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_Abstract—We present a novel adaptive dynamics algorithm derive a new formulation for the “hybrid-body Jacobian”,
with efficient contact handling for articulated robots. Our al-  which exploits the structure of the hybrid tree to reduce the

gorithm automatically computes a fraction of the joints whose  gyera|| computational complexity. Our algorithm has a sub-
motion provides a good approximation to overall robot dynamics.

We extend Featherstone’s Divide-and-Conquer algorithm and are linear runtime_c_omplex_ity in the number .Of DOFs and. can
able to efficiently handle all contacts and collisions with the D€ used to efficiently simulate the dynamics of snake-like or

obstacles in the environment. Overall, our approach provides deformable robots with a very high number of DOFs.

a time-critical collision detection and resolution algorithm for T . . .

highly articulated bodies and its complexity is sub-linear in the Organization: The remainder of the paper is organized as
number of degrees-of-freedom. We demonstrate our algorithm follows. Section Il brleﬂy describes the previous work in this

on several complex articulated robots consisting of hundreds of area. Section Ill gives the background as well as an overview
joints. of our approach. In Section IV, we adapt impulse-based

I. INTRODUCTION dynamics for Featherstone’s Divide-and-Conquer algorithm

Modeling and simulation of multi-body dynamical systemé‘”d present our collision response algorithm. We highlight the
has been well-studied due to its wide applications in roboti€gSults from our simulation in Section V.
and automation, molecular modeling, computer animation, Il. RELATED WORK
medical simulations, and engineering analysis. Examples of . . . :
highly articulated robots include snake or serpentine robots, " this section, we briefly review some of the related work
reconfigurable robots [3], [12], and long mechanical chains. fil_forward dynamics algorithms for articulated robots and
molecular modeling, long series of atoms typically represent¥gfious techniques for collision response.
by hundreds or thousands of links are commonly used [24. Articulated Body Dynamics
Catheters [10], cables [15], and ropes can also be modeled
articulated robots with a very high number of joints. One of thI

key components of multi-body dynamical systems is forwaiflye o ontimal, linear-time forward dynamics algorithms [5],
dynamics computation, which determines the acceleration

resulting motion of each link, given a set of joint forces an ] ['-2]‘ [23] that depend on a recursive form_ulation of m°“°'."
external forces. The optimal algorithms have a linear runtin%quatlons have been proposed. Reformulations of the motion
S

aI@Iultibody dynamics has been extensively studied in the
erature. We refer the readers to a recent survey [8]. Theo-

complexity in the number of degrees of freedom (DOF %uatmns have also been developed using new notations and

: . - rmulations, including the spatial notation [6], [7], the spatial
However, these algorithms may still not be sufficiently fas(f erator algebra [22], and Lie-Group formulations [18]. More
for complex systems that have a very high number of degr

; . - ently, parallel algorithms have also been introduced to
of freedom. Furthermore, if the environment consists of ma%mpute the forward dynamics of articulated bodies using
obstacles or multiple articulated robots, dynamic simulaticm

with robust contact or collision handling can become a ma'orUItiple processors [6], [7], [27],
. S 9 19T our work is based on the “Adaptive Dynamics” (AD) algo-
bottleneck for real-time applications.

In t_h|s paper, we address the probler_n_of har_1dI|ng oM tomatic simplification of articulated body dynamics. Using
plex interactions between articulated rigid bodies with Jell-defined motion metrics. the algorithm can determine

high number of DOFs. Our solution incorporates Static Qfy;p “inints should be simulated in order to minimize the
dynamic friction states, resting states, as well as Separatgy'hpmation errors while approximating the overall motion of

rithm proposed by Redon et al. [19]. This approach enables

contacts. Many different methods have been proposed to de i articulated robot. However, AD algorithm cannot handle

such interactions and handle them robustly. Some of t Sllisions and is limited to freely moving robot arms with no
commonly used approaches include constraint-based, penalf

based. impulsed-based methods. or via analvtical constrai dntacts or collisions. In contrast, our approach introduces an
» 1mp ' y aaptive contact handling technique that is tightly coupled with

