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Abstract— Autonomous navigation in unknown but well-
structured environments (e.g., parking lots) is a common task for
human drivers and an important goal for autonomous vehicles.
In such environments, the vehicles must obey the standard
conventions of driving (e.g., passing oncoming vehicles on the
correct side), but often lack a map that can be used to guide path
planning in an appropriate way. The robots must therefore rely
on features of the environment to drive in a safe and predictable
way. In this work, we focus on detecting one of such features,
the principal directions of the environment.

We propose a Markov-random-field (MRF) model for estimat-
ing the maximum-likelihood field of principal directions, given
the local linear features extracted from the vehicle’s sensor data,
and show that the method leads to robust estimates of principal
directions in complex real-life driving environments. We also
demonstrate how the computed principal directions can be used
to guide a path-planning algorithm, leading to the generation of
significantly improved trajectories.

I. INTRODUCTION

Autonomous navigation in outdoor environments is an ac-
tive area of research in robotics, with extensive work being
done in two distinct areas: i) the creation of robotic vehicles
capable of driving on streets and highways [7, 24, 25, 23],
and ii) the development of robots for off-road navigation [14,
22, 4, 21, 1, 16]. In the former case of on-street driving, it
is sensible and commonplace to assume that there is a map
of the global road network available, and the robot must obey
the standard rules of driving (drive on the appropriate side of
the street, not straddle the lane boundaries, etc). In the other
mode of off-road driving, a detailed map of the environment
is typically not available to the robot a priori, but the robot
is not confined by any rules of the road and is free to choose
any drivable and safe path to its goal.

There is also a large middle ground between these two
areas, consisting of well-structured environments where it is
not reasonable to assume knowledge of a detailed map, but
the robotic vehicle must nonetheless obey the common rules
of driving. Such conditions arise, for example, in parking lots,
shopping malls, and construction zones. In such areas—even
in the absence of typical road markings and signs—human
drivers are usually able to partition the space into drivable
lanes and drive appropriately. For instance, when driving in a
parking lot such as the one shown in Figure 1a, most people

(a) (b)
Fig. 1. Detecting structure of the driving environment. a) Aerial imagery of
a parking lot; b) A typical structure imposed on the environment by human
drivers.

will not have any difficulty detecting the main drivable lanes,
similar to the ones shown in Figure 1b.

Similarly, a robot operating in such an environment needs
to be able to—by using data from its on-board sensors—
recognize features of the environment that will allow it to drive
in accordance with common rules. Compliance to established
rules and driving conventions is an especially important safety
requirement if robots are to share the environment with human
drivers, because it then becomes an issue of predictability.

In this work, we take a step towards this goal by considering
one of the most basic features of environments: their principal
directions. Knowing the principal directions of the environ-
ment is a prerequisite condition for implementing many high-
level driving behaviors, such as driving on the correct side of
the road (which is critical for collision avoidance) and avoiding
diagonal paths across parking lots (which is often considered
rude and unsafe).

Finding principal directions based purely on data from the
robot’s on-boards sensors is a challenging task due to the



Fig. 2. Stanford Racing Team’s robotic vehicle, Junior. The results presented
in this work were obtained using the Applanix GPS+IMU system and the
Velodyne 3D LIDAR.

following issues: i) Many environments have several principal
directions that vary from point to point (e.g., Figure 1), ii)
Sensor data is noisy and can give rise to conflicting local
hypotheses regarding the global principal directions, and iii)
Computation of principal directions has to be done efficiently
to be useful for navigation.

We approach the problem of computing the field of principal
directions in a probabilistic framework. Assuming that at every
point in the two-dimensional space of the driving environment
there is a main preferred direction of motion, we formulate a
Markov-random-field (MRF) [6] model that allows us to infer
a high-likelihood field of principal directions, corresponding
to the observed evidence provided by the vehicle’s on-board
sensors. This approach is inspired by the extensive use of
MRFs for image processing [18, 26].

