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Abstract— We present a novel adaptive dynamics algorithm
with efficient contact handling for articulated robots. Our al-
gorithm automatically computes a fraction of the joints whose
motion provides a good approximation to overall robot dynamics.
We extend Featherstone’s Divide-and-Conquer algorithm and are
able to efficiently handle all contacts and collisions with the
obstacles in the environment. Overall, our approach provides
a time-critical collision detection and resolution algorithm for
highly articulated bodies and its complexity is sub-linear in the
number of degrees-of-freedom. We demonstrate our algorithm
on several complex articulated robots consisting of hundreds of
joints.

I. I NTRODUCTION

Modeling and simulation of multi-body dynamical systems
has been well-studied due to its wide applications in robotics
and automation, molecular modeling, computer animation,
medical simulations, and engineering analysis. Examples of
highly articulated robots include snake or serpentine robots,
reconfigurable robots [3], [12], and long mechanical chains. In
molecular modeling, long series of atoms typically represented
by hundreds or thousands of links are commonly used [24].
Catheters [10], cables [15], and ropes can also be modeled as
articulated robots with a very high number of joints. One of the
key components of multi-body dynamical systems is forward
dynamics computation, which determines the acceleration and
resulting motion of each link, given a set of joint forces and
external forces. The optimal algorithms have a linear runtime
complexity in the number of degrees of freedom (DOFs).
However, these algorithms may still not be sufficiently fast
for complex systems that have a very high number of degrees
of freedom. Furthermore, if the environment consists of many
obstacles or multiple articulated robots, dynamic simulation
with robust contact or collision handling can become a major
bottleneck for real-time applications.

In this paper, we address the problem of handling com-
plex interactions between articulated rigid bodies with a
high number of DOFs. Our solution incorporates static or
dynamic friction states, resting states, as well as separating
contacts. Many different methods have been proposed to detect
such interactions and handle them robustly. Some of the
commonly used approaches include constraint-based, penalty-
based, impulsed-based methods, or via analytical constraints.

Main Results: We present a novel and fast contact handling
algorithm with adaptive dynamics computation for highly
articulated robots. We exploit the structure of thehybrid tree
representation introduced by the adaptive dynamics algorithm
[19] and show that we can also efficiently compute collision
response for all contacts in a similar manner. We use impulse-
based dynamics computation along with analytical constraint
solving techniques. To improve the runtime performance, we

derive a new formulation for the “hybrid-body Jacobian”,
which exploits the structure of the hybrid tree to reduce the
overall computational complexity. Our algorithm has a sub-
linear runtime complexity in the number of DOFs and can
be used to efficiently simulate the dynamics of snake-like or
deformable robots with a very high number of DOFs.

Organization: The remainder of the paper is organized as
follows. Section II briefly describes the previous work in this
area. Section III gives the background as well as an overview
of our approach. In Section IV, we adapt impulse-based
dynamics for Featherstone’s Divide-and-Conquer algorithm
and present our collision response algorithm. We highlight the
results from our simulation in Section V.

II. RELATED WORK

In this section, we briefly review some of the related work
on forward dynamics algorithms for articulated robots and
various techniques for collision response.

A. Articulated Body Dynamics

Multibody dynamics has been extensively studied in the
literature. We refer the readers to a recent survey [8]. Theo-
retically optimal, linear-time forward dynamics algorithms [5],
[13], [2], [23] that depend on a recursive formulation of motion
equations have been proposed. Reformulations of the motion
equations have also been developed using new notations and
formulations, including the spatial notation [6], [7], the spatial
operator algebra [22], and Lie-Group formulations [18]. More
recently, parallel algorithms have also been introduced to
compute the forward dynamics of articulated bodies using
multiple processors [6], [7], [27].

Our work is based on the “Adaptive Dynamics” (AD) algo-
rithm proposed by Redon et al. [19]. This approach enables
automatic simplification of articulated body dynamics. Using
well-defined motion metrics, the algorithm can determine
which joints should be simulated in order to minimize the
computation errors while approximating the overall motion of
an articulated robot. However, AD algorithm cannot handle
collisions and is limited to freely moving robot arms with no
contacts or collisions. In contrast, our approach introduces an
adaptive contact handling technique that is tightly coupled with
the model representation of AD and enables collision response
computation for highly articulated bodies in sub-linear time.