Main Results: We present a novel and fast contact handlingie model representation of AD and enables collision response

algorithm with adaptive dynamics computation for highly:omputation for highly articulated bodies in sub-linear time.
articulated robots. We exploit the structure of tingbrid tree

representation introduced by the adaptive dynamics algorit
[19] and show that we can also efficiently compute collision Many algorithms based on bounding volume hierarchies
response for all contacts in a similar manner. We use impuldeve been proposed for collision detection between articulated
based dynamics computation along with analytical constraimiodels and the rest of the environment [16]. These hierarchies
solving techniques. To improve the runtime performance, vege updated at each discrete time step. Moreover, efficient

tBn, Collision Detection and Response



algorithms have been proposed to perform continuous colB: Articulated-Body Dynamics
sion detection between two discrete time instances [21]. The,, ihig section, we give a brief overview of prior techniques

continuous algorithms model the trajectory of each body 83,8ed to simulate articulated-body dynamics. These include
swept volume and check each swept volume for overlap Wi} aiherstone’s original algorithm and hybrid techniques.

the environment. 1) Articulated Body Method (ABM)in Featherstone’s orig-

Several algorithms have been presented to simulate Cf?\'él method [5], links and joints are numbered frarto n (for

liding rigid bodies. These include impulse-based dynaml%stotal links and joints) such that joirit connects linkh to its

ng]’ ggﬂzgy_gﬁﬁgﬂl em itfh?ed;étaggngtorgﬂtr?r[];'g]az?dthiyrlliig]%grent linkh — 1. The original formulation was proposed for
complementarity problem (LCP) formulation [1], [25]. Post: erial linkages with single-DOF joints and a fixed base and it

stabilization techniques for rigid body simulation with contacgan be easily extended to more general situations. Branching
. 9 9 y r looping structures are constructed such thatj, wherei
and constraints have also been proposed [4].

Mirtich [17] and Kokkevis [14] have described Iinear—is the parent of linkj. Multiple DOF joints are simulated by

time methods to handle collisions based on Featherston Lgcmg several joints (each with a single DOF) between the

Articulated Body Method (ABM). Weinstein et al. [26] presen igid bpd_ies. _SimiIarIy, a floating base can be represented by
a linear time algorithm to simulate articulated rigid bodies th sociating six DOFs with the base: three revolute and three

. L rismatic.
undergo frequent and unpredictable contacts and collisions.” ~. : . .
IIl. BACKGROUND AND OVERVIEW leen. 'ghls represer]tatlon,.the ABM algorithm computes
all the joint accelerations, given the current state and any

In this section, we introduce the notation used in the regkiernaj forces or torques acting upon it. The overall algorithm
of the paper. Next, we give an overview of Featherstone[:’ﬁoceedS in four steps.

Divide-and-Conquer Algorithm (DCA) for forward dynamics
and the adaptive dynamics algorithm. Finally, we describe our
impulse-based contact and collision framework. link

A. Notation and Definitions N . o .
. . . . 2) Initialize inertias: This step initializes the articulated

We define an articulated body to be a set of rigid bodies ~ )44y inertial tensors and the internal articulation forces
that are connected to each other by a set of joints. These ;4 top down manner.
bodies can be acted upon by external forces and are als@) |nertia computation: This step also proceeds in a top
subject to kinematic constraints imposed by the joints. Based * g0 manner and computes the articulated inertias and
on the standard terminology for articulated models, we define a i35 accelerations.
handleto be a specific location on an articulated body where 4y acceleration computation: This last step computes both

external forces can be applied, and an associated change in' {he joint and spatial accelerations in a bottom-up manner.
the acceleration is measured. The state of a rigid body |52 Mirtich's Hvbrid R | lse-based d .
described byq, a vector of joint angles, and, a vector of ). Iruch's Hybrid Response.impuise-based dynamics

joint velocities provides a local solution to the contact handling problem

For the forward dynamics problem, our goal is to compuf@" articulated bodies [17]. Briefly, collisions are resolved by
the joint accelerationsi, given the state of the body and any?PPI¥iNg impulses at the contact point. The ‘hybrid” in this

external forces acting upon the body. This information is us&gMPutation refers to combining kinematic joint constraints

to advance the simulation in time. The spatial acceleration Wit impulses. One advantage of the method is that friction

A . can be easily incorporated in this formulation.
the body is given by: Impulse-based dynamics computes the response based upon
three assumptions, which provide a unified framework for rest-

