Data Structure for Efficient Processing in 3-D

Jean-Francois Lalonde, Nicolas Vandapel and Martial Hebert
Carnegie Mellon University
{jlalonde,vandapel,hebé@ri.cmu.edu

Abstract— Autonomous navigation in natural environment re- Recent advances in sensor design have enabled the use
quires three-dimensional (3-D) scene representation and inter- of |aser radars that provide tens of thousands of 3-D points
pretation. High density laser-based sensing is commonly used per second, even a hundred thousand, with centimeter range

to capture the geometry of the scene, producing large amount ; .
of 3-D points with variable spatial density. We proposed a resolution. The problem now is how to handle such a large

terrain classification method using such data. The approach relies Point cloud and how to design the data flow from the sensor
on the computation of local features in 3-D using a support to the environment interpretation. One critical aspecbibé
volume and belongs, as such, to a larger class of computational gble to perform quickly basic operations such as insertion,
problems where range searches are necessary. This operation 0ngecags and range search. Traditional optimal tree-basted d
traditional data structure is very expensive and, in this paper, . - .
we present an approach to address this issue. The method reliesStrUCtureS _are '_"'Su'ted for dynamic c.iata Sets. because of
on reusing already computed data as the terrain classification NUMErous insertions produced by a moving robot in an outdoor
process progresses over the environment representation. Weenvironment.
present results that show significant speed improvement using |n this paper, we present a new approach for handling 3-
ladar data collected in various environments with a ground 454 for efficient on-board processing. The data procgssin
mobile robot. .

we are concerned with are kernel-based methods, where for
a given point, some operations are performed using a support
volume. The core of the approach is to minimize computation

Autonomous ground robot navigation in outdoor natuy re-using pre-computed intermediate results. The approa
ral environment, specifically in the presence of vegetatio demonstrated with data from a ground mobile robot, the
requires advanced three-dimensional perception capebili Demo 11l XUV, for ladar-based terrain classification [14].

[13], [2]. Cross-country navigation, like in a forest or rdea, The rest of the paper is divided into four sections where we
introduces new challenges compared to road following @fesent: the state of the art in data structures, specyfital
desert/planetary environment traverses. In the latteg,agle- robot navigation; our approach, with a complexity and memor
vation maps built from 3-D data suffice to represent and masgnalysis; results from static ground robot, and the coimius
about the robot surroundings. In the former case, however, a

full 3-D internal representation is necessary to accomigoda Il. STATE OF THE ART

the complexity of the scene that contains porous materialin this section we review recent work on 3-D data structure
(vegetation), thin structures (branches, wires) and @reging for ground mobile robot. We also look at traditional data
structures (tree canopy). Figure 1 represents an examplesgfictures.

scene consideréd Note the point density variation and the

presence of the structures mentioned above. A. Robotics

Three-dimensional data have been used for a long time for
outdoor robot navigation, initially from stereo camerarnhe
from laser radar. If the terrain is unobstructed, one common
approach is to create a 2D grid of the terrain with the terrain
classification results. The data processing can take place i
the sensor reference frame (range image) and the results are
then back-projected in that 2D grid. An alternative is toatee
an intermediate digital elevation map by gridding the 3-Eada
into a 2D-1/2 map and then doing some processing, convolving
a robot model with the terrain for example [13]. In both cases
however, the data processing is not performed in 3-D.

If the terrain contains vegetation such as trees, grass or
bushes, the previous approach is not sufficient. A full 3-D
Fig. 1. Example of terrain considered. The color of each psittased on representation Is neces§ary to represent the,en\”ronm,dnba
the elevation, with red (blue) representing high (low) atén. produce a better and higher level of scene interpretatiore O

such approach has been demonstrated for vegetation detecti

1The figures in this paper are best viewed in color and ground surface recovery in [6], [2]. In both cases, a

I. INTRODUCTION

dense 3-D grid representation of the environment is maiathi
around the robot and scrolled as it moves. A ray tracing
algorithm updates each voxel by counting the number of time
it has been traversed by or stopped a laser ray. Such stsiisti§
are then used to determine if the voxel is likely to be the loac
bearing surface or vegetation. The data processing requirg
data insertion and retrieval, but no range search.

