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Abstract— This paper proposes a decision making and con-
trol supervision system for a multi-modal service robot. With
partially observable Markov decision processes (POMDPs) uti-
lized for scenario level decision making, the robot is able to
deal with uncertainty in both observation and environment
dynamics and can balance multiple, conflicting goals. By us-
ing a flexible task sequencing system for fine grained robot
component coordination, complex sub-activities, beyond the
scope of current POMDP solutions, can be performed. The
sequencer bridges the gap of abstraction between abstract
POMDP models and the physical world concerning actions, and
in the other direction multi-modal perception is filtered while
preserving measurement uncertainty and model-soundness. A
realistic scenario for an autonomous, anthropomorphic service
robot, including the modalities of mobility, multi-modal human-
robot interaction and object grasping, has been performed
robustly by the system for several hours. The proposed filter-
POMDP reasoner is compared with classic POMDP as well
as MDP decision making and a baseline finite state machine
controller on the physical service robot, and the experiments
exhibit the characteristics of the different algorithms.

I. INTRODUCTION

Service robots are meant to act autonomously and robustly
in real world environments. Yet, observations of the physical
world by robots are limited and noisy, thus the environment
is partially observable. Also, the course of events in the
real world is never completely deterministic but stochastic.
Both aspects of uncertainty need to be regarded by decision
making of an autonomous service robot.

In general, decision making of a multi-modal robot uses
perceptions of multiple sensors together with background
knowledge to choose one of the available actions which will
contribute most likely to mission success. The chosen action
is performed by coordinating available actuators.

This paper introduces a decision making and supervision
system considering uncertainty, which utilizes partially ob-
servable Markov decision processes (POMDPs) for sym-
bolic, scenario-level decisions. A main focus is bridging the
gap of abstraction between symbolic POMDPs and multi-
modal, real world perception as well as multiple actuators.
Sensor information, including uncertainty, is filtered and
fused into belief states. Abstract POMDP decisions are
executed by processing sequential task programs to execute
more complex and deterministic sub-tasks.

The presented approach is evaluated on a physical, au-
tonomous, anthropomorphic service robot within a realistic
waiter cup-serving scenario.
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II. STATE OF THE ART

Research has approached the challenge of building pow-
erful reasoning systems for real world environments from
two directions: construction of reasoning and supervision
systems for robots in environments with assumed simplified
properties like fully observable, deterministic or discrete on
the one hand and the development of probabilistic decision
theory coupled with algorithms for decision retrieval on the
other hand.

A hierarchical approach for the design of reasoning and
control systems for robots has proven to help coping with the
complexity of task environments [1]. Three layer architec-
tures are a very popular design [2]. The first layer performs
low level processing of sensory data and reactive controlling
of actuators. The second layer usually supervises an ongoing
task on a symbolic level while the third layer handles the
deliberative selection of abstract tasks. The supervisor and
deliberative layer of most systems use classical planning
which is not aimed at dealing with uncertainty.

Uncertainty in observation and environment dynamics can
be handled by using probabilistic techniques. Probabilistic
decision theory deals with reasoning of rational agents in the
presence of uncertainty. A very promising framework within
general probabilistic decision theory are partially observable
Markov decision processes (POMDPs), especially the class
of discrete, model based POMDPs. A POMDP is an abstract
environment model for reasoning under uncertainty [3], [4].
A POMDP models a flow of events in discrete states and
discrete time. A specific POMDP model is represented by the
8-tupel (S, A, M,T,R,0,v,by). S is a finite set of states,
A is a discrete set of actions and M is a discrete set of
measurements. The transition model T'(s’, a, s) describes the
probability of a transition from state s to s’ when the agent
has performed action a. The observation model O(m, s)
describes the probability of a measurement m when the
intrinsic state is s. The reward model R(s,a) defines the
numeric reward given to the agent when being in state s and
executing action a. The parameter v controls the time dis-
count factor for possible future events. The initial belief state
is marked by by. As POMDPs handle partially observable
environments, there exists only an indirect representation of
the intrinsic state of the world. In POMDPs, the belief state,
a discrete probability distribution over all states in a scenario
model, forms this representation. At each time step, the belief
state is updated by Bayesian forward-filtering.

A decision about which action is most favorable for the
agent when executed next, can be retrieved from a policy



which contains information about the most favorable action
for any possible belief distribution. The policy incorporates
balancing the probabilities of the course of events into
the future with the accumulated reward which has to be
maximized.