1) Velocity computation: This step is performed in bottom-
up manner and is used to determine the velocity of each

a; e P - Puip t:& 1}1 ing and separating contact of rigid bodies. Mirtich generalized
ay P21 P2 - Pom fa b this framework to articulated models. Based upon the ABM
.| = : : . +| . |, formulation, the equations of motion for a robot in collision

at an end effector Is given by,

where &; is the 6 x 1 spatial acceleration of link, E— is 4() = H - (a(e)[Q(1)~Cla(t). 4(H)a(t) =G e+ T (e F(2),

the 6 x 1 spatial force applied to link, b; is the6 x 1 bias Where H is the joint-space inertia matrix;' describes the
acceleration of link (i.e. the acceleration linkwould have if Coriolis forces in matrix formG describes external forces
all link forces were zero)®, is the6 x 6 inverse articulated- such as gravity,/ is the Jacobian of the end effectgrjs the
body inertia of linki, and ®,; is the 6 x 6 cross-coupling external spatial force applied to the end effector, §his a
inverse inertia between linksand j. vector of the magnitudes of forces and torques being applied at
This system of equations is expressed using spatial notatitive joint actuators. Collisions at other points can be computed
The underlying notation is essentially an aggregate of linely aggregating the forces at that location, as well as Jacobian
and angular components of the physical quantity. For examp@mputation at the contact location.
if a is the linear acceleration of a body, ands the angular ~ Given this formulation, & x 3 collision matrix K is defined
that contains the dynamics information to locally process a
collision. DeterminingK for a contact point requires applying
algebra simplifies some of the notation, as compared to the 883t forces to a body and measuring the response. Since this
vector formulation of these quantities. A detailed explanatias based upon the ABM method, it hé¥n) complexity. One
of spatial notation and algebra is given in [5]. major drawback of this method is that the response time can

é-m ‘I>m1 ‘I>m2 T Qm f‘m B

m

acceleration, then its spatial acceleratioé is g . Spatial



where f;, is an aggregation of external forces, independent of
acceleration, acting upon the link. This can include springs,
forces fields, or gravity.

The DCA dynamics algorithm consists of four steps. The
first step starts at the leaves and works up to the root while the
second pass starts at the root and works to the leaves. These
two passes simply update the position and velocity information
for each joint and body.

The third pass, called thmain pass, starts at the leaves and
works up. This pass is used to compute the motion equation
coefficients. It first computes the coefficients for the nodes,
and progressively moves up the tree. Once the coefficients

Fig. 1. Articulated body dynamics computation using Featherstone’s Dcﬂave been uPdated for two children nodes, the parent is also

algorithm: BodyC is constructed by joining bodyl and bodyB with JC. Updated- o

Given the forces f;) acting upon each handle and their acceleratien3, (  The final pass, called theack-substitutiorpass, starts from

the resulting acceleration for the primary JOLI"‘P is computed by using the the root and proceeds to the leaves. This pass computes and

Information only from boaie an . Our algorithm uses this tormulation .. . ..

for adaptive dynamics and collision response for a articulated robot in sdﬁpdates_ the joint accelerat'ons_ at e_aCh joint as well a_.S the

linear time. constraint forces to enforce articulation. For more details of
each the steps, we refer readers to [6], [7].

be very high for a large number of links or when there are@, Adaptive Articulated-Body Dynamics

large number of contacts.

Redon et al. [19] exploit the structure of the assembly
C. Divide-And-Conquer Articulated Bodies tree and adaptively compute forward dynamics in the DCA
grmulation based on motion error metrics. Specifically, the

Our approach is based on Featherstone’s Divide-Ang- ) . .
: . assembly tree is replaced byhgbrid tree In a hybrid tree,
Conguer (DCA) algorithm [6], [7]. Rather than considerin ints are allowed to be either active or inactive. Antive

an articulated body to be simply a set of joints and bodies, .~ ~ = - g o et
. . nt is a joint that is simulated while aimactive joint is not
the DCA method defines an articulated body as a recurs#‘s"!T\nulated, and is also referred to rgidified. We label nodes

construction of articulated bodies connected by joints. The

order of construction forms a tree structure which is commonlﬁ?éimgrr;% t;zséobggneﬁhiegi frilg(ljd O'P P;N g'ﬁg ﬁﬁ:ﬂtqﬁenog;::‘d
referred to as thassembly treeThe leaf nodes are the rigid. int i tive but bg t of 'hildryn n ,d e ri % A y
bodies and the interior nodes represent joints. The subtréas IS a(; ”e u al su dS?) 3 ¢ " €n nodes ﬁ. eh g” : ds a
at each joint represent sub-assemblies, or portion of the! , a fully articulated body Is the one in which all nodes

articulated body. The root node represents the primary jof'f\rte active, whereas a body in which all nodes are inactive

: A . o ehaves like a rigid structure. We refer to an articulated body
g}goulg;)h which entire rigid body interaction is modeled (set at contains some rigidified nodes asigrid body

Featherstone showed that the articulated body equations Jgggebm?ﬁgnD%ar#;?s Og)r.?hgyb:'iﬂ]g? d%iggiesg?élé:g tt?] ethanE
a larger bodyC' could be defined in terms of two children y y P y

bodiesA and B connected by a joint. Given all the’s, @;,'s, a joint is inactive, its motion subspace is replacedobyf his

