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Abstract— Autonomous robot navigation in outdoor environ-
ments remains a challenging and unsolved problem. A key issue
is our ability to identify safe or navigable paths far enough
ahead of the robot to allow smooth trajectories at acceptable
speeds. Colour or texture-based labeling of safe path regions in
image sequences is one way to achieve this far field prediction. A
challenge for classifiers identifying path and nonpath regions is
to make meaningful comparisons of feature vectors at pixels or
over a window. Most simple distance metrics cannot use all the
information available and therefore the resulting labeling does not
tightly capture the visible path. We introduce a new Polynomial
Mahalanobis Distance and demonstrate its ability to capture
the properties of an initial positive path sample and produce
accurate path segmentation with few outliers. Experiments show
the method’s effectiveness for path segmentation in natural scenes
using both colour and texture feature vectors. The new metric is
compared with classifications based on Euclidean and standard
Mahalanobis distance and produces superior results.

I. I NTRODUCTION

Autonomous robot navigation in outdoor environments re-
mains a challenging and unsolved problem. A key issue is our
ability to identify safe or navigable terrain in the near and
far field for the robot to traverse. For vision-based navigation
Stereo reconstruction can give us information about ground
plane features in the near field, but to plan and execute smooth
trajectories at reasonable speed we need to identify acceptable
paths in the far field (50m+) as well. A common approach
is to identify and cluster path regions in images based on the
appearance of regions known to be traversable in the near field.
Once a frame is classified we can project safe regions onto the
ground plane and calculate trajectory and steering angle.

Using color to segment road or path regions in images
for autonomous navigation has been deemed important since
the ’80s [1], [2], [3], [4]. Frequently colour segmentation is
augmented by edge detection, or template matching for the
expected shape of the road. Rasmussen [5] combines laser
range data with colour and texture to address the kind of
outdoor paths we are interested in. Lieb et al. [6] match a
sample template from the road ahead to identify tracks in the
dessert.

A key problem with any image segmentation scheme is
how to compute similarity ordistancebetween two regions or
pixels in an image. The most common metrics are Euclidean
(L2) and absolute (L1) distances [7]. In a feature spaces

such as RGB where such differences do not reflect perceived
differences between colour vectors, we need a measure which
can describe more sophisticated and nonlinear relationships
between feature vectors. Mahalanobis distance is another
common metric which attempts to capture the non-isotropic
properties of and dimensional feature space. It weights the
distance calculation according to the statistical variation of
each component using the covariance matrix. Recently Gener-
alized Principal Components Analysis has been introduced [8]
as a method for automatically identifying linear subspaces in
d dimensional datasets by solving for the normal vectorbi for
each subspace. To date this approach has not been exploited
as a distance metric in classifying points or regions.

We propose a new metric we call the Polynomial Ma-
halanobis Distance which attempts to capture more of the
information available in an initial image sample of the path
appearance. The motivation behind this new metric is based
on the observation that, in high dimensional space, Euclidean
Distance metrics mark the sphere of points at distancedE

from a reference point as being equally similar to it, while
they may be far from observed neighbours in the sample. This
is problematic because two completely unrelated regions of
the state space can be equally “close” to a reference point.
Figure 1b shows a 2 dimensional version of this property of
the Euclidean distance metric. The non reference points in 1a
have no effect on the resulting distance metric, and distance
(shown as a grey scale image, where white is close and dark
is far) from the reference point (shown as the point inside the
blue rectangle). One can improve the distance metric by using
the Mahalanobis distance, which takes into account the data
structure by computing the covariance matrix for the observed
sample (learning data). However, as we see in Figure 1c (and
Figure 2b) this metric still does not tightly follow the data.
However, when the Polynomial Mahalanobis distance is used,
as shown in Figures 1d, 1e, 2c, 2d, and 2e, the learning data
used to compute the coefficients for the polynomial distance
metric are labeled as closer than other regions of the state
space. In fact, the higher the polynomial order, the tighter the
distance metric model.