The main steps of our approach are as follows. First, a map
of the environment is computed from the robot’s on-board
sensors. In this work, we present results based on LIDAR data,
but our approach can be applied to other sensor modalities,
such as cameras (potentially even leading to improvements
in accuracy). We then scan the resulting map for local linear
features that provide evidence regarding the principal direc-
tions of the environment. Having thus obtained local evidence,
we formulate an MRF whose nodes form a 2D grid and
represent the global principal direction of the environment at
the corresponding locations. A solution to the MRF is obtained
using fast numeric-optimization techniques.

We also present results demonstrating the robust perfor-
mance of the MRF approach on several real environments
driven with our robotic vehicle (Figure 2), and show how the
resulting field of principal directions can be used to guide path
planning, leading to a significant improvement in generated
trajectories.

II. LOCAL PRINCIPAL DIRECTIONS

The core of our MRF-based approach is independent of the
method used to obtain features of the environment that serve

as local evidence. However, for completeness and continuity,
in this section, we briefly describe the specifics of our method
for obtaining evidence for the MRF.

We used a vehicle equipped with a 3D Velodyne LIDAR
as the sole environmental sensor. Below, we outline the
techniques we used to find lines in the environment, given
the range data produced by the LIDAR. The main steps of the
process are illustrated in Figure 3.

The Velodyne LIDAR outputs a 3D point cloud, as shown
in Figure 3a. In the first step, we filter out the ground plane,
integrate data over time, and project the points onto a plane,
leading to a 2D obstacle map shown in Figure 3b. Any line
segments in this 2D map (e.g., curbs, other cars) are evidence
of the principal driving directions, and we can detect those
local lines using common computer-vision approaches.

There are several good known techniques for detecting lines
in images. We found that the following sequence of standard
transforms leads to satisfactory results for out application.
First, we smooth the data using a symmetric 2D Gaussian
kernel (Figure 3c) and then apply a binary threshold (25%) to
the result (leading to the data shown in Figure 3d). The effect
of these two steps is to remove small noise from the data,
smooth out jagged lines, and “fill in” small gaps within objects
(such as cars or trees), thereby eliminating extra edges. We
then apply the Canny algorithm [5] for edge detection, yielding
the image shown in Figure 3e. Finally, we use a randomized
Hough transform (RHT) [27] to find line segments in the data
(Figure 3f).

III. MARKOV RANDOM FIELD FOR ESTIMATING GLOBAL
PRINCIPAL DIRECTIONS

The lines obtained in the previous section can be viewed
as local evidence regarding the principal directions of the
environment. Our goal is therefore to estimate the maximum
likelihood field of principal directions θ(x, y), which specifies
the principal orientation at every point x, y in the region of
interest. Note that most complex driving environments—e.g.,
Figure 1—do not have a single global orientation, but rather
have several principal directions that differ from point to point.

We formulate a discrete version of the inference problem on
a regular 2D grid, associating with each point 〈xi, yi〉 an MRF
node with a scalar continuous value θi. Figure 4 illustrates
our MRF construction. Each MRF node θi ∈ [0, π/2) has
associated with it a set of evidence nodes αik ∈ [0, π/2), one
for the angle of each line segment k ∈ [1,Ki] that crosses the
grid cell i.

All angles are normalized to [0, π/2), because orthogonal
lines (e.g., edges of a car) support the same hypothesis for the
principal direction at a point.

Our MRF uses two sets of potentials associated with the
nodes and edges of the graph in Figure 4. The first potential
(Ψ) is defined on the nodes of the MRF and ties each θi to
its local evidence αik. It is defined as follows:

Ψ(θ, α) =
∑
i

Ki∑
k=1

λikψ(θi, αik), (1)



(a) 3D LIDAR data (b) 2D OBstacle Map (c) Gaussian Smoothing

(d) Binary Threshold (e) Canny Edge Detection (f) Hough Transform

Fig. 3. Line detection in a parking lot: a) 3D LIDAR data; b) Obstacle map; c) After smoothing with a Gaussian kernel; d) After binary thresholding;
e) After Canny edge detection; f) After Hough transform.