; : o converts the joint into a rigid body, and its motion coefficients
andb;’s for bodiesA and B, these quantities for bodg' are are reduced to:

defined as
@C:¢A7¢A @B+®A 71@147
of =00+ ORI HI0; a§ = 95 1€ + 9GS 15 A
05 = 0y — Oy (P + Py) 7 Py,
where

of) = (05" = F (97 + ¥5) o,

of = o' —dLWRY;  BF = 0F — BT WY, and
3G, = dBWad = (@5)7; b¢ =bA oy, 05 = bA-dE 4, by = b7’ — (07 + ®5) (b5 — b7),
and bg :bf 7@231(@{3+q)é4)71(b1247b{3).

v T ~1aTy,. _ T -1 The simulation of a hybrid body is similar to the DCA
W=V-VS(STVETSV; y=WBVS(STVS)™Q, algorithm. Assuming that the set of active nodes is known, the
B Av—1. _ A 3B, & algorithm defines a passive front. The nodes on the passive
Vi=(@r +®)7  f=by — by 49, front are those that have been rigidified, but have an active
where S is the joint's motion subspace. The motion subspad&rent. These nod_es serve as the base case, or leaf nodes, for
can be thought of as @x d; matrix that maps joint velocities OUr adaptive algorithm. .
to a spatial vector, wheré, is a degree of freedom of the joint. The bias accelerations are computed by making a pass from
For example, for a 1-DOF revolute joint that rotates along tH¥des in the passive front to the root. The motion equations

z-axis, S = [001000]7. At the leaf nodes, the coefficients are/ary based on the location of each node. Next, a top-down
pass is performed to compute the acceleration of active joints.

O =Dy =D1p =Py =11 b =by = [*1(fkfv><lv), Then, the velocities and positions of the active joints are



updated based upon the accelerations. Finally, the inverse
inertias are updated. Redon et al. [19] show that these do not
need to be updated for rigidified nodes. Since each step in
this dynamics algorithm only operates on the active region, the
time complexity for a step i9)(d,,), whered,, is the number

of active joints.

Since this algorithm only simulates a subset of the nodes,
it can result in approximation errors in the motion of the
articulated body (as compared to the original DCA algorithm).
In order to quantify this error, we utilize the motion error
metrics [19], theacceleration metric valuand thevelocity
metric value

Fig. 2. Collision Frame: The collision framéy.,;; is determine by the
point of contact and the contact normal. By convention,ftirection of the
A(C) = Z ijTAiiji collision frame is in the direction of the contact normal. Forces upon Aink
v ’ must be transformed from thE.,;; to Fy, the link’s inertial frame.

ieC
T f

ieC
where 4, and V; are symmetric, positive, definité;, x d,

matrices, andd;, is the number of degrees of freedom of
joint 7 in C. The acceleration metric can be computed without

explicitly computing the accelerations of the jointsdh O---
One of the main components of the algorithm is the compu-
tation of the active region. This can be done in two ways; with link j
an user defined error threshole;ror,, ., or an user defined
number of active jointsd,,. Fig. 3. An articulated body undergoing multiple simultaneous collisions.

h h hold . . Each collision imparts a large, external force onto the associated link. We
For t e_ _error threshold, we maintain a Current_ error ?ﬁesent an efficient algorithm to compute collision response. The complexity
error.. Initially, we seterror. = A(C), where C is the of our algorithm is linear in the number of contacts and sub-linear in the

primary joint of the root node. This represents the totgpmber of DOFs.
acceleration metric value for the body.dfror. > error,q., ) .
we compute the acceleration and forces for the current joiAt, Adaptive Impulse-Based dynamics

remove its contribution” Ag, from error., compute the  As shown in [17], proper contact handling involves com-

acceleration metric value for its children, and add these infting thecollision matrix K for rigid as well as articulated

a priority queue. BodyA has a higher priority than a body  models. Given the collision matrix, collision integration can

when A(C) > B(C). We proceed along the nodes with theye performed by finding a spatial impulse that is applied to

highest priority, until we satisfy our error bounds. the colliding link. This spatial impulse causes a change in
For the specified number of active joints, we proceed injaint velocities that must be propagated through the articulated

similar fashion. Initially, we add the primary joint of the roothody. In more detail, the following steps are performed to

node to the priority queue. For each joint at the front of theompute the response to each contact:

queue, we remove it, compute its joint acceleration, the metricy) ynqate the articulated inertias of the bodies.