Similarly, 3-D occupancy grid approaches create a voxglize
3-D model by performing insertion and access but are nidg- 2. Example of terrain classification. In red/green/tduefaces, scatter

. volumes and linear structures.
optimized for range search [9].

Sometimes operations in 3-D can be reduced to 2-D oper-
ations as shown in [11] for natural environment navigatiom. On-board robot implementation

Unfortunately, in general, we cannot follow such an appioac In order to handle a hundred thousand points per second,

we previously implemented a data structure that reduces dra
matically the amount of data to handle without compromising
Traditional pre-computed tree-based data structures (Ktie features computation. The environment is represented
tree, range tree) are efficient for performing range searcls a set of sparse voxels that contain intermediate results
Unfortunately, their performance degrades rapidly as -addised to compute the scatter matrix. It is straightforward to
tional data are inserted after construction [10]. Lerscli7in see that the scatter matrix can be decomposed in terms of
presents a data structure for structural segmentation Df 3sums, sums of squared and sums of cross products of 3-D
point-cloud data, called the windowed priority queue. Thgoint coordinates. These results are simply nine numbers. F
approach focuses on the indexing of the data for fast refitieveach new point falling into a voxel, the nine numbers are
The computation performed is similar to the one used in oupdated. To compute the saliency features for a given point,
work [14] but it is performed off-line. Approximate search i range search is performed and the neighboring voxels sesult
sometimes proposed, but we did not consider it in order e summed up together to compute the scatter matrix. The
maintain the necessary classification rate. voxels are accessed via a hash-map. Thus, with such a data
Gao proposes an interesting work on efficient proximitgtructure, we significantly compress the data while keeplhg
search in 3-D for kinetic data [4]. The author extends Voioninformation, regardless of the performed computation.
diagram and Delaunay triangulation to an environment madeThe computations we perform belong to a general class
of 3-D voxels. A simple example is provided. It is not cleaof processing that requires the retrieval and the use of the
how we can efficiently scale this approach to handle the poiéta within a support volume around a point of interest. We
density and grid resolution in our context. introduce here some notations
Machine learning and statistical methods require efficient, pop = {p1,p2,...,pm}: point cloud data, a set af
data structures for nearest neighbor search, range search, 3.p points;
regression or kernel operations [8], [5]. But most of the , Pk = (T, Yk, z1): @ 3-D point inPCD;
attention is focused on high dimensional data set rather tha , N(p;, s): the set of points around a given pojnt within

B. Data structures

dynamic data set. a volume of radius or scalg such that| p; — pi. [|co< s
with i # k;
I1l. NATURE OF THE COMPUTATION o F(N(ps,s)): a function over the neighborhood points.
A. Terrain classification In our caseF’ = -y (P — p)T(p — p). The work

resented in [12] belongs to the same class of computation,

Using 3-D ladar data as input, we perform pOInt'Wlsgut the objective is to extract simultaneously multiplenala

classification to detect vegetation, thin structures ani so : o .
. .s%ructures using projection-based regression. The fomdii
surfaces. The method relies on the use of the scatter matm&akes the form

extract features via principal component analysis. Foheac

point, the approach computes the scatter matrix within a 1 INEel g,
support volume and then extracts its principal component N (pi,s)) = ————=— K(=——)
; : S |N(pi,s)|he “ he

(eigenvalues). A linear combination of the components aed t i=1

associated principal directions define the features. A inoide with x a kernel function scaled to the bandwidth. We refer

the features distribution is learned off-line, prior to thission, the reader to [12], [1] for additional detalils.

