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Abstract— Autonomous robot navigation in outdoor environ- such as RGB where such differences do not reflect perceived
ments remains a challenging and unsolved problem. A key issue differences between colour vectors, we need a measure which
is our ability to identify safe or navigable paths far enough o, gescribe more sophisticated and nonlinear relationships
ahead of the robot to allow smooth trajectories at acceptable bet feat ¢ Mahal bis dist . h
speeds. Colour or texture-based labeling of safe path regions in etween lea L_Jre V_eC ors. Mahalanobis - distance 'S_ ano .er
image sequences is one way to achieve this far field prediction. ACOMmon metric which attempts to capture the non-isotropic
challenge for classifiers identifying path and nonpath regions is properties of and dimensional feature space. It weights the
to make meaningful comparisons of feature vectors at pixels or distance calculation according to the statistical variation of

over a window. Most simple distance metrics cannot use all the o501 component using the covariance matrix. Recently Gener-
information available and therefore the resulting labeling does not

tightly capture the visible path. We introduce a new Polynomial ~&lized Principal Components Analysis has been introduced [8]
Mahalanobis Distance and demonstrate its ability to capture &S & method for automatically identifying linear subspaces in
the properties of an initial positive path sample and produce d dimensional datasets by solving for the normal veétdior

accurate path segmentation with few outliers. Experiments show each subspace. To date this approach has not been exploited
the_ method’s effectiveness for path segmentation in natural scenes 55 3 distance metric in classifying points or regions.

using both colour and texture feature vectors. The new metric is Wi tri Il the Pol ial M
compared with classifications based on Euclidean and standard € p_ropotse a new .me rnc we ca € Folynomia a-
Mahalanobis distance and produces superior results. halanobis Distance which attempts to capture more of the

information available in an initial image sample of the path
l. INTRODUCTION appearance. The motivation behind this new metric is based
Autonomous robot navigation in outdoor environments r@n the observation that, in high dimensional space, Euclidean
mains a challenging and unsolved problem. A key issue is dDistance metrics mark the sphere of points at distadige
ability to identify safe or navigableterrain in the near and from a reference point as being equally similar to it, while
far field for the robot to traverse. For vision-based navigatidhey may be far from observed neighbours in the sample. This
Stereo reconstruction can give us information about groursd problematic because two completely unrelated regions of
plane features in the near field, but to plan and execute smotith state space can be equally “close” to a reference point.
trajectories at reasonable speed we need to identify acceptabture 1b shows a 2 dimensional version of this property of
paths in the far field (50m+) as well. A common approactihe Euclidean distance metric. The non reference points in la
is to identify and cluster path regions in images based on thave no effect on the resulting distance metric, and distance
appearance of regions known to be traversable in the near figkhown as a grey scale image, where white is close and dark
Once a frame is classified we can project safe regions onto thdar) from the reference point (shown as the point inside the
ground plane and calculate trajectory and steering angle. blue rectangle). One can improve the distance metric by using
Using color to segment road or path regions in imagéke Mahalanobis distance, which takes into account the data
for autonomous navigation has been deemed important sisteicture by computing the covariance matrix for the observed
the '80s [1], [2], [3], [4]- Frequently colour segmentation isample (learning data). However, as we see in Figure 1c (and
augmented by edge detection, or template matching for tRgjure 2b) this metric still does not tightly follow the data.
expected shape of the road. Rasmussen [5] combines lddewever, when the Polynomial Mahalanobis distance is used,
range data with colour and texture to address the kind a$ shown in Figures 1d, le, 2c, 2d, and 2e, the learning data
outdoor paths we are interested in. Lieb et al. [6] matchused to compute the coefficients for the polynomial distance
sample template from the road ahead to identify tracks in theetric are labeled as closer than other regions of the state
dessert. space. In fact, the higher the polynomial order, the tighter the
A key problem with any image segmentation scheme @stance metric model.
how to compute similarity odistancebetween two regions or The Polynomial Mahalanobis distance is obtained by map-
pixels in an image. The most common metrics are Euclideping the feature space into higher order polynomial terms—
(L2) and absolute I{;) distances [7]. In a feature spaces$n our experiments we often obtain best results (i.e. most



