arbitrarily, the time complexity
of the vehicle routing problem isΘ(

√
nL̄), where L̄ is the

average distance between the origin and destination points. In
the case of random origin-destination pairs, we showed that
the time complexity isΘ(

√
n). In the future, we intend to

present a worst case vehicle routing situation and characterize

its time complexity. We also intend to introduce formation
mobility model and show how this can be used to improve
the time complexity of the vehicle routing problem. Another
direction of research is to tie this work back to its origins in
the wireless communications literature. There has been recent
work ([13],[14]) demonstrating that node mobility improves
the theoretical capacity of wireless networks, established in
[7]. By coupling the capacity problem with a realistic physical
model of nodes as mobile agents, we can determine the true
fundamental limits of communication. This new model would
reflect the constraints imposed by both wireless medium access
and the shared resource of physical space.
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