Computing a policy is computationally challenging and
computing exact, optimal policies is intractable [5]. Approx-
imate solutions as point based value iteration (PBVI) [6],
discrete PERSEUS [7] or HSVI2 [8], however, are quite fast
and yield good results for most mid-size scenarios.

For scenarios which can be modelled as fully observable,
Markov Decision Processes (MDPs) can be used for decision
making. In MDPs, the decision is derived from a policy
function based on the known true world state.

POMDP decision making has already been applied to
several different modalities in robotics, like autonomous
navigation [9], dialog management [10] and grasping [11],
however only for low level controlling of one modality at a
time.

These recent investigations encourage to integrate abstract
POMDP decision making into reasoning and supervision
architectures for autonomous, multi-modal robots now and
especially bridging the gap of abstraction between the phys-
ical world and discrete decision models. This paper presents
such an approach and an evaluation in the following.

III. APPROACH: filterPOMDP

When using real world sensory data, there are two pos-
sibilities to perform the belief update during scenario run-
time when using POMDP decision making. The first is the
classical approach, where a distinct observation is perceived
and is then processed by using the observation and transition
models of a POMDP in a Bayesian update step. The same
models are used for calculating the policy. These models
must be known a priori and are formulated as classical linear
POMDP models. As a drawback, one cannot benefit from
any dedicated models of uncertainty which might exist in
the lower level algorithms.

The second approach uses dedicated Bayesian filtering
methods for each sensor complex, which are then fused into
a single belief state. The classic POMDP models are only
used for calculating the policy with an approximation of
the specific filtering methods. This filterPOMDP approach
has the advantage that the uncertainty, as determined by
specific methods, is much more precise concerning the
current situation than it could be delivered by a static linear
observation model.

Therefore, the question about which approach to take de-
pends on the tradeoff between uncertainty precision concern-
ing the belief and policy precision concerning the process on
which the belief is calculated. In mono-modal settings, e.g.
mobile robot navigation settings as often used in conjunction
with POMDPs, the classical approach is superior, because a
general observation and transition model can be set up which
models the behavior of both the self-localization process and
the general POMDP well. In multi-modal settings, e.g. a ser-
vice robot with mobility, manipulation, spoken dialogue and
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Fig. 1. The system architecture showing the three layer architecture. Low
level component control for perception and actuation is at the bottom, the
feature filter is on the left, the deliberative layer at the top and the sequencer
at the right.

visual human activity recognition, the specific uncertainties
are better derived from each sensor complex. In this case,
the static observation model of the POMDP which is used
to calculate the actual policy is in any case a simplification
of the process taking place in the specific filters, while the
transition model in the POMDP may be able to represent the
predictions taking place in the filters.

Discrete POMDP models, including all computationally
tractable POMDP policy calculation algorithms, for real
world scenarios are always approximations of the real dy-
namics. Thus, in real world scenarios, the policies are an
approximation of an ideal policy in both approaches. In
practice, in a multi-modal scenario, the approximate POMDP
models and policy generated from it will be quite similar,
while the belief reflects the true sensor uncertainties better
in the second case.

This paper presents the filterPOMDP approach and com-
pares it in real settings with classic POMDP and MDP
reasoning as well as a FSM controller on a multi-modal
service robot system.

IV. SYSTEM ARCHITECTURE

Fig. 1 shows the general architecture of the presented
approach. It is designed along the classical structure of
a three-layer architecture, with low-level control on the
lowest, measurement filtering and execution supervision on
the middle and decision making on the top level.

A. Control layer

Three different capability domains exist on the control
level: mobility, human-robot interaction and manipulation.
Low level modules control the corresponding hardware di-
rectly, closely managing low level commands while process-
ing sensor readings and delivering measurements, including
uncertainty, to the layer above. The available capabilities
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Fig. 2.

Schematic computation of a feature.

in the mobility domain are driving and self-localization.
Human-robot interaction is possible by speech output, speech
recognition, robot arm/hand gestures and human body track-
ing with symbolic activity recognition by a state-of-the-art
procedure [12], [13]. Manipulation capabilities include arm
movement, hand grasping as well as force-torque measure-
ments. All measurements delivered by low level modules
are probability distributions - either continuous, paramet-
ric (e.g. self localization) or discrete, non-parametric (e.g.
speech recognition). Actuator commands use a wide range
of parameter types - e. g. symbolic utterances or numeric
positions.