Fig. 4. MRF for inferring the field of principal directions of the environment.
MRF variables θi are shown as red circles, αik are the input nodes,
corresponding to the angles of the observed lines.

where λik is the weight associated with line k, and ψ is a
distance measure between two angles; both are defined below.

The second potential (Φ) is defined on the edges of the MRF
and encodes a prior that enforces a smoothness relationship
between the principal directions at neighboring nodes:

Φ(θ) =
1
2

∑
i

∑
j∈N (i)

φ(θi, θj), (2)

where N (i) is the set of neighbors of node i, and φ is a
distance measure between two angles (defined below).

There are many reasonable choices for the distance mea-
sures ψ and φ, as well as the weights λik. We evaluated several
options for each, and experimentally settled on the following.
For the weights λik, we used the length of the correspond-
ing line segment (the longer the segment, the stronger the
evidence). The choice of the distance measures ψ and φ is
an interesting topic in itself: some distances favor smoother
fields (e.g., L2 norm), others (e.g., L1 norm) have better
discontinuity-preserving properties; see [9] for an applicable
discussion of different norms in optimization. We empirically
investigated several functions, and found the following to be
a good choice of a norm for both evidence and smoothness
potentials:

ψ(β, γ) = φ(β, γ) = sin2
(
2(β − γ)

)
. (3)

This measure behaves quadratically for small β − γ, and has
natural wrap-around properties for our angles in the interval
[0, π/2).

Finally, the distribution of the MRF variables θ for a specific
set of observed α is given by a Gibbs distribution:

P(θ|α) =
1
Z

exp
(
− (wψΨ(θ, α) + wφΦ(θ))

)
, (4)

where wψ and wφ are weights, and Z is a normalizer or the
partition function.

Our goal is to find the maximum-likelihood field of principal



directions θ, given the observed evidence α:

θ∗α = arg max
θ

P(θ|α), (5)

or, in other words, find θ that minimizes the Gibbs energy
U = wψΨ + wφΦ.

IV. OPTIMIZATION

For computational reasons, it is infeasible to compute an
exact maximum-likelihood solution to the MRF defined in
the previous section for anything but the simplest problems
(a typical MRF for a realistic environment will have several
thousand to tens of thousands nodes). Similarly to the ap-
proach of Diebel and Thrun [8, 9], we therefore settle for
a high-probability mode of the posterior, which we compute
using conjugate-gradient (CG) optimization [12, 20].

CG works best when an analytical gradient of the energy is
specified, which is easily computed for our MRF potentials:

∂Ψ
∂θi

= 4
Ki∑
k

λik sin
(
2(θi − αik)

)
cos

(
2(θi − αik)

)
,

∂Φ
∂θi

= − ∂Φ
∂θj

= 2 sin
(
2(θi − θj)

)
cos

(
2(θi − θj)

)
.

Given the above potentials and the gradient, the imple-
mentation of conjugate gradient is standard [20]. The output
of the optimization is a high-likelihood field θ(xi, yi) that
corresponds to the observed lines α.

V. RESULTS

In this section, we present results on the performance of
our MRF-based approach to computing principal directions.
The use of these directions in path-planning is discussed and
evaluated in the next section.

We tested our algorithm using a vehicle equipped with an
Applanix pose estimation GPS-IMU system and a Velodyne
3D LIDAR. Some representative examples of executing our
method are shown in Figure 5. The left column shows the 2D
obstacle map obtained from the vehicle’s sensors. The center
column shows the lines detected in the obstacles map using the
method described in Section II; these lines serve as the input
to our MRF. The right column of Figure 5 shows the resulting
field of principal directions computed by conjugate-gradient
optimization.