The Polynomial Mahalanobis distance is obtained by map-
ping the feature space into higher order polynomial terms–
in our experiments we often obtain best results (i.e. most



discriminative distance metrics) by mapping 300 dimensional
feature spaces into 128 order polynomial terms. As we show in
Section II-B, such mappings are not computationally feasible
if done by simply taking the features and exhaustively finding
all possible polynomial terms. In this paper, we present a
framework for effectively and efficiently creating very high
order polynomial mappings from a very high dimensional
feature space. This is done by successively projecting high
dimensional data into low dimensional column spaces, then
constructing second order polynomial terms in this space. The
column spaces are low dimensional because they are con-
structed using local neighborhoods containing a small number
(i.e. a few hundred) of points. At the first step we construct
second order polynomial spaces, these in turn have a low
dimensional column space projection for which can compute
a higher order polynomial space. By repeating these steps
we can efficiently construct 128th order or higher polynomial
spaces from data with thousands of features.

In Section II we present the mathematical basics for our ap-
proach. We define the standard form of Mahalanobis distance
in Section II-A as well as the details of the covariance calcula-
tions required. In Section II-B we present our new Polynomial
Mahalanobis Distance and justify an efficient implementation
technique. Experimental path labeling results and comparison
to standard metrics are presented in Section III. The conclusion
is given in Section IV.

II. M ATHEMATICAL FORMULATION

A. The Mahalanobis Distance

Let zi and zj be d dimensional column vectors (i.e.zi ∈
<d andzj ∈ <d for all i, j). Then the Mahalanobis distance
betweenzi andzj is defined by:

dM (zi, zj) =
(
(zi − zj)

>
C−1 (zi − zj)

) 1
2

(1)

where C is a covariance matrix. Note that ifC is a d × d
identity matrix, the the Mahalanobis distance reduces to the
Euclidean distance||zi − zj ||. Given a set ofN observations
{z1, z2, ..., zN}, we can estimate the covariance matrix as
follows:

C =
1

N − 1
A>A (2)

whereA is a N by d matrix defined by:

A =




z>1 − z>0
z>2 − z>0

...
z>N − z>0


 (3)

wherez0 is either the mean of the vectors{z1, z2, ..., zN}, or
a reference vector about which distances are being measured
(in this paperz0 is a training input, and{z1, z2, ..., zN} are
its N nearest neighbors).

From Equation 1, one can see that calculating the Ma-
halanobis distance requires the inversion of the covariance
matrix C. Since this inverse often does not exist (especially
for d ¿ N as is often the case for the problems studied

in this paper), the covariance estimate must in practice be
regularized. This regularization can take on many forms - in
this paper it is done as follows. First, we perform a Singular
Value Decomposition (SVD) ofA>A [9] giving:

A>A = UWV> = UWU> (4)

(note thatU = V becauseA>A is symmetric) whereW
contains the singular valuesw1, w2, ..., wd sorted in decreasing
order:

W =




w1 0
.. .

0 wd




When there existwi = 0, the inverse ofA>A, and hence the
covariance matrixC, will not exist. We makeC invertible by
regularizingW by adding a small positive value valueσ2 to
the diagonal:

Wσ2 =




w1 + σ2 0
. ..

0 wd + σ2




Therefore our approximation of the covariance matrix takes
on the form:

Cσ2 =
1

N − 1
UWσ2U>

which has the inverse:

C−1
σ2 = (N − 1)U>W−1

σ2 U

where

W−1
σ2 =




(
w1 + σ2

)−1 0
. . .

0
(
wd + σ2

)−1




The estimated Mahalanobis distance betweenz1 andz2 is thus
given by:

dMσ2 (zi, zj) =
(
(N − 1) (zi − zj)

>U>W−1
σ2 U (zi − zj)

) 1
2

(5)
The above equation is problematic from a computational
standpoint whend is large (which is the case in this paper),
becauseU is ad by d matrix. Therefore, we use the following
equivalent equation instead:

dMσ2 (zi, zj) =
(
(N − 1)

(
1

σ2 ‖zi − zj‖2 +

K∑
k=1

(
−wk

σ2(wk+σ2)

∥∥U>
k (zi − zj)

∥∥2
))) 1

2 (6)

whereK is the number of columns ofU associated with non-
zero singular valuesw1, ..., wK , and Uk is the kth column
of U. The advantage of Equation 6 over Equation 5 is
that it is both computationally faster and has lower memory
requirements - only the firstK columns ofU are used, which
can be a significant advantage ifK ¿ d. One can show



that Equation 6 and Equation 5 are equivalent by deriving
Equation 5 from Equation 6 as follows:

dMσ2 (zi, zj) =
(

(N − 1)
(

1
σ2
‖zi − zj‖2 +

K∑

k=1

( −wk

σ2 (wk + σ2)

∥∥U>
k (zi − zj)

∥∥2
))) 1

2

=
(
(N − 1)

(
(zi − zj)

>U>Q1U (zi − zj)+

(zi − zj)
>U>Q2U (zi − zj)

) 1
2

=
(
(N − 1) (zi − zj)

>U> (Q1 + Q2)U (zi − zj)
) 1

2

where

Q1 =




(
σ2

)−1 0
. . .