from labeled data. As the robot traverses a terrain, dataThis approach has been tested extensively on-board a
are accumulated, features computed and maximum likelihogbund robot. The processing time on the current hardware
classification performed on-line. Figure 2 presents an @k@mallows operation at slow speed (1-2 m/s) with a hundred
of such terrain classification. For additional details pteaee thousand input points per second, depending on the comylexi
[14]. of the terrain. The motivation behind our recent work is

to increase the processing speed to handle higher terrBinBrute force approach
representation resolution and faster robot navigatioe@pe 1) Description: The implementation presented in Section
111-B, relies on a brute force approach [14] that visit theokh

IV. APPROACH k3 neighborhood each time: a hash map is used as a data
structure and occupied voxels are scanned in random order.
A. General principle 2) Analysis: The total number of visited voxels is simply
Real-time area-based correlation stereo algorithms reuse 3
torute = VE (1)

previously-computed data to achieve greater executioadspe
For example, in [3], Faugeras et al. decompose the zero meafhis method takes advantage of the sparseness of the data:
normalized correlation score into partial sums, and adudk& only occupied voxels are visited. However, on the dense
only columns contribution as the epipolar line is scannegkgions, much of the computations are repeated many times
A similar approach is used to handle change of line yecause neighborhoods overlap.
removing/adding line contribution at the image borderac8i)
the nature of the computation needed for feature extradsionC: Naive approach
analogous to correlation (i.e. it can be decomposed inttigbar 1) Description: A naive approach would be to act as if
sums), we apply that principle to a voxel representationin 3 the volume was densely populated, that is, to scan the whole
However, there are two fundamental differences between tflume in an ordered way while executing neighborhood
2-D and 3-D cases that justify the need for a novel approad@mputation for every voxel, even the empty ones. This is
First, in stereo, correlation is performed along the epipolthe direct translation of the 2-D approach using 3-D data.
line, resulting in a unidirectional scanning. However, jnan An appropriate data structure is the dense voxel representa
different strategies exist to scan the 3-D space (obtained #°n, in which memory space is reserved for each voxel of
permuting the order of axes). Figure 3 illustrates two examp the volume at the beginning. The drawback of this choice
Second and most importantly, full 3-D data is usually verp that memory usage is mostly inefficient, thus limiting the
sparse, that is’ a |arge number of voxels are empty. nglume of interest. It iS, however, much faster since it doas
contrasts with images in which each pixel contain inforovati require hash key computation, and allows ordered travefsal

that can easily be retrieved in a subsequent step. the volume.
2) Analysis: Since it re-uses previously-computed data and

recomputes neighborhood slices each time, the number of
visited voxels at each step &2. Since it is done over the
whole volume,n = v, and the total number of visited voxel

is
“-\\ I tnm‘ve == 2nk2 (2)
L7 _
This method does not take advantage of the sparseness of
\f the data, and must scan the whole volume each time. The

condition fort,,.;.. to be less thamy, .,z IS :

. . 2 3
Fig. 3. Two possible scanning strategies in 3-D tnaive < torute * 2nk” < vk

First, we introduce some notation. Given a volurie v 2

subdivided into voxels, let: n k
= 0,
« n = ny x n, x n, the total number of voxels in the If & =9, thenv/n > 0.23. At least 23% of the voxels

i in the volume must be valid for the naive method to be faster
volume;

than the brute force. As our experimental results show [@ect

* co?fmtge number of occupied (non-empty) voxels in th\‘7), the v/n ratio tends to be very low, typically under 2%,

e k= (2r+1) the neighborhood size (eg. for range searcH)LfSt'fymg the need for a better approach.
wherer is the radius, in number of voxels D. Memory-based approach

We derive the following equations to compute the number 1) Description: This method takes advantage of the dense
of voxels that need to be visited for range search computatioegions in the volume. The principle is the same as in Section
We do not take into account the differences that may arisels¢C, but the computations are done only on the occupied
the boundaries of the volume: for a large volume, they awexels. Therefore, this algorithm will need to find theevious
assumed to be negligible. We also assume khatthe same occupied voxebnd see if it is close enough, that is, if the
in each dimension. distance between the two is less thap2. This concept

is related to the volume traversal order because it directly
depends on the scanning direction.