The top row of Figure 5 shows a nearly ideal scenario:
a parking lot with two main orthogonal principal directions,
which are easily computed by our algorithm. The second row
shows data for another, more complex, parking lot. Notice the
presence of trees and a second, differently oriented, parking lot
in the bottom-left part of the map. Despite these challenges,
the MRF computes a very good estimate of the preferred
driving directions for this environment. The third row of
Figure 5 demonstrates the ability of our approach to handle en-
vironments with gradually-changing orientations. Notice that
the field of principal directions correctly follows the curved
road segment. The fourth row of Figure 5 depicts another
challenging situation with a curved street, an intersection,

Fig. 6. The MRF computes the correct orientation for the drivable region of
the parking lot, despite bad evidence provided by an adjacent building corner.

and an adjacent parking lot. It also highlights an interesting
challenge for our method: parking lots with diagonally-parked
cars (upper-right corner of the map). In this situation, the
parked cars—whose sides are usually detected as lines—and
features of the parking lots themselves (e.g., curbs) present
conflicting evidence regarding the principal orientation of the
environment.

Another complex situation is shown in Figure 6, where a
building is located very close to a parking lot, but is oriented
at a different angle, providing bad evidence for the MRF.
However, as can be seen from the vector field in Figure 6, the
MRF is able to compute the correct orientation for the drivable
area, despite the fact that the curb separating the corner of the
building from the parking lot is not detected.

Additional examples illustrating the computation of prin-
cipal directions in real driving environments are shown in
Figure 9.

Figure 7 shows the running time of our algorithm as
performed on a 3Ghz Intel Core-2 PC. The data presented
in Figure 7 is for the parking lot shown in the second row of
Figure 5).

Figure 7a compares the running times of the main com-
ponents of our approach. The timing results in Figure 7a
are for experiments run with the following parameters: the
obstacle grid was 260m×260m with 15cm resolution, the MRF
evidence grid was 260m×260m with 5m resolution (resulting
in an MRF with 2704 nodes). As can be seen from the data,
the performance of our algorithm is usually dominated by the
running time of the conjugate-gradient algorithm, and with
the average computation time of under 300ms, the method is
well-suited for use in online path planning (since it is usually
not necessary to update the field of principal directions during
every planning cycle).

Figure 7b shows how our MRF inference scales with the size
of the MRF grid (with a 5-meter discretization of the MRF



Obstacle Map Detected Lines (MRF Input) Principal Directions (MRF Output)

Fig. 5. Results of computing principal directions in several real driving environments.

grid). Figure 7c illustrates the scaling of the MRF inference as
a function of the number of MRF variables θi (corresponding
to MRF grids of size 40m to 300m, at 2.5m resolution).

We should note that a finer discretization of the MRF grid
does not necessarily lead to better results. In fact, we found a
resolution of around 5m to work best for typical driving areas.
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Fig. 7. (a) Running time of the main components of our method on a sequence of real obstacle maps: i) Time for map pre-processing and Canny edge
detection, ii) Time for the Hough Tranform, iii) Time for the MRF conjugate-gradient optimization, and IV) Number of local linear features detected via the
Hough transform. (b) MRF inference time as a function of the MRF grid size at a 5-meter resolution (number of MRF variables is quadratic in the size). (c)
MRF inference time as a function of the number of MRF variables (grid cells) at a 2.5-meter discretization.

VI. PATH PLANNING

There are several ways in which knowledge of principal
directions can be fruitfully utilized in path planning, some of
which were outlined in the Introduction. Below, we describe
a path-planning algorithm that favors trajectories aligned with
the environment, and illustrate the improvements this leads to,
compared to a standard planner with a bias towards smooth
trajectories with arbitrary headings.

In what follows we leave aside the problem of global
planning, which in practice can be accomplished via several
existing algorithms, such as continuous forward search via
path sampling (e.g., [3, 13, 17, 19]) or discrete search (e.g.,
[10, 15, 11]), just to name a couple classes of algorithms.
Assuming that a rough global plan has been computed, we
show how the field of principal directions can be used in a
path-smoothing phase of planning.