0
(
σ2

)−1




and

Q2 =




−w1
σ2(w1+σ2) 0

.. .
0 −wd

σ2(wd+σ2)




Finishing the derivation, we get

Q1 +Q2 =




(
w1 + σ2

)−1 0
. . .

0
(
wd + σ2

)−1


 = W−1

σ2

1) Implementation Details:This implementation of the
Mahalanobis distance requires two user defined parameters:
the number of points in the neighborhoodN and the minimum
singular value ratiosmin, which is used to set a singular value
wi to zero whenwi < w1smin. The chosensmin value is also
used to setσ2:

σ2 = w1smin (7)

When d > N , an efficient way of calculatingU is to use
AA> which is anN ×N matrix (in contrast toA>A which
is d × d). Singular Value Decomposition is used to calculate
AA> = UNWU>

N . Finally, U is calculated by normalizing
to length1 the firstK columns ofB = (UT

NA)T (which are
associated with theK nonzero singular valuesw1, ..., wK in
W).

B. The Polynomial Mahalanobis Distance

In this section we first define theq-Order Polynomial Maha-
lanobis Distance, and then present an efficient implementation
for calculating it.

Definition: Let {x1,x2,x3, ...,xN} be a set ofm dimen-
sional column vectors (i.e.xi ∈ <m). Then theq-Order
Polynomial Mahalanobis Distance between any two points
xi and xj is calculated by first mapping all pointsxk =
(xk1, xk2, ..., xkm), for k = 1, ..., N , into all polynomial

terms of orderq or less. We designate these polynomial term
mappingszk. The dimensiond of vectorsxk is:

d =
(m + q)!
m! · q! (8)

Equation (6) then gives theq-Order Polynomial Mahalanobis
Distance between anyzi and zj (corresponding to the points
xi and xj mapped into their polynomial terms).

As an example of mapping into polynomial terms, consider
a two dimensional vectorxk = (xk1, xk2). The mapping of
this m = 2 dimensional vector into its orderq = 2 polynomial
terms gives the followingd = 5 dimensional vector:

zk =
(
xk1, xk2, x

2
k1, x

2
k2, xk1xk2

)

A naive way of obtaining theq-order polynomial Maha-
lanobis distance betweenxi andxj is to directly map all data
points into their respectived polynomial terms. Equation 6
can then be used to directly calculate the distance. For large
m and degreeq, the dimensiond of resulting mappings quickly
makes this approach computationally infeasible. For example,
a relatively small problem (considering the experimental re-
sults presented in this paper - see Section III-B) could have
m = 50 andq = 8, which, using Equation (8), would require
more than109 polynomial terms. Clearly, for largem and q,
this implementation is not practical. In this section, we propose
a novel framework for calculating the Polynomial Mahalanobis
distance whichis computationally practical for largem andq.

We propose the following framework for calculatingq-order
Polynomial Mahalanobis (PM) distance betweenxi and xj .
We assume a set ofN pointsx1, ...,xN and a reference point
x0 used for covariance calculations, and denote the Polynomial
Mahalanobis (PM) asdPM (xi,xj) which is given by:

dPM (xi,xj) = dMσ2 (xi,xj) +
L∑

l=1

dMσ2

(
gi

l ,g
j
l

)
(9)

whereL > 1 is a user defined parameter giving aq = 2L order
polynomial Mahalanobis distance,dMσ2 is the Mahalanobis
distance as defined in Equation 6, andgi

l andgj
l are defined

as follows. LetxU1, ...,
xUK be theK column space vectors

calculated using SVD on theN + 1 points x0, ...,xN as
defined by the covariance calculations in Section II-A (i.e.
theseU column space vectors are associated with the non-
zero singular valuesw1, ..., wK). Using these column vectors,
we can project the pointsxi andxj into this K dimensional
column space, obtaining the vectorsf i