To help formalize the problem, we follow a two-step pro-
cedure: first we assume a constant cost independent of the
number of visited voxels so we can derive easily a lower bound
on the 7 ratio, second we determine the expression for this
cost.

2) Simplified lower bound estimatior8ince this approach y
requires the voxels to be scanned in predetermined order, le L
d be the distance (in number of voxels) between the current X d
voxel and the previous occupied voxel in the volume, along
the scanning direction. LeX be the discrete random variableFig- 4. lllustration of data reuse with sparse 2-D data with= 5. Each
representingd. The distribution of X depends only on the S9uare is avoxel, and dots indicate occupied voxels.
data.

For the sake of simplicity, we first assume that, for a given
voxel v,, the range search computation will require visiting 1
ak? voxels if d < %, and k® otherwise, with constant. i S gF& =4
Moreover, since every voxel in the whole volume must be P(X < %)
analyzed, a cost of must be added.,cyory iS cOMmputed as
the expected cost:

ES
|

[~

=1

tmemory, iN the general case, becomes

- k
k k _ 2 _ 13 il 3
t'rnemo'r'y =v (Oék2p[‘< < 5] + kSPL(Z 5]) +n tmemory =v <(2dk k)P[X < 2] + k) +n (3)
k k k)] — i
— o (ak?PIX < T+ B(1-PX <)) +n In the worgt caseP_[X_ < 2]_ 0, Equation 3 becomes
2 2 tmemory = Vk>+n, Which is equivalent t,,emory = torute +

5 3 k 3 n. The only difference with the brute force method is the need
=v | (ak” - F*)PIX < 5] tE)+ to visit each voxel in the volume. The condition fo%emory

-]) to require less operations thag..;. becomes:
The condition fort,,cmory t0 require less operations than

torute DECOMES: 1

= > (4)
B n = (k3 —2dk?) P[X <]
2 3 3 3
v ((O‘k —kK)PIX <l +k > +n<vk As shown in Section V-B, Equation 4 is a lower limit on
which we can guarantee faster execution.
v 1
n” (B —ak?) PIX < &| E. Algorithm and data structure

] . The proposed algorithm is illustrated in pseudo-code by
[For example, if half of the occupied voxels are locatefljgorithm 1. In this example, the scanning order is speciéisd
within less thang distance from the previous occupied voxejnpyt by the user, and the algorithm automatically deteesmin
(that is, P[X < 5] = 0.5), the condition becomes in what direction it should look for re-usable data.
v 1 The data structure previously used in Section IV-C.1 is
-> insufficient for the needs of Algorithm 1. We therefore prepo
n~ 0.5k3 — ak? : . T
a variant of the dense voxel representation that maintains
If £ =9 anda = 1 then 7 > 0.00352. In that case, at an array of pointers to previously visited occupied voxels i
least 0.3% of the voxels in the volume must be valid for thisiemory. Figure 5 illustrates the principle in 2-D, but it is
method to visit fewer voxels than the first. easily generalizable to higher dimensions. Fhe 4 grid is
3) Lower bound estimationNow, we relax the previous the original dense voxel representation, and the two auiditi
assumption and consider the general case where the numbearcdys are pointers to previously-visited, occupied vexal
visited voxels depends an Figure 4 illustrates this problem memory. In this example, the scanning orderitheny, and
in 2-D. Sinced = 2, the two rightmost columns are added tahe current voxel,. is filled in blue, whereas the previously
the neighborhood of the voxel &2,2), and the two leftmost visited voxels are shown in a lighter shade of blue. The
columns are subtracted. In total, four columns (insteadve) fi occupied voxels are dotted. The algorithm has access to the
must be computed. nearest previously visited occupied voxel just by lookibthe
We defined as the expected value af over those voxels cells in red, which correspond to tie, y) position ofv.. v,
for which d < g (position (2, 0) in this example), can then easily be retrieved.