value of its children, and add the children to the queue. Weoy apniy a test impulse to the colliding link.

continue this process until we have simulated, or computed3) Compute the impulse response of the body along the

the acceleration and forces, fdy, joints. _ path from the colliding link to the base. This involves
The simulated joints from this step make up thansient one pass through the links of the articulated body from

active regionWe then update the velocities and velocity metric the colliding link to the base, and another pass from the

for this region. From this information, we determine the new  psse to the colliding link.

active region once again based upon the velocity metric in4) Compute the collision matri¥ by applying test im-

a similar manner to that above. Additionally, there may be * pyises of known magnitude and measuring their effects.
nodes in the transient region that do not need to be simulateds) ysex and collision integration to compute the collision

Impulses are applied to the body to zero out these forces. For " jmpy|se.

more information, we refer the reader to [19]. 6) Propagate the collision impulse to the base.
7) Propagate the resulting changes in velocity throughout
the body.

In this section, we present our adaptive contact handlingThe primary challenge here is to adapt these steps in
algorithm. This is based on using a hybrid hierarchy fdahe framework of the adaptive dynamics (AD) algorithm
collision detection as well as Mirtich’s impulse-based dynante achieve sub-linear runtime performance to handle each
ics algorithm for response computation. We also presentcantact. Most of the changes are algorithmic. The resulting
formulation of the hybrid Jacobian and show how it can ba&gorithm would compute the same impulses as when Mirtich’s
used for contact handling in sub-linear time. algorithm is applied to an articulated body that has the same

IV. ADAPTIVE CONTACT HANDLING



structure and rigid links as that of the hybrid body. Thenanner as in measuring impulse response.
primary equations used to compute Mirtich’s response, suchThe final step requires propagating the change of velocities
as those necessary to propagate the impulse or the componéunés to p.,; through the body. This step is accomplished
of K, do not change. Instead, the amount of computation tisrough one bottom-up pass to update the joint velocity of the
reduced by utilizing the adaptive dynamics framework. Angoot, followed by a top-down pass to pass it to the remaining
change to the equations, for instance the dimension of thedies. This step only has to be performed for nodes in the
Jacobian or of the joint acceleration and velocity vectorspdate region, achieving a sub-linear runtime. At this point,
vary with the number of active joints. With this in mind,the contact has been processed and its effects have been
we describe the algorithmic changes to Mirtich’s collisiopropagated through the articulated body.
response for articulated bodies. Note that this method only solves for translational contact
If the inertia computation can be reused, the first step @d collision; the spatial collision impulse does not contain any
performed during the forward dynamics calculations. Unfortdorque. Thus, impacts related to joint limits or friction between
nately, this is not the case for either DCA nor AD. Instead, thjgints cannot by simulated by impulse-based dynamics in this
can be done by visiting the resulting rigidified sub-assemblié&ymulation. Other methods, such as analytical constraints, can
and computing their inertias. This essentially traverses the |gifectively simulate the dynamics of these events. Next, we
nodes of the active portion of the subtree, and can be viewexplain how to incorporate analytical constraints for events
as an in-order traversal of nodes on the active front. Since oi\at require a response torque.
active nodes are being visited, this step takes sub-linear tinge. Analytical Constraints

The next two steps are repeated for three passes for eacpdaptive dynamics fits very nicely into this type of frame-
articulated body involved in the contact, one for each of thgork for response. Based upon the standard articulated body
standard basis directions. The relationship between the app@ﬂjation, Kokkevis showed that at a given time instant, there
contact impulse and the change in velocity is linear (siicis  exists a linear relationship between the magnitude of the joint
constant for a given contact), which allows the response to Recelerations and the magnitude of all forces, both internal

measured through the application of known test impulses. Eagi external, acting upon the body [14]. This relationship can
pass applies a unit test impulse in a basis direction. Applicatigg expressed as

of test impulse requires evaluation of joint accelerations, which if — | ;0
. . q f+a,
we have shown to be sub-linear by our adaptive method. 0 . . )