discriminative distance metrics) by mapping 300 dimensional this paper), the covariance estimate must in practice be
feature spaces into 128 order polynomial terms. As we showriegularized. This regularization can take on many forms - in
Section 1I-B, such mappings are not computationally feasibikis paper it is done as follows. First, we perform a Singular
if done by simply taking the features and exhaustively findingalue Decomposition (SVD) oA " A [9] giving:

all possible polynomial terms. In this paper, we present a
framework for effectively and efficiently creating very high

order polynomial mappings from a very high dimensional (note thatU = V' becauseA T A is symmetric) wheréW

fe.ature.space. Th!s IS done. by sgccesswely projecting h'ggntains the singular values , wo, ..., w, sorted in decreasing
dimensional data into low dimensional column spaces, th Mer:

constructing second order polynomial terms in this space. The
column spaces are low dimensional because they are con-
structed using local neighborhoods containing a small number W=

(i.e. a few hundred) of points. At the first step we construct 0 Wq

second order polynomial spaces, these in turn have a | . .
dimensional coFI)urr):n space pro'ection for which can com u%en there existo; = 0, the inverse ofA " A, and hence the
P proJ P covariance matrixC, will not exist. We makeC' invertible by

a higher order polynomial space. By repeating these steiés

ATA=UwV' =Uuwu’ (4)

w1 0

we can efficiently construct 128th order or higher polynomi gulgrlzmgW by adding a small positive value valé to
: e diagonal:
spaces from data with thousands of features.
In Section Il we present the mathematical basics for our ap- wy + o2 0
proach. We define the standard form of Mahalanobis distance Wos
in Section II-A as well as the details of the covariance calcula- 7
tions required. In Section II-B we present our new Polynomial

Mahalanobis Distance and justify an efficient implementatiopherefore our approximation of the covariance matrix takes
technique. Experimental path labeling results and comparisgf the form:

0 wd+o2

to standard metrics are presented in Section lll. The conclusion 1 T
T i . C,e = —UW,_.U
is given in Section IV. N -1
Il. M ATHEMATICAL FORMULATION which has the inverse:
A. The Mahalanobis Distance cl=(N-1nNUWlu

Let z; andz; be d dimensional column vectors (i.e; €
R4 andz; € R4 for all 4,5). Then the Mahalanobis distancevhere
betweenz; andz; is defined by: (w1 T 02)—1 0

[ME

dy (zi,25) = ((ZL - zj)T C ' (z; — zj)> Q) W =

where C is a covariance matrix. Note that @ is ad x d
identity matrix, the the Mahalanobis distance reduces to tfiite estimated Mahalanobis distance betweeandz, is thus
Euclidean distancéz, — z;||. Given a set ofV observations given by:
{z1,22,...,z5}, We can estimate the covariance matrix as
follows: ) (mﬂmJ»=UN—nurmﬂWﬂW;Uw—@?
C = mATA 2) 5)

. . i The above equation is problematic from a computational

whereA is a N by d matrix defined by: standpoint wheni is large (which is the case in this paper),

0 (wd—‘rO'Q)il

1
2

7] — 7] becausdU is ad by d matrix. Therefore, we use the following
zg — 24 equivalent equation instead:
A= . ®)
= Az (7,25) = (V= 1) (2 12 — 2)* +

zy —zg ’ 1

K ) 2 (6)
wherez, is either the mean of the vectofg;, zo, ..., zx }, Or kZ (ng,g) U (zi —2)|| )))