B. Collision Detection and Response

Many algorithms based on bounding volume hierarchies
have been proposed for collision detection between articulated
models and the rest of the environment [16]. These hierarchies
are updated at each discrete time step. Moreover, efficient



algorithms have been proposed to perform continuous colli-
sion detection between two discrete time instances [21]. The
continuous algorithms model the trajectory of each body as a
swept volume and check each swept volume for overlap with
the environment.

Several algorithms have been presented to simulate col-
liding rigid bodies. These include impulse-based dynamics
[17], penalty-based methods, and constraint-based dynamics;
e.g. Gauss’ principle of least constraints [20] or the linear
complementarity problem (LCP) formulation [1], [25]. Post-
stabilization techniques for rigid body simulation with contact
and constraints have also been proposed [4].

Mirtich [17] and Kokkevis [14] have described linear-
time methods to handle collisions based on Featherstone’s
Articulated Body Method (ABM). Weinstein et al. [26] present
a linear time algorithm to simulate articulated rigid bodies that
undergo frequent and unpredictable contacts and collisions.

III. B ACKGROUND AND OVERVIEW

In this section, we introduce the notation used in the rest
of the paper. Next, we give an overview of Featherstone’s
Divide-and-Conquer Algorithm (DCA) for forward dynamics
and the adaptive dynamics algorithm. Finally, we describe our
impulse-based contact and collision framework.
A. Notation and Definitions

We define an articulated body to be a set of rigid bodies
that are connected to each other by a set of joints. These
bodies can be acted upon by external forces and are also
subject to kinematic constraints imposed by the joints. Based
on the standard terminology for articulated models, we define a
handleto be a specific location on an articulated body where
external forces can be applied, and an associated change in
the acceleration is measured. The state of a rigid body is
described byq, a vector of joint angles, anḋq, a vector of
joint velocities.

For the forward dynamics problem, our goal is to compute
the joint accelerations,̈q, given the state of the body and any
external forces acting upon the body. This information is used
to advance the simulation in time. The spatial acceleration of
the body is given by:
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where âi is the 6 × 1 spatial acceleration of linki, f̂i is
the 6 × 1 spatial force applied to linki, b̂i is the6 × 1 bias
acceleration of linki (i.e. the acceleration linki would have if
all link forces were zero),Φi is the6× 6 inverse articulated-
body inertia of link i, and Φij is the 6 × 6 cross-coupling
inverse inertia between linksi and j.

This system of equations is expressed using spatial notation.
The underlying notation is essentially an aggregate of linear
and angular components of the physical quantity. For example,
if a is the linear acceleration of a body, andα is the angular

acceleration, then its spatial acceleration isâ =
[

α
a

]
. Spatial

algebra simplifies some of the notation, as compared to the 3D
vector formulation of these quantities. A detailed explanation
of spatial notation and algebra is given in [5].

B. Articulated-Body Dynamics

In this section, we give a brief overview of prior techniques
used to simulate articulated-body dynamics. These include
Featherstone’s original algorithm and hybrid techniques.

1) Articulated Body Method (ABM):In Featherstone’s orig-
inal method [5], links and joints are numbered from1 to n (for
n total links and joints) such that jointh connects linkh to its
parent linkh− 1. The original formulation was proposed for
serial linkages with single-DOF joints and a fixed base and it
can be easily extended to more general situations. Branching
or looping structures are constructed such thati < j, wherei
is the parent of linkj. Multiple DOF joints are simulated by
placing several joints (each with a single DOF) between the
rigid bodies. Similarly, a floating base can be represented by
associating six DOFs with the base: three revolute and three
prismatic.

Given this representation, the ABM algorithm computes
all the joint accelerations, given the current state and any
external forces or torques acting upon it. The overall algorithm
proceeds in four steps.

1) Velocity computation: This step is performed in bottom-
up manner and is used to determine the velocity of each
link.

2) Initialize inertias: This step initializes the articulated
body inertial tensors and the internal articulation forces
in a top down manner.

3) Inertia computation: This step also proceeds in a top
down manner and computes the articulated inertias and
bias accelerations.

4) Acceleration computation: This last step computes both
the joint and spatial accelerations in a bottom-up manner.