Once a test impulse is applied, the impulse response'f§€req" and ¢’ are the joint accelerations before and after
measured. For a fully-articulated body, this operation hasSqme force is applied. A proof of this relationship is given
worst-case run time of(n). By exploiting the adaptive front N [14]. Contact, c_ollls!ons, as well as other joint constraints,
of the hybrid tree, we test the impulse response of the hybfg" @ll be posed in this manner. We focus on its use for joint
body, effectively treating each rigidified section as a link dronstraints. . . . :

a rigid body. Then, traversal to the base link is equivalent tg | Nere are a couple of considerations when using this tech-
following the adaptive front in the hybrid tree. For an adaptivalqué with AD. First, the motion equation is based on slightly

serial linkage built as a balanced tree, this is a subset of {fifferent sets of equations than as compared to what AD s
nodes along the passive front. In particular, we iterate throu§ASed upon. Second, this derivation leads to a computation
nodes along the passive front that are seen prior to the collidifide! which is linear in the number of joints. Moreover, we

link in an in-order traversalof the hybrid tree. During this 2D only interact with the articulated quy at the handles. Thus,
step there is no need to traverse deeper than a node alB rnal forces must be trarjsformed |nt0'e'qU|vaIent forges at
the passive front. By following this front, the computation i9N€ Or more handles, resulting in less efficient computations.

reduced to iterating over only a subset of active joints, agai?The_first issue can be easily resolved. The matrix form
achieving a sub-linear run time for this step. of motion equations is computationally equivalent to Feather-

One more detail needs to be mentioned. Spatial velociti ne's ABM method. The second issue requires small mod-

need to be tracked throughout the rigidified links. Howeve. ications to the analytical constraints algorithm. In proving

AD (and DCA) maintain state only through the joint position%he relationship between forces and accelerations, one step

and velocities. We rely upon the Jacobian to map joint velo Ie_:quires converting all external force_s acting upon the body
ties into spatial velocities. Normal analytical solutions for th a generalized force and torque. This conversion is normally

Jacobian would require iterating through all the bodies a ne through multiplication by the Jacobian at the point of
joints. Instead, we introduce anybrid-body Jacobiarwhich contact or manipulation. Analytically computing this Jacobian

treats the body as having fewer active links with some joir\% an O(n) operation. Instead, we again base our response

rigidified. From this formulation, our Jacobian computatioﬁlSIng our “hybrid-body Jacobian”

only needs to iterate through the active joints and we maintainG'Ven the hybrid tree, a hybnd- body Jacobian” can be
the desired sub-linear run time for this step as well. THEPuted or closely approximated in a number of ways. But,
j e key concept is that we only need to recurse through the

computation of a hybrid-body Jacobian is explained later. active joints, reducing the Jacobian computation ta¥r,)

Steps 4 and 5 both involve computations that are indgxe 2vion “We will describe this step in more detail in the next
pendent of the number of joints or bodies, and cannot RE . .

accelerated by the adaptive structure. But, once the coIIisionIt follows that for any linear functiorh of a joint acceler-

impulse, p.oi;, has been applied to the body, it must be.. .. ; .
propagated through the nodes. The first step passgsagain gmonSq, there exists & such that

from the link to the base node. This is performed in the same h(G’) — h(§°) = kf,.



Therefore, by evaluating the linear constraint functiooefore
and after the application of some known (non-zero) fofge
we can solve fork and use that to compute the force which
must be applied to obtain a given value/df;). For the case
of joint constraints or impacts, we then apply the resulting
torques to the specified joint or handle.

In many cases, several constraint equations will have to be
solved simultaneously in order to ensure that the solution from
one constraint does not have an adverse effect on another
constraint. For instance, this occurs when multiple joints
are exceeding their positional limits. This method can be
generalized into solving a system pfconstraint equations:

h — h° = Kf,

whereh andh® are p-dimensional linear functions of one orFig. 4. Pendulum benchmark: An articulated pendulum falls toward a set
more joint accelerationsk is anp x p matrix with the ;; 3ifsLi?@oglguEela?gescijrﬂ;%irs\}vaghfuﬁewngr?lgrr?lyls481 ggt?\I/idegtpszgr?d%Ci\)/Zs/;
values relating constraintand j, andf is ap x 1 vector of 5X speedup in collision detection and response computation.
constraint forces.

One advantage of this approach is that it is fairly simple
to use once the articulated-body implementation is in placg, Hybrid-Body Jacobian Computation
since it only needs to set forces and retrieve the resulting body;

and joint accelerations. This is similar to the application of At the core of each of these methods is the ability to
J ) Pp compute a Jacobian for each contact point. In order to perform

test impulses_ in the previpus sect.ion. Since each update i3fﬁcient computations, we defineHybrid-Body Jacobiarto
O(dx) operation ford,, bodies, solving fop constraints takes be the3 x d,, Jacobian,’wherén is the number o&ctive joints

; B > , . p
tlmeSO(d-np—W ), since solving the linear system Isa_s(p ) in the articulated body. Like the standard Jacobian at a point
computation in the worst case. In our tests sogfas, typically  , J-"w 't oy this takes the form
much smaller tham,,. Y, ,