Algorithm 1 General scanning algorithm B. Validation of theoretical results
Require: V' the voxelized volume and its boundaries
1: for every occupied voxel iV do
2. v, < V(z,y,z), the current occupied voxel
3: Retrieved, the distance to the closest occupied vox
that has already been visited, add-, the direction
associated with it

To validate the derivation of Section IV-D, a set of syntbeti
random data is generated over a volume of interest with vari-
qus uniform point density. We compute the speedup obtained
%y comparing the brute force method of Section IV-B with
the optimal method of Section IV-D.3. The values &fand
P[X < %] are also computed to determine the lower bound

. if d > % then . .) ;
5 n (2_ the whole k* neighborhood.{There’s no predicted by Equation 4. Figure 6 shows the results obtained
' € €19 ' experimentally.
sufficiently close occupied voxgl
6: else
7 Retrievev,, the previous occupied voxel located at 011 ‘ ; ; ; ‘ —————
distanced in direction dir of v, . » Qriginal method
8: n, < stored neighborhood computation of 01]
o: sp < the d rightmost (alongdir) slices ofuv, g
10: s. « the d leftmost (alongdir) slices ofv, é 0.091
11: Ne < Np — Sp + S¢ %’
12: end if = 0.08r
13: end for g
" 0.07r
£
=
0.06

02 04 06 08 1 12 14 16 18

Point density (%)
T~

Fig. 6. Validation of theoretical results. The verticaldimdicates the lower
bound predicted by Equation 4.

B

y These results emphasize the fact that if Equation 4 is
satisfied, the new method is guaranteed to be faster than

X the first. Under this limit, there is no guarantee because the

analysis is only considering the average over the wholemelu

Fig. 5. 2-D example of the proposed data structure. Occupieetls are and not taking into account the local clustering of the data.
dotted, and the interest voxel is blue. The previously &tioxels are drawn

in a lighter shade of blue. The cells in red point to the presigalid result c.c . di .
along their respective dimension. - Creation and insertion

The creation of the data structure is done only once at

the initialization of the process. For a 200x200x30 grid, it

V. RESULTS takes 720 ms to create the 1.2 million voxels. Moreover, with

10 cm grid voxels, we can insert nearly three million points

per second. In our application, each voxel stores nine 64-bi

We implemented a templatized version of Algorithm 1 angalues for saliency computation. Moreover, each element in

the corresponding data structure in C++ for Linux OS. In ordehe additional arrays introduced in Section IV-E are 32-bit
for it to be efficient, we paid attention to basic rules such asinters, and results are contained within three 64-bitesl

not to perform costly run-time operations (polymorphismiia The total memory usage, for the flat ground example shown

to access the data only using references. The code runs dn dable | is:

regular PC (Intel Xeon, 2.8 GHz, 1.5 GB RAM).
The data used in this paper were collected using the
GDRS eXperimental Unmanned Vehicle [6]. This car-sized

A. Implementation and data collection

memory = 200 x 200 x 30 x 9 x 64

autonomous vehicle is equipped with a high-speed rugged + 200 x 200 x 32 4+ 2 x 200 x 30 x 32
range sensor that produces more than 100,000 3-D points + 59,275 x 3 x 64
per second with cm range resolution. The laser is mounted ~ S4MB

on a turret scanning the ground surface. The field tests

were conducted at Fort Indiantown Gap in Pennsylvania inSimilarly we obtain 112 MB for the forest and 126 MB for
December 2004. Various terrain types were traversed imgud the tall grass environment. Those memory requirements are
unstructured roads, forest and meadows. well within current computers memory capabilities.

TABLE |
STATISTICS FOR THE DIFFERENT TERRAINS WITHLO CM VOXELS.