=1

a reference vector about which distances are being measured
(in this paperz, is a training input, andz,, zo, ...,zx } are whereK is the number of columns df associated with non-
its N nearest neighbors). zero singular valuesu, ..., wx, and U is the k" column
From Equation 1, one can see that calculating the Maf U. The advantage of Equation 6 over Equation 5 is
halanobis distance requires the inversion of the covariantet it is both computationally faster and has lower memory
matrix C. Since this inverse often does not exist (especiallgquirements - only the firdk’ columns ofU are used, which
for d < N as is often the case for the problems studiethn be a significant advantage £ < d. One can show



that Equation 6 and Equation 5 are equivalent by derivirtgrms of orderg or less. We designate these polynomial term

Equation 5 from Equation 6 as follows: mappingsz;. The dimensionl of vectorsx;, is:
1 2 (m +q)!
dMﬁz (Zi7zj) = ((N -1) (0,2 |z — z||” + d= W (8)
1
K —wy, - 9 2 Equation (6) then gives thg-Order Polynomial Mahalanobis
Z <O.2 (Wi + 02) HUk (zi — Zj)” ) Distance between any; and z; (corresponding to the points
k=1 x; andx; mapped into their polynomial terms).
= ((N -1 ((zi - zj)T U'Q,U (z; — z;)+ As an example of mapping into polynomial terms, consider
1 a two dimensional vectok, = (z1,xk2). The mapping of
(zi —2;) U QuU (z; — zj)) ’ this m = 2 dimensional vector into its ordgr= 2 polynomial

terms gives the following! = 5 dimensional vector:

N

= ((N ~1)(zi—2;) U (Q1+Q2) Uz — Zj))

where

2 2
Zk = (zkl»fk27fk1793k27xkﬂk2)

(02)*1 0 A naive way of obtaining theg-order polynomial Maha-
lanobis distance between andx; is to directly map all data
Q. = points into their respectivg polynomial terms. Equation 6
0 (0—2)’1 can then be used to directly calculate the distance. For large
m and degree, the dimensionl of resulting mappings quickly
and o, makes this approach computationally infeasible. For example,
o2 (wi+o?) 0 a relatively small problem (considering the experimental re-
Q: = sults presented in this paper - see Section IlI-B) could have
0 =W m = 50 and g = 8, which, using Equation (8), would require
o*(wate?) more than10° polynomial terms. Clearly, for large: and ¢,
Finishing the derivation, we get this implementation is not practical. In this section, we propose
-1 a novel framework for calculating the Polynomial Mahalanobis
(w1 + 02) 0 distance whictis computationally practical for large: andgq.
Q1 +Q2x= =w; We propose the following framework for calculatipgorder
0 o\ —1 Polynomial Mahalanobis (PM) distance betweenand x;.
(wa+0?) . "
We assume a set df pointsxy,...,x5 and a reference point
1) Implementation Details:This implementation of the x( used for covariance calculations, and denote the Polynomial
Mahalanobis distance requires two user defined parametdfghalanobis (PM) agpy (x;,x;) which is given by:
the number of points in the neighborhodtdand the minimum .
singular value rati®,,,;,,, which is used to set a singular value i
w; ?o zero whenw; < w1 Smin. The chosem, valuge is also dpar (%0, %) = di,, (X5, %) + Z A, (ghg{) ©)
used to set?: =
0% = W1 Smin (7) whereL > 1is a user defined parameter giving & 2" order
o _ . polynomial Mahalanobis distancé,, , is the Mahalanobis
WThe”C_i > N, an efficient way of calculatlng]T IS 10 US€ distance as defined in Equation 6, agidandg’ are defined
AA " which is anV x N matrix (in contrast toA ' A which a5 follows. Let*U,, ..., *Ux be the K column space vectors
is d x d). Singular Value Decomposition is used to calculatgg|cylated using SVD on théV + 1 points xo, ..., Xy as
AAT = UyWU. Finally, U is calculated by normalizing gefined by the covariance calculations in Section II-A (i.e.
to length1 the first K’ columns ofB = (UL A)" (which are these(/ column space vectors are associated with the non-
associated with thé<' nonzero singular values, ..., wx In  zerg singular values, ..., wx). Using these column vectors,
W). we can project the points; andx; into this X dimensional