One of the important applications of acceleration-based Sz Sz
constraints in our algorithm is to resolve joint limit violation oqr T 0an
events. A joint reaching a limit can easily be detected by plat) = s - Saa, |
comparing the current joint position to some known limit. K 0z

Kokkevis [14] gives a fairly complete method for resolving b T daa

these constraints, but we suggest ways to simplify the physigdiere P = (x,y, z), and eachy; is an active joint.
simulation in order to improve the overall computation. The This can be computed through approximations or standard
goal of these constraints is to cause an instantaneous chawg@lytical methods. In the case of a hybrid body, each column
in the velocity through the application of an impulse to ensuféfers to active joint We can solve for the Jacobian in a
that the joint does not move further in its current direction. Weolumn by column manner We compute columnas the
also need to ensure that it is not accelerating in this directioWoss product of joint’s world-space axis of rotation and the
The application of an impulse can be considered as applyivgctor from the center of's frame in world coordinate to
a large force over a very short time; the compression atite point P. Since we only have to iterate ovel, joints,
restitution phase of a collision. We can choose a desirditls process ha®)(d,) complexity, as long as we update
resulting joint velocity (usually zero) to result from a jointthe joint to world space transforms along with the forward
impact. Given this, we can build an acceleration constraint lynamics step. Furthermore, sinde is constant for each

approximating the desired acceleration as: location throughout a collision, it only needs to be computed
o — 4 once for each collision and location.
a@="5 V. IMPLEMENTATION AND RESULTS
whereg! is the joint acceleration duringt, and¢™, andq— We have implemented our collision detection and response

are the joint velocity before and after the impact. This joirftigorithm on top of adaptive dynamics. We use three bench-
acceleration could then be used with the constraint equatididrks to test the performance of our algorithm.
h(§) = a,(q) — af to solve for the force that will enforce the 1) The first benchmark shown in Fig. 4 allows a highly

constraint. articulated pendulum to swing back and forth. Along its

The process for resolving joint limits is very similar. An path are various pegs with which the pendulum collides.
impact constraint can be used to compute an impulse that will  The pendulum is modeled using 200 DOFs and we
cause the velocity of the joint breaking its limit to be zero. have observed 5X speedup in this simulation using our

And, a joint acceleration constraint can be used to ensure that adaptive algorithm.

inter-penetration will not occur in later steps. Again, since 2) This scenario involves taking a thread-like articulated
the process for joint velocities has been formulated as an body (Fig. 5), and feeding it through a sequence of holes.
acceleration constraint, we maintain the same complexity as This benchmark involves computing the collision re-
that portion. Thus, resolving joint impacts fits within our sub- sponse at the hole boundaries, but also adaptive forward
linear run-time resolution scheme. dynamics computation. The articulated model contains
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Fig. 5. Threading benchmark: The articulated body is modeled with 300 . ) ) ) )

DOFs and moves through a sequence of holes in walls. At each step of fig. 7. Collision Response Time vs. Number of Active Joints: This chart
simulation, we use only 60 DOFs for adaptive dynamics and collision resporgows the average time to process a collision for a fixed number of active
computation. Overall, our adaptive algorithm results in 5X speedup in tHgints. It also shows that there is a relatively linear relationship between the
simulation. active joints and the running time.

results, we observe that it is sufficient to halye< n without
introducing much error into the system for models with a high
number of DOFs. For articulated bodies with a large number
of DOFs, this speedup is beneficial as the hidden constants
in the analysis can be fairly large. For instance, in order to
compute the matrixk’ for impulse response, there can be
as many as twelve propagations through the joints and links.
This happens when two articulated bodies are colliding and
each body measures the result of three test impulses and each
impulse requires two passes through the active joints.

B. Approximation and Collision Error

Fig. 6. Bridge benchmark: The articulated body travels around the bridge in Since the original AD algorithm provides bounds on error,
a snake-like motion. The body contains over 500 links and 500 DOFs (i.e. 53 wish to show that the new algorithm maintains some
E;S)l'f,fi)n'g\/\i/ﬁ g;eﬁn‘;?{,yvzggﬁfﬁ {ﬁ;i?;ﬁﬁ';ﬁoﬂ¥”am'°s and collision responggy o hounds as well. First, note that our algorithm effectively
computes the correct Mirtich-based response for the hybrid
body. Each contact response computed could have a direct
300 DOFs, and we observe 5X speedup in this compl@gea on the joint acceleration of each rigid link. This in turn
simulation.’ also causes a change in joint velocity at each link. And, since
3) The bridge benchmark (Fig. 6) is to demonstrate the idgath.Jomt.accelerauon and velocity are bOth us.e(_:i in the error
on snake-like robots. The articulated body wraps arouffgetric, this could have an effect on the active joints.
the bridge as a means to travel across it. The bod Since the active joints are determined by a priority-based
contains over 500 DOFs and large portions of the bod cursive evaluation of the metrics, this could mean that
are in contact with the bridge. Our adaptive simulatio§2ious resulting motions are possible with this technique.
algorithm achievesX speedup in this simulation. If the collision response causes a joint to have a significant