Terrain \ Sizen (in cells) Raw data Occupied voxels 2 d P[X < %]

Flat ground 200x200x30 2.0 million 59,275 0.049 1.0263 0.9917

Forest 160x250x40 1.7 million 112,001 0.070 1.0519 0.9923

Tall grass 200x300x30 1.2 million 117,756 0.065 1.0678 0.9856
15 15

15

original method

original method

original method
new method

new method

new method

-

0.5

o
w»

time, normalized (ms/voxel)
time, normalized (ms/voxel)
time, normalized (ms/voxel)

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
radius (m) radius (m) radius (m)

@ (b) ()

Fig. 7. Point density influence for the tall grass data s¢tWih raw data (117,000 occupied voxels). (b) With data salpled 10 times (55,000 occupied
voxels). (c) With data sub-sampled 100 times (9500 valid \&)xel

1 1 1
original method - iginal method

= new method — ——original method = 22?\/'71?&[:; °
T 08 T 0.8} |—new method 08
S S s
£ 2 £
3 0.6 %/0.6 3 0.6
g 3 3
E 04 E 0.4 E 04
2 S 2
£ 02 - g £ o2
£ 0 o 7/_/ g 0.2 £ 0 ////

0 0.2 0.4 0.6 0.8 1 Go 0.2 - 0.4 7/0_5 0.8 1 00 0.2 0.4 0.6 0.8 1

radius (m) radius (m) radius (m)
@ (b) (©
Fig. 8. \Voxel size influence for the flat terrain data set alt deinsity. (a) 5 cm voxel size. (b) 10 cm voxel size. (c) 20 cmelsize.
D. Comparison for different terrain types roughly aligned with thexy-plane, so adjacent occupied voxel

In this section, we compare and analyze the performance%a more "ke'Y to be on that plane than glong zh}hrectu.)n..
our approach for different types of terrain: bare grounggfé 1 e Speed improvement over the previous method is illus-
9-(a-c)), highly cluttered forest (Figure 9-(d-f)) and apea trated by the third c_olumn of Figure 9 The blue curve mdasgt
space with vegetation cover (Figure 9-(g-i)). The bare gcbuthe performance (in ms per occupied voxel) of the previous
scene includes a gravel trail bordered by a jersey barrier. éthod and the red curve shows the performance of the new
concertina wire is laid across the trail. The forest scemedde Method. The speedup is substantial, and increases with the
of large tree trunks scattered over a rough terrain covertd Wradlu5r. used for range search. For example, at the current
short grass and debris. The last terrain is a side slope edveYOx€! sizeé used on-board of the robot ©£0.4 m, the new
by dense, dry, waist-high grass, with some large poles ptesemethod is 4.6 times faster on the flat_ ground example, 5.5
The statistics relative to each data set are presented Is TabiMeS on the forest example, and 3.6 times on the tall grass,
The initial results seem to show that the type of terrain do&@mh results in an average speedup of approximately 4.5 ove
not influenced and P[X < £]. We think that the very high the three examples.
point density of each data set may have leveled the results

The center column of Figure 9 illustrates the histograms 0
the distribution ofX for different strategies. The strategies il- In this section, we analyze the influence of two important
lustrated represent the direction in which the previousiped parameters: the point density, which depends on the sensor
voxel is searched (top-righk, bottom-left:y, bottom-right:z, used, and the voxel size that is passed as input to the system.
top-left: best of the three). As expected, the optimal egyt 1) Point density: Intuitively, denser data means a larger
always shows the highest peak at 1, whereasztistrategy number of occupied voxels, which in turn implies a higher
always gives the lowest. This is because the ground planepi®bability of overlapping neighborhoods. This is confidne