B. Filter

The filtering module handles processing of measurement
data from low level modules. It is basically a modification of
the Bayesian forward filter of the POMDP belief state. This
forward filter has been sourced out from the main POMDP
reasoning, split into a variable number of individual filters,
each of which uses an algorithm specialized on a certain
observation element and performs a discretization of the
continuous data of the logical sensor at the same time. For
some components, measurements already include Bayesian
updates on the lowest layer, as e.g. for self localization.

Fig. 2 shows the filtering process of an exemplary feature.
An individual feature filter takes the data of one or several
low level modules, which can also include past observa-
tions and applies its specific algorithm, parameterized by
the knowledge base. The result is a discrete probability
distribution over a set of symbolic categories having their
origin in the feature parameter set.

With a new observation, all features have to be updated
and after the updates, there exists a new feature state which
is a set of m discrete probability distributions p, defined over
n; sets of categories ¢; ; with i <m, j < n;.
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In the state model, each state in a POMDP scenario model
is defined by at least one category from each feature. This
mapping connects the abstract, symbolic state through the
numerical descriptions of the feature categories to properties
of the real world. Given both models, the space of all state
models loaded from the knowledge base and the feature state
created by feature extraction, the belief state can easily be
calculated by calculating the probability b of each state sy:

m
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This can also be seen as fusing all feature distributions
into a single belief state by the means of state descriptions.
The set b(s1)...b(sy) is the probability distribution of the new
belief state.

In the following some specific feature filters are presented.

1) Robot mobility: The low level self-localization module
delivers a trivariate gaussian describing position and un-
certainty of the robot. The region occupation feature filter
computes the cumulative distribution function (CDF) of the
robot’s position distribution for a set of certain, predefined
regions. As the orientation is neglected, the CDF over each
region is computed over the bivariate by a state-of-the art
numerical algorithm [14]. It currently works with rectangles,
and larger, complex regions describing a single category can
be constructed out of many, smaller cells:
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This approach is much more flexible than the usual primitive,
one square per state, grid-based one. The resulting discrete
probability distribution p(cy), ..., p(c,) describes the proba-
bility of the robot being in the corresponding region. The
regions are defined in the knowledge base.

2) Dialog and human activity filter: POMDPs are also
very suitable for spoken dialog [10]. However, because no
decision takes place at the filter level, the dialog filter uses
a hidden Markov model (HMM), although enhanced with
properties found only in MDPs. The dialog HMM model is
constructed in the following way:

S is a set of abstract states in which the dialog can
be, which reflects human intention. U is a set of possible
utterances of the robot, and M is a set of possible human
utterances, the robot can detect. T(s’,u,s) represents the
transition model for each robot utterance, while O(m, s) is
the observation model mapping human utterances to states.

Because not any dialog step might consist of alternating
human and robot utterances, idle utterances fill gaps. In
perception, idle utterances are recognized as longer periods
of no utterance by either human or robot. The transition
model takes into account actions (utterances) of the robot
which is not a characteristic in standard HMMs, but in
MDPs. A dialog filter probability distribution is forward
filtered by the following equation:

F1(s') = a}_ Pm)O(m,s") (Y _T(s',u,8) f(s)) (5)

With P(m) being the probability for a specific utterance
concerning the last detection as delivered by the speech
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Fig. 3. Connection between reasoner and sequencer. The reasoner contin-
ually generates a decision, which is handed to the task sequencer whenever
the previous task is finished.

recognition module which delivers discrete probability dis-
tributions over recognized utterances. The models for certain
dialog scenarios are defined in the knowledge base.

The human activity filter works in the same way. The hu-
man activity recognition module delivers discrete probability
distributions over a set of perceived, symbolic activities M.
U is a set of specific actions of the robot in this case. The
states S are a set of true activities.

C. Sequencer

The sequencer receives and processes the commands to ex-
ecute symbolic programs which represent the actions selected
by the reasoner. These symbolic programs represent basic
actions for the reasoner. On the sequencing level, they are
expanded into complex robot tasks, which are then triggered
from the sequencer and executed within the control layer.
The task is described as a hierarchical network of basic
actions which is processed with a depth-first left-to-right
search strategy. A detailed description of the task description
called Flexible Programs can be found in [15].