Given a global plan represented as a sequence 〈xl, yl〉, l ∈
[1, N ], we can formulate the smoothing problem as a contin-
uous optimization on the coordinates of the vertices of the
trajectory. For illustrative purposes, below we focus on two
terms: smoothness and compliance with principal directions;
other important aspects of a realistic path smoother (such as
kinematic constraints of the vehicle and collision-avoidance
terms) are omitted for brevity.

For a given trajectory {〈xl, yl〉}, let us define the displace-
ment vector at vertex l:

∆xl =
(
xl
yl

)
−

(
xl−1yl−1

,

)
(6)

and the heading of the trajectory at vertex l:

σl = tan−1
( yl+1 − yl
xl+1 − xl

)
. (7)

The smoothness of the trajectory and the bias towards
driving along principal directions can then be expressed as:

f =wsm
N−1∑
l=1

(∆xl+1 −∆xl)2+

wpd

N∑
l=1

µ
(
θ(xl, yl), σl

)
,

(8)

where θ(xl, yl) is the principal direction at the MRF node
closest to 〈xl, yl〉; wsm and wpd are the weights on smoothness
and the principal-direction bias, respectively; µ is a potential
on the difference of the two angles, which can be defined in
a variety of ways, for example:

µ(θ(xl, yl), σl) = 1− cos
(
2(θ(xl, yl)− σl)

)
. (9)

This smoothing problem can be solved using several effi-
cient numerical techniques. One approach is to again use the
conjugate-gradient algorithm as in Section IV.

Figure 8 shows the output of different variants of path
smoothing on the same problem. Figure 8a and Figure 8c
shows the output of the smoother that minimizes the quadratic-
curvature term in (8), subject to constraints on collision avoid-
ance and kinematics of the car, but wpm = 0 and principal
directions are ignored. The driving style exemplified by such
trajectories might in some cases be considered undesirable.
Turning on the bias for aligning the trajectory with the
principal directions leads to solutions shown in Figure 8b
and Figure 8d; such compliance with the orientation of the
environment can be useful in many driving situations.

VII. DISCUSSION

We presented an MRF-based method for inferring princi-
pal directions of unknown environment using data from 3D
LIDAR, and illustrated the usefulness of principal directions
for path-planning in well-structured environments, such as
parking lots. We evaluated the performance of our approach
in real driving scenarios, demonstrating its ability to robustly
estimate the field of principal directions in the presence of
noise, conflicting local evidence, and regions with smoothly
curved boundaries.

This work takes a step towards designing autonomous
vehicles that can operate predictably in unknown environments
and follow the standard conventions of human driving.

Still, the principal directions are a rather crude property of
the environment, and it is necessary to detect more compre-
hensive features and use them in path planning to achieve
predictable human-like driving. For instance, another high-
level driving behavior that is challenging to implement is the



(a) (b) (c) (d)
Fig. 8. Path planning using principal directions. a) and c) Principal directions are not used. b) and d) Planning favors trajectories that are aligned with
principal directions of the environment.

adherence to the established convention of passing oncom-
ing traffic on the correct side. A straightforward method of
partitioning the space into “left” and “right” regions can be
developed by using the Voronoi diagram [2] of the obstacle
map and labeling points based on which side of the Voronoi
edge they fall. However, a straightforward application of this
method is brittle with respect to sensor noise, producing
fragmented obstacle maps that can lead to highly irregular
Voronoi diagrams. A more sophisticated method is needed for
robust identification of drivable lanes in order for the robot to
correctly handle situations involving other cars.

Another interesting thread of our current and future work
lies along the direction of combining obstacle data with
visual camera data as well as surface-reflectivity data from
LIDARs for detecting and recognizing more advanced features
in unknown environments (e.g., lane markings, curbs, other
vehicles) and their use in path planning.
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Fig. 9. Additional results of computing principal directions in several real driving environments.