Parameters influence

by experimental results obtained by artificially varyingimo For the three typical data set analyzed, we observed sig-
density by sub-sampling the original data set 10 and l@@ficant improvement in execution speed without noticeable
times. Timing results for the tall grass example are shovdifferences between the various terrain types studied. We
in Figure 7. We observe that the new method performs fastarhieve on average a 4.5 fold speedup with a voxel size of
with denser data. In addition, Table 1l shows relevantstigd 0.1 m and a range search radius of 0.4 m. Those parameters
for those three examples. We can see tHaY < g} increase are the ones used in the field tests reported in [14].
andd decrease with higher point density, which confirms our The current implementation is based on a static data struc-
intuition. ture and a uniform weighting scheme of the contribution
On the other hand, it is interesting to note that the previoo the different volume elements. We are working on the
method runsslowerwith denser data. This is explained by thémplementation of a scrolling version that will allow us st
fact that, for each voxel, the neighborhood is likely to @amt it live on-board the ground vehicle. Also, we are invesiiggt
more points than with sparser data. Therefore, the numberaoflifferent weighting scheme to extend this work to generic
visited voxel per occupied voxel is higher, hence the ineeeakernel-like computation.
in computation time.

ACKNOWLEDGMENTS
TABLE Il Prepared through collaborative participation in the Rimsot
RESULTS STATISTICS FOR THE POINT DENSITY INFLUENCE consortium sponsored by the U.S Army Research Laboratory

under the Collaborative Technology Alliance Program, Goop

. . . 7 k
Sub-sampling| Raw points _Occupied voxels d__ PIX < 3] gparive Agreement DAAD19-01-209912. The authors would

0 (raw data) | 1,251,402 117,756 1.06 0.9856 . . :
10 114 161 54808 1.2 09617 like to thank General Dynamics Robotic Systems for its
100 10,390 9,469 1.97 06926 support.

. . REFERENCES
2) Voxel size:We observe that, for a smaller voxel size,

the number of voxels must reater to k th me rangé H- Chen and P. Meer. Robust computer vision through kedeeisity
e number of voxels mus beg eater 1o keep Ihe same ra E}éestimation. InEuropean Conference on Computer Visi@002.

search radius-. For example, ifT_: 4 with voxel Size_ of [2] A. Kelly et al. Toward reliable off-road autonomous vekioperating in
10 cm, thenr = 8 with voxel size of 5 cm, so 8 times challenging environments. limternational Symposium on Experimental

more voxels must be visited than before. More generally, if ~Robotics 2004.
9 Y,] O. Faugeras et al. Real-time correlation-based steredgarithm,

Usize IS the voxel Si_29 anthyc;gn the number of n_eighbors implementations and applications. Technical Report RR-204RIA,
of a voxel, then withv;../k we getk3n,.is, neighbors. 1993.

Moreover, smaller voxel size increases the number of holes 4! J: Gao and R. Gupta. Efficient proximity search for 3-d ddbo In
. . . = k Computational Science and Its Application®mlume 2669 ofLecture
the data, which in turn increasésand decreaseB[X < 3], Notes in Computer Scienc2003.

as shown in Table IlI. Figure 8 shows timing results obtainedb] A. Gray and A. Moore. Data structures for fast statisticSutorial
by running the previous and new method on the same ful presented at the International Conference on Machine Lrear@004.

. . .] A. Lacaze, K. Murphy, and M. DelGiorno. Autonomous molyilfior
resolution data set and varying only the voxel size. The" he demo iii experimental unmanned veh icles. Froceedings of the

running time is indeed much slower with a voxel size of 5 cm AUVSI Conference2002.

versus 10 cm. Interestingly, the difference is not as ob:viou[7] J. Lersch, B. Webb, and K. West. Structural-surfaceaetion from 3-d
laser-radar point clouds. Ibaser Radar Technology and Applications

when comparing 10 and 20 cm. IX, volume 5412, SPIE, 2004,
These results show the important compromise relative $o thi8] T. Liu, A. Moore, A. Gray, and K. Yang. An investigation gfrac-

parameter. An increasingly high voxel size will result ister tical approximate nearest neighbor algorithms. Neural Information
’ Processing System2004.

performance, but also in a loss of precision in scene detailf) H. Moravec. Robot spatial perception by stereoscopiovi and 3d
Indeed, much of the high frequency content of the scene will evidence grids. Technical Report CMU-RI-TR-96-34, Caredgellon

; ; ; Univeristy, 1996.
be lost. On the other hand, if the voxel size is too low, t 0] H. SametThe Design and Analysis of Spatial Data Structurkddison-

details will be preserved, but the running time will be much ~ \yesley, 1989.
slower. The best parameter (10 cm in our case) is found B§] A. Talukder, R. manduchi, A. Rankin, and L. Matthies. trasd reliable

; ; obstacle detection and segmentation for cross-countrygaton. In
running benchmark tests on typical examples. IEEE Intelligent Vehicle SymposiuB002.