l and f j
l :

f i
1 =




xU>
1

xU>
2

...
xU>

K


xi f j

1 =




xU>
1

xU>
2

...
xU>

K


xj

These K dimensional vectors, which for notational con-
venience we symbolize byf i

l = (a1, ..., aK) and f j
l =

(b1, ..., bK), are projected intosecond order polynomial space,



giving, from Equation (8), thed1 = ((K + 2) · (K + 1)/2)
dimensional vectorsgi

1 andgj
1:

gi
1 =

(
a1, ..., aK , a2

1, ..., a
2
K , a1a2, a1a3, ...

)
gj

1 =
(
b1, ..., bK , b2

1, ..., b
2
K , b1b2, b1b3, ...

)

Similarly, the neighborhood pointsxk, for k = 1, ..N , can
be projected into thisgk

1 polynomial space. SVD is now
performed on these neighborhood points (as in Equation (4)
where the data matrixA now contains the pointsg1

1, ...,g
N
1 ).

This SVD calculation gives us the column space vectors
g1U1, ...,

g1UK , allowing the distancedMσ2

(
gi

1,g
j
1

)
to be

calculated.
Continuing with this constructive algorithm, we calculate

dMσ2

(
gi

l ,g
j
l

)
for l = 2, 3, ..., L as follows. All points from

the previous polynomial levelg·l−1 (the “·” simply refers to
all points) are projected into levell giving g·l, by first defining
the intermediate vectorsf .

l :

f ·l =




gl−1U t
1

gl−1U t
2

...
gl−1U t

K


g·l−1

where gl−1U1, ...,
gl−1UK are theK column space vectors

calculated using SVD on theN +1 pointsx0, ...,xN projected
into gl−1 space (i.e. using by the covariance calculations
defined in Section II-A). TheseK dimensional vectors are
projected into second order polynomial space, giving the
d = ((K + 2) · (K + 1)/2) dimensional vectorsg·l. These
forward mappings into progressively higher order polynomial
spaces continue until the final polynomial order is2L.

Starting from the properties of the Mahalanobis distance,
one can show that theq-Order Polynomial Mahalanobis Dis-
tance defined in Equation 9 has the following properties:

• dPM (xi,xj) = dPM (xj ,xi)
• dPM (xi,xj) > 0 if xi 6= xj

• dPM (xi,xj) = 0 if xi = xj

• dPM (xi,xj) ≤ dPM (xi,y) + dPM (y,xj)
1) Computational Justification:There are two reasons why

the polynomial Mahalanobis distance as defined in Equa-
tion (9) is computationally feasible. The first is that all of the
L+1 SVD decompositions have at mostN non zero singular
values (whereN is the number of points in the neighborhood
used to estimate the column spacesU ). Furthermore, each
of the L polynomial projections have at mostd = ((N + 2) ·
(N +1)/2) number of terms. The result is that the polynomial
Mahalanobis distance can be effectively applied to very large
problem domains, as long as the number local neighborhood
points is less than a few hundred (see Section III-B for details).

III. E XPERIMENTAL RESULTS

All MATLAB code for implementing the Mahalanobis and
Polynomial Mahalanobis distances is freely available from
the authors for research purposes.

A. Synthetic Data

The 2 dimensional synthetic data in Figures 1 and 2 illus-
trate the specificity property of the distance metrics compared
in this paper. All results were generated withsmin = 1e − 8
(see Section II-A.1 for a definition ofsmin). Figure 1a shows
data obtained from a section of a spiral. Figure 1b depicts
the Euclidean distance to a reference point (surrounded by a
blue square). The more white the image, the closer that region
is to the reference point. We can see that, as expected, the
Euclidean distance does not follow the sample points in the
plot, but rather simply radiates out equally in all directions.
Figure 1c shows the Mahalanobis distance from the reference
point. This distance is calculated using the sample data in
1a, and therefore does take into account the first order (or
linear) structure of the data. Figure 1d, shows the second
order Mahalanobis Distance. One can see that, since the data
approximately lies in an ellipse, the second order Mahalanobis
distance encompasses it, however, it still labels regions as
near the reference point, even though no sample data appears
there. Figure 1e shows the forth order polynomial Mahalanobis
distance, and we see that the points used to compute it are
considered “close” to the reference points, while other regions
are labeled as far away (i.e. dark regions).