2) Mirtich’s Hybrid Response:Impulse-based dynamics
provides a local solution to the contact handling problem
for articulated bodies [17]. Briefly, collisions are resolved by
applying impulses at the contact point. The ‘hybrid’ in this
computation refers to combining kinematic joint constraints
with impulses. One advantage of the method is that friction
can be easily incorporated in this formulation.

Impulse-based dynamics computes the response based upon
three assumptions, which provide a unified framework for rest-
ing and separating contact of rigid bodies. Mirtich generalized
this framework to articulated models. Based upon the ABM
formulation, the equations of motion for a robot in collision
at an end effector is given by,

q̈(t) = H−1(q(t))[Q(t)−C(q(t), q̇(t)) ˙q(t)−G(q(t))]+JT (q(t))f̂(t),

where H is the joint-space inertia matrix,C describes the
Coriolis forces in matrix form,G describes external forces
such as gravity,J is the Jacobian of the end effector,f̂ is the
external spatial force applied to the end effector, andQ is a
vector of the magnitudes of forces and torques being applied at
the joint actuators. Collisions at other points can be computed
by aggregating the forces at that location, as well as Jacobian
computation at the contact location.

Given this formulation, a3×3 collision matrixK is defined
that contains the dynamics information to locally process a
collision. DeterminingK for a contact point requires applying
test forces to a body and measuring the response. Since this
is based upon the ABM method, it hasO(n) complexity. One
major drawback of this method is that the response time can



Fig. 1. Articulated body dynamics computation using Featherstone’s DCA
algorithm: BodyC is constructed by joining bodyA and bodyB with JC .
Given the forces (fi) acting upon each handle and their accelerations (ai),
the resulting acceleration for the primary jointJC is computed by using the
information only from bodiesA andB. Our algorithm uses this formulation
for adaptive dynamics and collision response for a articulated robot in sub-
linear time.

be very high for a large number of links or when there are a
large number of contacts.

C. Divide-And-Conquer Articulated Bodies

Our approach is based on Featherstone’s Divide-And-
Conquer (DCA) algorithm [6], [7]. Rather than considering
an articulated body to be simply a set of joints and bodies,
the DCA method defines an articulated body as a recursive
construction of articulated bodies connected by joints. The
order of construction forms a tree structure which is commonly
referred to as theassembly tree. The leaf nodes are the rigid
bodies and the interior nodes represent joints. The subtrees
at each joint represent sub-assemblies, or portion of the
articulated body. The root node represents the primary joint
through which entire rigid body interaction is modeled (see
Fig. 1).

Featherstone showed that the articulated body equations for
a larger bodyC could be defined in terms of two children
bodiesA andB connected by a joint. Given all theai’s, Φij ’s,
andbi’s for bodiesA andB, these quantities for bodyC are
defined as

aC
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1 +ΦC

12f
C
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1 +ΦC

12f
C
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2 − bB
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whereS is the joint’s motion subspace. The motion subspace
can be thought of as a6×dj matrix that maps joint velocities
to a spatial vector, wheredj is a degree of freedom of the joint.
For example, for a 1-DOF revolute joint that rotates along the
z-axis,S = [001000]T . At the leaf nodes, the coefficients are

Φ1 = Φ2 = Φ12 = Φ21 = I−1; b1 = b2 = I−1(fk−v×Iv),

wherefk is an aggregation of external forces, independent of
acceleration, acting upon the link. This can include springs,
forces fields, or gravity.

The DCA dynamics algorithm consists of four steps. The
first step starts at the leaves and works up to the root while the
second pass starts at the root and works to the leaves. These
two passes simply update the position and velocity information
for each joint and body.

The third pass, called themainpass, starts at the leaves and
works up. This pass is used to compute the motion equation
coefficients. It first computes the coefficients for the nodes,
and progressively moves up the tree. Once the coefficients
have been updated for two children nodes, the parent is also
updated.

The final pass, called theback-substitutionpass, starts from
the root and proceeds to the leaves. This pass computes and
updates the joint accelerations at each joint as well as the
constraint forces to enforce articulation. For more details of
each the steps, we refer readers to [6], [7].
D. Adaptive Articulated-Body Dynamics

Redon et al. [19] exploit the structure of the assembly
tree and adaptively compute forward dynamics in the DCA
formulation based on motion error metrics. Specifically, the
assembly tree is replaced by ahybrid tree. In a hybrid tree,
joints are allowed to be either active or inactive. Anactive
joint is a joint that is simulated while aninactive joint is not
simulated, and is also referred to asrigidified. We label nodes
in a hybrid tree to be either rigid, in which case the node and
its children have been rigidified, or hybrid, when the primary
joint is active but a subset of children nodes are rigid. As a
result, a fully articulated body is the one in which all nodes
are active, whereas a body in which all nodes are inactive
behaves like a rigid structure. We refer to an articulated body
that contains some rigidified nodes as ahybrid body.