[12] Ranjith Unnikrishnan and Martial Hebert. Robust egtian of multiple
VI. CONCLUSION structures from non-uniformly sampled data.lEEE/RSJ International
Conference on Intelligent Robots and Systeh®93.
In this paper we present a method inspired by dense sterfi@} N. Vandapel, R. Donamukkala, and M. Hebert. Unmanned rgtou
correlation in order to improve the Computation speed of 3-D vehicle navigation using aerial ladar dafa. appear in the International
. . ») Journal of Robotics ResearcR005.
ladar data analysis for terrain classification. It shouldwb®d [14] N. vandapel, D. Huber, A. Kapuria, and M. Hebert. Natuerain
that any computation based on a support volume and divisible classification using 3-d ladar data. IEEE International Conference on
into elementary sums can take advantage of this work. The Robotics and Automatiompril 2004.
approach relies on the reuse of computed data. The approach
is validated on ladar data obtained in various environments

using the Demo Il XUV.

TABLE Il
STATISTICS FOR THE VOXEL SIZE INFLUENCE 2,046,123RAW DATA POINTS

Voxel size | Sizen (in cells) Occupied voxels d P[X < g]
5cm 400x400x60 359,327 1.1063 0.993
10 cm 200x200x30 59,275 1.0263 0.991
20 cm 100x100x15 14,485 1.00 0.986
Optimized version X scanning direction
1 151
original method
. new method
(9]
05 0.5 é
2 1
00 10 20 30 00 10 20 3.0 E
Y scanning direction Z scanning direction E
S osf
L 0.5 0.5 %
e
0 0 I 0
0 10 20 30 0 10 20 30 0.2 0.4 0.6 0.8 1
radius (m)
Flat ground statistics? = 0.049 ;d = 1.0263 ; P[X < g] =0.9917
@ (b) ©
Optimized version X scanning direction
15
original method
0s 0s z new method
. . é
2 1
0 0 > =
0 10 20 30 0 10 20 30 3
Y scanning direction Z scanning direction %
1 1 g
S 05r
)
05 05 £
0 0 I oz 04 06 08 1
0 10 20 30 0 10 20 30 .
radius (m)
Forest statistics2 = 0.070 ;d = 1.0519 ; P[X < g}:0.9923
(d) (e) ®
Optimized version X scanning direction 15¢
’ original method
= new method
05 0.5 5
>
0O 10 20 30 00 10 20 3.0 E
Y scanning direction Z scanning direction]
1 1 £
2 051
)
05 05 £
L
0 0 I 0
0 10 20 30 0 10 20 30 0.2 0.4 0.6 0.8 1
A radius (m)
Tall grass statisticsZ = 0.065 ;d = 1.0678 ;P[X < g] = 0.9856
@) (h) @

Fig. 9. Terrain influence. Each line corresponds to a teraienvironment type: flat, forest and tall grass. The first gwiwcontains a snapshot of a 3-D
model of the scene, the elevation is color coded. The secohuoocontains histograms of distribution of distances betwerrent voxel and previous
occupied voxel, for different scanning directions. Théy) axis is the distance in number of voxel (the number of voxdlfe rightmost peak represents
infinite distance, that is, there is no previous occupiedeVax that direction. It is positioned at an arbitrary distarin the graph. The last column shows a
comparison of speed of execution of the original versus tlve method, with voxel size of 0.1 m.