.. ; j'
B. The Polynomial Mahalanobis Distance column space, obtaining the vectdjsand f;:

In this section we first define theOrder Polynomial Maha- ‘U, *u
lanobis Distance, and then present an efficient implementation . Uy ; Uy

for calculating it. fi = : x fi= : X
Definition: Let {x;,x2,x3,...,xy} be a set ofm dimen- x[ﬁ IUT
K K

sional column vectors (i.ex; € R™). Then theg-Order
Polynomial Mahalanobis Distance between any two poinfhese K dimensional vectors, which for notational con-
x; and x; is calculated by first mapping all pointg;, = venience we symbolize bf/ = (ai,...,ax) and f/ =

(Tk1,Tk2, .-y Tkm ), TOr k = 1,...,N, into all polynomial (by,...,bk), are projected intgecond order polynomial space



giving, from Equation (8), thel; = ((K +2) - (K +1)/2) A. Synthetic Data
dimensional vectorgj andg: The 2 dimensional synthetic data in Figures 1 and 2 illus-
gi = (a1, .. ax, 2, ..., %, a1z, aras, ..) _trate_the specificity property of the distance_ metrics compared
i (b ’ ’b 7b2 ’ ’sz’b b é b ’) in this paper. All results were generated Wl_stl;;,m =1le—-8
81 = (01, brc, U s U, Db, b (see Section II-A.1 for a definition of,,;,,). Figure 1a shows
Similarly, the neighborhood pointsy, for & = 1,..N, can data obtained from a section of a spiral. Figure 1b depicts
be projected into thisg® polynomial space. SVD is now the Euclidean distance to a reference point (surrounded by a
performed on these neighborhood points (as in Equation fiye square). The more white the image, the closer that region
where the data matriA now contains the pointg!, ..., gM). is to the reference point. We can see that, as expected, the
This SVD calculation gives us the column space Vecto%]cndean distance does not follow the Sample pOiﬂtS in the

9y, ..., 9 Uy, allowing the distancely , (gﬁag{) to be pI_ot, but rather simply radiates put _equaIIy in all directions.
calculated ’ Figure 1c shows the Mahalanobis distance from the reference

) . . . . oint. This distance is calculated using the sample data in
Contlnumg with this constructive algorithm, we CaICUIat‘ga and therefore does take into account the first order (or
A,z glL_’ g ) forl= _2’3""’L as follows. _A” points from linear) structure of the data. Figure 1d, shows the second
the previous polynomial leve; _, (the “" simply refers 0 order Mahalanobis Distance. One can see that, since the data
all points) are projected into levélgiving g;, by first defining  approximately lies in an ellipse, the second order Mahalanobis
the intermediate vectorf: distance encompasses it, however, it still labels regions as
g1t near the reference point, even though no sample data appears
gHU% there. Figure 1e shows the forth order polynomial Mahalanobis
f; = . 2 g, distance, and we see that the points used to compute it are
: considered “close” to the reference points, while other regions
g1yt are labeled as far away (i.e. dark regions).

Figure 2a shows the second set of synthetic data used to
where 9= Uy, ..., 9~ Uy are the K column space VecCtors gqtimate the Mahalanobis Distance and the Polynomial Maha-
calculated using SVD on th¥ +1 pointsx, ..., Xy projected |5naphis pistance. Figure 2b shows the Mahalanobis Distance,
into g, space (i.e. using by the covariance calculationg,y Figures 2c, 2d and 2c show the second, eighth, and thirty
defined in Section II-A). Thesdt dimensional vectors are goconq order Polynomial Mahalanobis distances. Once more
projected intosecond order polynomial spac@iving the e see that as the order of the polynomial increases, the

d = ((K +2)- (K +1)/2) dimensional vectorg;. These yoq 1ting distance metrics more tightly “fit” the data, and more
forward mappings into progressively higher order poWnom'@ﬁectively exclude regions that have no data.
spaces continue until the final polynomial orderis