The motion equations for a hybrid body are similar to that
used by the DCA method. The primary difference is that if
a joint is inactive, its motion subspace is replaced by0. This
converts the joint into a rigid body, and its motion coefficients
are reduced to:
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The simulation of a hybrid body is similar to the DCA
algorithm. Assuming that the set of active nodes is known, the
algorithm defines a passive front. The nodes on the passive
front are those that have been rigidified, but have an active
parent. These nodes serve as the base case, or leaf nodes, for
our adaptive algorithm.

The bias accelerations are computed by making a pass from
nodes in the passive front to the root. The motion equations
vary based on the location of each node. Next, a top-down
pass is performed to compute the acceleration of active joints.
Then, the velocities and positions of the active joints are



updated based upon the accelerations. Finally, the inverse
inertias are updated. Redon et al. [19] show that these do not
need to be updated for rigidified nodes. Since each step in
this dynamics algorithm only operates on the active region, the
time complexity for a step isO(dn), wheredn is the number
of active joints.

Since this algorithm only simulates a subset of the nodes,
it can result in approximation errors in the motion of the
articulated body (as compared to the original DCA algorithm).
In order to quantify this error, we utilize the motion error
metrics [19], theacceleration metric valueand thevelocity
metric value:

A(C) =
∑
i∈C

q̈T
i Aiq̈i,

V(C) =
∑
i∈C

q̇T
i Viq̇i,

whereAi and Vi are symmetric, positive, definitedJi
× dJi

matrices, anddJi is the number of degrees of freedom of
joint i in C. The acceleration metric can be computed without
explicitly computing the accelerations of the joints inC.

One of the main components of the algorithm is the compu-
tation of the active region. This can be done in two ways; with
an user defined error threshold,errormax or an user defined
number of active joints,dn.

For the error threshold, we maintain a current error as
errorc. Initially, we set errorc = A(C), where C is the
primary joint of the root node. This represents the total
acceleration metric value for the body. Iferrorc > errormax,
we compute the acceleration and forces for the current joint,
remove its contribution,̈qT Aq̈, from errorc, compute the
acceleration metric value for its children, and add these into
a priority queue. BodyA has a higher priority than a bodyB
whenA(C) > B(C). We proceed along the nodes with the
highest priority, until we satisfy our error bounds.

For the specified number of active joints, we proceed in a
similar fashion. Initially, we add the primary joint of the root
node to the priority queue. For each joint at the front of the
queue, we remove it, compute its joint acceleration, the metric
value of its children, and add the children to the queue. We
continue this process until we have simulated, or computed
the acceleration and forces, fordn joints.

The simulated joints from this step make up thetransient
active region. We then update the velocities and velocity metric
for this region. From this information, we determine the new
active region once again based upon the velocity metric in
a similar manner to that above. Additionally, there may be
nodes in the transient region that do not need to be simulated.
Impulses are applied to the body to zero out these forces. For
more information, we refer the reader to [19].

IV. A DAPTIVE CONTACT HANDLING

In this section, we present our adaptive contact handling
algorithm. This is based on using a hybrid hierarchy for
collision detection as well as Mirtich’s impulse-based dynam-
ics algorithm for response computation. We also present a
formulation of the hybrid Jacobian and show how it can be
used for contact handling in sub-linear time.

Fig. 2. Collision Frame: The collision frame,Fcoll is determine by the
point of contact and the contact normal. By convention, thez-direction of the
collision frame is in the direction of the contact normal. Forces upon linkk
must be transformed from theFcoll to Fk, the link’s inertial frame.

Fig. 3. An articulated body undergoing multiple simultaneous collisions.
Each collision imparts a large, external force onto the associated link. We
present an efficient algorithm to compute collision response. The complexity
of our algorithm is linear in the number of contacts and sub-linear in the
number of DOFs.