o . acceleration or velocity, then the rigid zone update would
In our benchmarks, we observe significant improvement

o . M dbserve it and the joint would likely be activated. On the other
the performance of collision response computation algorithm

In each benchmark we fixed the number of active ioints arr]wémd, in situations where this is not significant, perhaps when
the performance of our algorithm is directly proportio]nal to tht € body is at rest, or the joint velocity of a joint is much
number of active joints. As can be seen from the graph (Fig ss than that elsewhere on the body, then these joints will

the performance is roughly proportional to the ratio of activ gg tr):ogggvg;[ﬁ;jr' azhrigzgﬂlgggbm?gggcvgglg?atisé”r: grevgﬁlgt
joints to the total number of joints. Furthermore, the absolu y y

performance numbers are very similar for articulated bodie:setrIC is bounded. . :
For best results, active region updates are performed at

with the same number of active joints and do not vary much as : h 4 of ; h .
a complexity of environment or the number of contacts. Thig''Y tll[nestep or at t eh.e”h of every tlmelstekf). th at cok?sust
result is promising since it shows bodies with any number§Q a collision. However, this has a reaso”‘?‘b y nigh over Qad
or DOFs can be simulated at about the same rate. Howe f"u is proportional to the number of active joints. This is

if we use only a few DOFs, than the resulting simulation Ca%speually true \(vhen the bc_)dy s In constant contact W'_th
have higher errors. an obstacle. While asymptotically the run-time complexity is

g . still O(d,,) for these operations, the constant associated with
A. Runtime Analysis the computation can increase considerably. In practice, it is

In the modified response algorithm, each step rur@(is,) sufficient to only apply updates about every ten to fifteen
time, whered,, is the number of active joints. From empiricaltimesteps, since the long term impact of collisions do not



disappear in a short time interval. Within this interval, changes]
in acceleration and velocity seem to be accurately captured

without a significant hit on performance.

It should also be noted that delaylng the update can als[o]
add to the amount of error. But, since a reasonably good s 5
of active joints should have been chosen prior to a collisior,
the motion should still be representative of the general motione]

And, this error is essentially limited by the update interval.

C. Motion Planning

Beyond simple forward dynamics, this response algorlthn[1]
has been adapted to work in a motion planning framework. In
particular, this investigates the problem of how to control thig]
motion of an highly articulated body in a realistic environmen

[9]. The adaptive framework provides a similar speedup

in

planning computation, and has been effective in problems su
as medical simulation, industrial inspection, and in searching

through debris.
VI. CONCLUSIONS ANDFUTURE WORK

We have presented a novel sub-linear time algorithm fgr

(20]

adaptive dynamics with collision response for highly artic-

ulated models.

Its complexity is sub-linear in the numb
of DOFs and linear in the number of contacts. We use the

{2

hybrid tree representation simultaneously for efficient collision
detection, adaptive dynamics computation, as well as contd&
response computation. Our approach is applicable to robots
with a high number of DOFs. We have applied our algorithm to
different benchmarks. The initial results and speedups obtairi&d

over the linear-time algorithms are quite encouraging.

(15]

There are many avenues for future work. We would like
to use this algorithm in simulating complex systems witH6]

multiple articulated or reconfigurable robots. This could

7] B. V. Mirtich.

useful for rapid prototyping, medical simulation, or industria

applications.
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We have presented an efficient and unified approach for
contact and collision handling. By utilizing the rigidified[19]
region computed via adaptive forward dynamics of articulated

bodies, we are able resolve constant and collision in sub-lin

?ﬂf] S. Redon, K. Kheddar, and S. Coquillart.

time given some allowable error. The acceleration metric,

velocity metric, and rigidified region updates allow the bod
to become more articulated in areas of collision due to localfy

11

higher velocities while allowing contact regions (either resting

or sliding from friction) to become more rigidified. Thus,[22]
depending on the error tolerance or desired simplification
specified by an user, significant speedup in collision handlifzp]

can be obtained.
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