Starting from the properties of the Mahalanobis distancB; Outdoor Image Data
one can show that the-Order Polynomial Mahalanobis Dis- The outdoor image data was collected using a LAGR robot.
tance defined in Equation 9 has the following properties: Stereo is used to identify a ground patch, which is then used

o dpar (xi,%;) = dpas (x5, %;) to build a model of what the gr_ound looks I?ke. This model

o dpum (x4,%5) > 0 if x; # x; is then u_sed to label the remainder of the image. Note that
o dpum (x4,%5) =0 if x; =x; no negative examples (or noq-path examples) are used to
o dpr (xi,%;) < dpas (%i,y) + dpar (y,%5) construct these models. We build three types of models: 1) a

. s Euclidean model defined by the mean value of the pixels in
1) Computational JustificationThere are two reasons whya region and a distance tﬁreshol d for labeling patES' 2) a

the polynomial Mahalanobis distance as defined in Equa- . . ) .
. . . ; . ahalanobis model where a patch in the image is used to
tion (9) is computationally feasible. The first is that all of the ) ) . i

I . construct the distance metric and a distance threshold; and
L+1 SVD decompositions have at mast non zero singular

values (whereV is the number of points in the neighborhood’s) a Polynomal Mahalanobis Model defined by an image
used to estimate the column spadés Furthermore, each patch and distance threshold. These models are constructed

of the L polynomial projections have at modt— ((N + 2) by using half the labeled patch to build a model, and the

. . other half to find the threshold for labeling paths. In the
(N+1)/2) number of terms. The result is that the polynom|agase of the Polynomial Mahalanobis distance, the image patch

Mahalanobis distance can be effectively applied to very Iargse . .
. . also used to picks,,;, and the number of polynomial

problem domains, as long as the number local neighborhogd g

oints is less than a few hundred (see Section IlI-B for detaille{vels L. The search space for these parameters,is, =
P P0-2,1073,107*,105,10-,10~7) and L = 2,3, 4, 5,6,7.
In all images, each model is constructed using the same image
patch.

All MATLAB code for implementing the Mahalanobis and  Figure 3 through Figure 9 show the results. The leftmost
Polynomial Mahalanobis distances is freely available fromimages in these figures show the starting image and the patch
the authors for research purposes. (a dark rectangle) used to build the models. Light coloured

IIl. EXPERIMENTAL RESULTS
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Fig. 1. Synthetic Data 1.
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Fig. 2. Synthetic Data 2.

Image 1 Image 1: Euclidean Image 1: Mahalanobis Image 1: Poly Mahalanobis
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Fig. 3. Image 1 Using Normalized RGB.

Image 2 Image 2: Euclidean Image 2: Mahalanobis Image 2: Poly Mahalanobis
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Fig. 4. Image 2 Using Normalized RGB.



Image 3: Euclidean

Image 3: Mahalanobis image 3: Poly Mahalanobis
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Fig. 5. Image 3 Using Normalized RGB.

Image 4 Image 4: Euclidean
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Fig. 6. Image 4 Using Normalized RGB.

Image 6
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Fig. 7. Image 6 Using Normalized RGB.
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Image 10

Fig. 8. Image 10 Using Normalized RGB.



Image 10

Image 10: Texture Euclidean

Image 10: Texture Mahalanobis Image 10: Texture Poly Mahalanobis
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Fig. 9. Image 10 Using Texture Features.
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classification. Many pixelwise classification techniques fail at

this task because their similarity metric is not powerful enough

to tightly separate path from nonpath, resulting in outliers

distributed across the image.
In this paper we have introduced a new and more powerful

Polynomial Mahalanobis distance metric for use in classifying

path regions in images of natural outdoor environments. Our

approach uses only an initial positive sample of a path region

to capture the relationships in the data which are most discrim-

inative for path/nonpath classification. We have compared its

performance to Euclidean and standard Mahalanobis distance

for illustrative synthetic data as well as for challenging outdoor

scenes. For both normalized colour and texture features the

new metric produced significantly better results.
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