A. Adaptive Impulse-Based dynamics

As shown in [17], proper contact handling involves com-
puting thecollision matrix K for rigid as well as articulated
models. Given the collision matrix, collision integration can
be performed by finding a spatial impulse that is applied to
the colliding link. This spatial impulse causes a change in
joint velocities that must be propagated through the articulated
body. In more detail, the following steps are performed to
compute the response to each contact:

1) Update the articulated inertias of the bodies.
2) Apply a test impulse to the colliding link.
3) Compute the impulse response of the body along the

path from the colliding link to the base. This involves
one pass through the links of the articulated body from
the colliding link to the base, and another pass from the
base to the colliding link.

4) Compute the collision matrixK by applying test im-
pulses of known magnitude and measuring their effects.

5) UseK and collision integration to compute the collision
impulse.

6) Propagate the collision impulse to the base.
7) Propagate the resulting changes in velocity throughout

the body.
The primary challenge here is to adapt these steps in

the framework of the adaptive dynamics (AD) algorithm
to achieve sub-linear runtime performance to handle each
contact. Most of the changes are algorithmic. The resulting
algorithm would compute the same impulses as when Mirtich’s
algorithm is applied to an articulated body that has the same



structure and rigid links as that of the hybrid body. The
primary equations used to compute Mirtich’s response, such
as those necessary to propagate the impulse or the components
of K, do not change. Instead, the amount of computation is
reduced by utilizing the adaptive dynamics framework. Any
change to the equations, for instance the dimension of the
Jacobian or of the joint acceleration and velocity vectors,
vary with the number of active joints. With this in mind,
we describe the algorithmic changes to Mirtich’s collision
response for articulated bodies.

If the inertia computation can be reused, the first step is
performed during the forward dynamics calculations. Unfortu-
nately, this is not the case for either DCA nor AD. Instead, this
can be done by visiting the resulting rigidified sub-assemblies
and computing their inertias. This essentially traverses the leaf
nodes of the active portion of the subtree, and can be viewed
as an in-order traversal of nodes on the active front. Since only
active nodes are being visited, this step takes sub-linear time.

The next two steps are repeated for three passes for each
articulated body involved in the contact, one for each of the
standard basis directions. The relationship between the applied
contact impulse and the change in velocity is linear (sinceK is
constant for a given contact), which allows the response to be
measured through the application of known test impulses. Each
pass applies a unit test impulse in a basis direction. Application
of test impulse requires evaluation of joint accelerations, which
we have shown to be sub-linear by our adaptive method.

Once a test impulse is applied, the impulse response is
measured. For a fully-articulated body, this operation has a
worst-case run time ofO(n). By exploiting the adaptive front
of the hybrid tree, we test the impulse response of the hybrid
body, effectively treating each rigidified section as a link or
a rigid body. Then, traversal to the base link is equivalent to
following the adaptive front in the hybrid tree. For an adaptive
serial linkage built as a balanced tree, this is a subset of the
nodes along the passive front. In particular, we iterate through
nodes along the passive front that are seen prior to the colliding
link in an in-order traversalof the hybrid tree. During this
step there is no need to traverse deeper than a node along
the passive front. By following this front, the computation is
reduced to iterating over only a subset of active joints, again
achieving a sub-linear run time for this step.

One more detail needs to be mentioned. Spatial velocities
need to be tracked throughout the rigidified links. However,
AD (and DCA) maintain state only through the joint positions
and velocities. We rely upon the Jacobian to map joint veloci-
ties into spatial velocities. Normal analytical solutions for the
Jacobian would require iterating through all the bodies and
joints. Instead, we introduce anhybrid-body Jacobianwhich
treats the body as having fewer active links with some joins
rigidified. From this formulation, our Jacobian computation
only needs to iterate through the active joints and we maintain
the desired sub-linear run time for this step as well. The
computation of a hybrid-body Jacobian is explained later.

Steps 4 and 5 both involve computations that are inde-
pendent of the number of joints or bodies, and cannot be
accelerated by the adaptive structure. But, once the collision
impulse, ˆpcoll, has been applied to the body, it must be
propagated through the nodes. The first step passesˆpcoll again
from the link to the base node. This is performed in the same

manner as in measuring impulse response.
The final step requires propagating the change of velocities

due to ˆpcoll through the body. This step is accomplished
through one bottom-up pass to update the joint velocity of the
root, followed by a top-down pass to pass it to the remaining
bodies. This step only has to be performed for nodes in the
update region, achieving a sub-linear runtime. At this point,
the contact has been processed and its effects have been
propagated through the articulated body.