Figure 2a shows the second set of synthetic data used to
estimate the Mahalanobis Distance and the Polynomial Maha-
lanobis Distance. Figure 2b shows the Mahalanobis Distance,
and Figures 2c, 2d and 2c show the second, eighth, and thirty
second order Polynomial Mahalanobis distances. Once more
we see that as the order of the polynomial increases, the
resulting distance metrics more tightly “fit” the data, and more
effectively exclude regions that have no data.

B. Outdoor Image Data

The outdoor image data was collected using a LAGR robot.
Stereo is used to identify a ground patch, which is then used
to build a model of what the ground looks like. This model
is then used to label the remainder of the image. Note that
no negative examples (or non-path examples) are used to
construct these models. We build three types of models: 1) a
Euclidean model defined by the mean value of the pixels in
a region and a distance threshold for labeling paths; 2) a
Mahalanobis model where a patch in the image is used to
construct the distance metric and a distance threshold; and
3) a Polynomial Mahalanobis Model defined by an image
patch and distance threshold. These models are constructed
by using half the labeled patch to build a model, and the
other half to find the threshold for labeling paths. In the
case of the Polynomial Mahalanobis distance, the image patch
is also used to picksmin and the number of polynomial
levels L. The search space for these parameters issmin =
(10−2, 10−3, 10−4, 10−5, 10−6, 10−7) andL = 2, 3, 4, 5, 6, 7.
In all images, each model is constructed using the same image
patch.

Figure 3 through Figure 9 show the results. The leftmost
images in these figures show the starting image and the patch
(a dark rectangle) used to build the models. Light coloured
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Fig. 3. Image 1 Using Normalized RGB.

Image 2

(a)

Image 2: Euclidean

(b)

Image 2: Mahalanobis

(c)

Image 2: Poly Mahalanobis

(d)

Fig. 4. Image 2 Using Normalized RGB.



Image 3

(a)

Image 3: Euclidean

(b)

Image 3: Mahalanobis
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Image 3: Poly Mahalanobis

(d)

Fig. 5. Image 3 Using Normalized RGB.
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Fig. 6. Image 4 Using Normalized RGB.
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Image 6: Euclidean

(b)
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Image 6: Poly Mahalanobis

(d)

Fig. 7. Image 6 Using Normalized RGB.

Image 10
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Image 10: Euclidean
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Image 10: Mahalanobis
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Image 10: Poly Mahalanobis

(d)

Fig. 8. Image 10 Using Normalized RGB.
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Image 10: Texture Euclidean
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Image 10: Texture Poly Mahalanobis

(d)

Fig. 9. Image 10 Using Texture Features.

areas in the image indicate a non-path, while the darker
the image patch is, the more confident the model is that
that region belongs to a path. In all images presented, we
can see that the Euclidean metric is the least effective at
segmenting paths, the Mahalanobis distance is slightly better,
and the Polynomial Distance is best. In general, the more
discriminative the distance metric, the better the segmentation
of the path.

In Figures 3 through 8, models are built using normalized
pixel values within a 10 by 10 pixel image patch. In Figure
9 (based on the same image as Figure 8) models are built
using image texture features. One can see the the texture
features are more effective in segmenting this image, when
compared to the normalized pixel value. Furthermore, we see
that the Polynomial Mahalanobis distance is effective in two
very different feature spaces.

IV. CONCLUSION

The problem of planning smooth trajectories for mobile
robots traveling at relatively high speed in natural environ-
ments, depends on being able to identify navigable terrain a
significant distance ahead. Labelingsafe or path regions in
an image sequence is a common way to achieve this far field
classification. Many pixelwise classification techniques fail at
this task because their similarity metric is not powerful enough
to tightly separate path from nonpath, resulting in outliers
distributed across the image.

In this paper we have introduced a new and more powerful
Polynomial Mahalanobis distance metric for use in classifying
path regions in images of natural outdoor environments. Our
approach uses only an initial positive sample of a path region
to capture the relationships in the data which are most discrim-
inative for path/nonpath classification. We have compared its
performance to Euclidean and standard Mahalanobis distance
for illustrative synthetic data as well as for challenging outdoor
scenes. For both normalized colour and texture features the
new metric produced significantly better results.
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