Note that this method only solves for translational contact
and collision; the spatial collision impulse does not contain any
torque. Thus, impacts related to joint limits or friction between
joints cannot by simulated by impulse-based dynamics in this
formulation. Other methods, such as analytical constraints, can
effectively simulate the dynamics of these events. Next, we
explain how to incorporate analytical constraints for events
that require a response torque.
B. Analytical Constraints

Adaptive dynamics fits very nicely into this type of frame-
work for response. Based upon the standard articulated body
equation, Kokkevis showed that at a given time instant, there
exists a linear relationship between the magnitude of the joint
accelerations and the magnitude of all forces, both internal
and external, acting upon the body [14]. This relationship can
be expressed as

q̈f = kf + q̈0,

where q̈0 and q̈f are the joint accelerations before and after
some force is applied. A proof of this relationship is given
in [14]. Contact, collisions, as well as other joint constraints,
can all be posed in this manner. We focus on its use for joint
constraints.

There are a couple of considerations when using this tech-
nique with AD. First, the motion equation is based on slightly
different sets of equations than as compared to what AD is
based upon. Second, this derivation leads to a computation
model which is linear in the number of joints. Moreover, we
can only interact with the articulated body at the handles. Thus,
external forces must be transformed into equivalent forces at
one or more handles, resulting in less efficient computations.

The first issue can be easily resolved. The matrix form
of motion equations is computationally equivalent to Feather-
stone’s ABM method. The second issue requires small mod-
ifications to the analytical constraints algorithm. In proving
the relationship between forces and accelerations, one step
requires converting all external forces acting upon the body
to a generalized force and torque. This conversion is normally
done through multiplication by the Jacobian at the point of
contact or manipulation. Analytically computing this Jacobian
is an O(n) operation. Instead, we again base our response
using our “hybrid-body Jacobian.”

Given the hybrid tree, a “hybrid body Jacobian” can be
computed or closely approximated in a number of ways. But,
the key concept is that we only need to recurse through the
active joints, reducing the Jacobian computation to anO(dn)
operation. We will describe this step in more detail in the next
section.

It follows that for any linear functionh of a joint acceler-
ationsq̈, there exists ak such that:

h(q̈f )− h(q̈o) = kfı.



Therefore, by evaluating the linear constraint functionh before
and after the application of some known (non-zero) forcefı,
we can solve fork and use that to compute the force which
must be applied to obtain a given value ofh(q̈). For the case
of joint constraints or impacts, we then apply the resulting
torques to the specified joint or handle.

In many cases, several constraint equations will have to be
solved simultaneously in order to ensure that the solution from
one constraint does not have an adverse effect on another
constraint. For instance, this occurs when multiple joints
are exceeding their positional limits. This method can be
generalized into solving a system ofp constraint equations:

h− ho = Kf ,

whereh andho arep-dimensional linear functions of one or
more joint accelerations,K is an p × p matrix with thekij

values relating constrainti and j, and f is a p × 1 vector of
constraint forces.

One advantage of this approach is that it is fairly simple
to use once the articulated-body implementation is in place,
since it only needs to set forces and retrieve the resulting body
and joint accelerations. This is similar to the application of
test impulses in the previous section. Since each update is a
O(dn) operation fordn bodies, solving forp constraints takes
timesO(dnp+p3), since solving the linear system is aO(p3)
computation in the worst case. In our tests so far,p is typically
much smaller thandn.

One of the important applications of acceleration-based
constraints in our algorithm is to resolve joint limit violation
events. A joint reaching a limit can easily be detected by
comparing the current joint position to some known limit.

Kokkevis [14] gives a fairly complete method for resolving
these constraints, but we suggest ways to simplify the physical
simulation in order to improve the overall computation. The
goal of these constraints is to cause an instantaneous change
in the velocity through the application of an impulse to ensure
that the joint does not move further in its current direction. We
also need to ensure that it is not accelerating in this direction.

The application of an impulse can be considered as applying
a large force over a very short time; the compression and
restitution phase of a collision. We can choose a desired
resulting joint velocity (usually zero) to result from a joint
impact. Given this, we can build an acceleration constraint by
approximating the desired acceleration as:

q̈I =
q̇+ − q̇−

δt
,

whereq̈I is the joint acceleration duringδt, andq̇+, andq̇−
are the joint velocity before and after the impact. This joint
acceleration could then be used with the constraint equation
h(q̈) = aı(q̈)− aI

ı to solve for the force that will enforce the
constraint.

The process for resolving joint limits is very similar. An
impact constraint can be used to compute an impulse that will
cause the velocity of the joint breaking its limit to be zero.
And, a joint acceleration constraint can be used to ensure that
inter-penetration will not occur in later steps. Again, since
the process for joint velocities has been formulated as an
acceleration constraint, we maintain the same complexity as
that portion. Thus, resolving joint impacts fits within our sub-
linear run-time resolution scheme.

Fig. 4. Pendulum benchmark: An articulated pendulum falls toward a set
of randomly placed cylinders. The pendulum is modeled with 200 DOF. A
visually accurate simulation was run with only 40 active DOFs and gives a
5X speedup in collision detection and response computation.

C. Hybrid-Body Jacobian Computation

At the core of each of these methods is the ability to
compute a Jacobian for each contact point. In order to perform
efficient computations, we define aHybrid-Body Jacobianto
be the3×dn Jacobian, wheredn is the number ofactive joints
in the articulated body. Like the standard Jacobian at a point
P on the body, this takes the form,

JP (q(t)) =


δx
δq1

. . . δx
δqdn

δy
δq1

. . . δy
δqdn

δz
δq1

. . . δz
δqdn

 ,

whereP = (x, y, z), and eachqi is an active joint.
This can be computed through approximations or standard

analytical methods. In the case of a hybrid body, each column
refers to active joint We can solve for the Jacobian in a
column by column manner We compute columni as the
cross product of jointi’s world-space axis of rotation and the
vector from the center ofi’s frame in world coordinate to
the point P . Since we only have to iterate overdn joints,
this process hasO(dn) complexity, as long as we update
the joint to world space transforms along with the forward
dynamics step. Furthermore, sinceJP is constant for each
location throughout a collision, it only needs to be computed
once for each collision and location.

V. I MPLEMENTATION AND RESULTS

We have implemented our collision detection and response
algorithm on top of adaptive dynamics. We use three bench-
marks to test the performance of our algorithm.

1) The first benchmark shown in Fig. 4 allows a highly
articulated pendulum to swing back and forth. Along its
path are various pegs with which the pendulum collides.
The pendulum is modeled using 200 DOFs and we
have observed 5X speedup in this simulation using our
adaptive algorithm.

2) This scenario involves taking a thread-like articulated
body (Fig. 5), and feeding it through a sequence of holes.
This benchmark involves computing the collision re-
sponse at the hole boundaries, but also adaptive forward
dynamics computation. The articulated model contains



Fig. 5. Threading benchmark: The articulated body is modeled with 300
DOFs and moves through a sequence of holes in walls. At each step of the
simulation, we use only 60 DOFs for adaptive dynamics and collision response
computation. Overall, our adaptive algorithm results in 5X speedup in this
simulation.

Fig. 6. Bridge benchmark: The articulated body travels around the bridge in
a snake-like motion. The body contains over 500 links and 500 DOFs (i.e. 500
DOFs). We used only 70 DOFs for adaptive dynamics and collision response,
resulting in 8X improvement in the simulation.

300 DOFs, and we observe 5X speedup in this complex
simulation.

3) The bridge benchmark (Fig. 6) is to demonstrate the idea
on snake-like robots. The articulated body wraps around
the bridge as a means to travel across it. The body
contains over 500 DOFs and large portions of the body
are in contact with the bridge. Our adaptive simulation
algorithm achieves8X speedup in this simulation.

In our benchmarks, we observe significant improvement in
the performance of collision response computation algorithm.
In each benchmark we fixed the number of active joints and
the performance of our algorithm is directly proportional to the
number of active joints. As can be seen from the graph (Fig 7),
the performance is roughly proportional to the ratio of active
joints to the total number of joints. Furthermore, the absolute
performance numbers are very similar for articulated bodies
with the same number of active joints and do not vary much as
a complexity of environment or the number of contacts. This
result is promising since it shows bodies with any number of
or DOFs can be simulated at about the same rate. However,
if we use only a few DOFs, than the resulting simulation can
have higher errors.
A. Runtime Analysis

In the modified response algorithm, each step runs inO(dn)
time, wheredn is the number of active joints. From empirical

Fig. 7. Collision Response Time vs. Number of Active Joints: This chart
shows the average time to process a collision for a fixed number of active
joints. It also shows that there is a relatively linear relationship between the
active joints and the running time.

results, we observe that it is sufficient to havedn < n without
introducing much error into the system for models with a high
number of DOFs. For articulated bodies with a large number
of DOFs, this speedup is beneficial as the hidden constants
in the analysis can be fairly large. For instance, in order to
compute the matrixK for impulse response, there can be
as many as twelve propagations through the joints and links.
This happens when two articulated bodies are colliding and
each body measures the result of three test impulses and each
impulse requires two passes through the active joints.

B. Approximation and Collision Error

Since the original AD algorithm provides bounds on error,
we wish to show that the new algorithm maintains some
error bounds as well. First, note that our algorithm effectively
computes the correct Mirtich-based response for the hybrid
body. Each contact response computed could have a direct
effect on the joint acceleration of each rigid link. This in turn
also causes a change in joint velocity at each link. And, since
both joint acceleration and velocity are both used in the error
metric, this could have an effect on the active joints.

Since the active joints are determined by a priority-based
recursive evaluation of the metrics, this could mean that
various resulting motions are possible with this technique.
If the collision response causes a joint to have a significant
acceleration or velocity, then the rigid zone update would
observe it and the joint would likely be activated. On the other
hand, in situations where this is not significant, perhaps when
the body is at rest, or the joint velocity of a joint is much
less than that elsewhere on the body, then these joints will
not be activated. The resulting motion would still be valid
and motion error as measured by the acceleration or velocity
metric is bounded.

For best results, active region updates are performed at
every timestep or at the end of every timestep that consist
of a collision. However, this has a reasonably high overhead
that is proportional to the number of active joints. This is
especially true when the body is in constant contact with
an obstacle. While asymptotically the run-time complexity is
still O(dn) for these operations, the constant associated with
the computation can increase considerably. In practice, it is
sufficient to only apply updates about every ten to fifteen
timesteps, since the long term impact of collisions do not



disappear in a short time interval. Within this interval, changes
in acceleration and velocity seem to be accurately captured
without a significant hit on performance.

It should also be noted that delaying the update can also
add to the amount of error. But, since a reasonably good set
of active joints should have been chosen prior to a collision,
the motion should still be representative of the general motion.
And, this error is essentially limited by the update interval.

C. Motion Planning

Beyond simple forward dynamics, this response algorithm
has been adapted to work in a motion planning framework. In
particular, this investigates the problem of how to control the
motion of an highly articulated body in a realistic environment
[9]. The adaptive framework provides a similar speedup in
planning computation, and has been effective in problems such
as medical simulation, industrial inspection, and in searching
through debris.

VI. CONCLUSIONS ANDFUTURE WORK

We have presented a novel sub-linear time algorithm for
adaptive dynamics with collision response for highly artic-
ulated models. Its complexity is sub-linear in the number
of DOFs and linear in the number of contacts. We use the
hybrid tree representation simultaneously for efficient collision
detection, adaptive dynamics computation, as well as contact
response computation. Our approach is applicable to robots
with a high number of DOFs. We have applied our algorithm to
different benchmarks. The initial results and speedups obtained
over the linear-time algorithms are quite encouraging.

There are many avenues for future work. We would like
to use this algorithm in simulating complex systems with
multiple articulated or reconfigurable robots. This could be
useful for rapid prototyping, medical simulation, or industrial
applications.

We have presented an efficient and unified approach for
contact and collision handling. By utilizing the rigidified
region computed via adaptive forward dynamics of articulated
bodies, we are able resolve constant and collision in sub-linear
time given some allowable error. The acceleration metric,
velocity metric, and rigidified region updates allow the body
to become more articulated in areas of collision due to locally
higher velocities while allowing contact regions (either resting
or sliding from friction) to become more rigidified. Thus,
depending on the error tolerance or desired simplification
specified by an user, significant speedup in collision handling
can be obtained.
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