The task set in the task database for the presented experi-
ments comprises the tasks DriveToPos, GraspObject, Speak-
Text, MonitorHumanActivity and PlaceObject. By decoupling
the atomic sensor and actuator controlling from abstract
reasoning, it is possible to reduce the decision state space
to computationally reasonable dimensionality. The reasoning
system decides on the global task to be carried out, while
the sequencer performs the actual subtasks that reach the
associated goal.

The connection between reasoner and sequencer is de-
picted in fig. 3. The reasoning system continually generates
a decision for a most promising action, based on the current
belief state. This decision is passed to the sequencer for
execution each time the previous task in the sequencer is
finished. Execution of an action may take a non-fixed time
span (e.g. DriveToPos), while a sensory filter update is quite
fast (self-localization, speech recognition etc.). The feature
filter runs at a frequency of 20Hz and updates the belief
many times during execution of an action. However, as
each action is performed completely and the new action is
chosen based on the latest belief, the discrete-step (PO)MDP
principle is not violated, while the latest belief reflects the
world more precisely.

D. Reasoner

The deliberative layer utilizes established algorithms for
discrete decision making: it takes a concrete belief state

or a state distribution as input, uses it to query a policy
and retrieves a favorable action to perform. The action
command is sent to the sequencer to be processed there. The
policy for a scenario model can either be computed offline
or incrementally calculated online by the PBVI anytime
algorithm.

For the results and comparison presented in this paper,
MDP and POMDP decision making algorithms are used on
the reasoning level.

V. MODEL DESIGN

A fundamental and mostly unsolved question is how to
obtain the observation and transition models for real-world
scenarios. For model generation, we propose a rule-based
approach.

The stochastic behavior of a single feature can often be
described by parametric rules (e.g. taking the distance into
account when modeling the uncertainty in driving around).
Based on the definition of the states, actions and features of
the scenario, we define parametric rules as Rule = {M, S, ',
F,Op, P} with M corresponding matrix, S corresponding
origin state, S’ target state, F' sub state space, Op operation
name and P the parameters. Wildcards can be used in
M, S, S’ which applies a rule to a row, column, matrix or
the whole transition model.

The application of such rules shall be addressed by
using an example of those actually used in our system. The
mobile platform with topological navigation on a graph is
more likely not to reach the goal when driving long sections
and over many nodes. It is more likely to get stuck in the
origin or close to the goal than in between, however most
of the time it reaches a goal successfully. Applied to a
POMDP transition model 7" this means that for all actions
including a Goto command ag4, transition probabilities
between states which represent different locations have
to include the aforementioned characteristics. It can be
achieved by two functions, one realizes getting stuck in

stuck), #
P ) 7 and one
0, otherwise

calculates the likelihood to end up at the goal p(g) and less
likely, depending on distance d, somewhere close before,
with scaling ¢():

max (0,p(g) — ¢(d)), if s} on shortest

path to goal from s;

if 5, =
the origin: b(i,j,loc) = nei=e

b(i,j,loc) =
0, otherwise
A few dozen rules can describe a quite complex scenario
with non-uniform transition models containing several thou-
sand probability entries.

VI. EXPERIMENTS AND RESULTS
A. Scenario design

The system was evaluated on an anthropomorphic robot
acting in a typical service scenario where the mission is to
fetch a cup for persons expressing their interest and bring
it to a location they choose. The robot can move to several
locations or wait for humans interested in interaction. In case



a person interacts, the robot can find out if it shall fetch a
cup or not. When finally holding the cup, it can interact with
the person to find out where to bring the cup. The scenario
design is open, not strictly sequential, thus the interaction can
stop at any moment, as the human might leave. Therefore,
the human behavior is modeled as stochastic - the intention
of a person is not deterministically predictable. The duration
of a scenario is not fixed, as the robot may wait for humans
and serve cups indefinitely.

The scenario is realized as a POMDP model with specific
states and actions, as well as dynamics of uncertainty.
Complex, deterministic tasks are modeled as single actions
(Flexible Programs) within the POMDP decision process,
taking advantage of the sequencer. There are 11 actions,
consisting of idleing, driving to different locations, human
activity information gathering, utterances of the robot as well
as pick and place actions. The state space is composed of the
sub-spaces of self-localization, dialog and human activity. By
combining redundancy in the state-space, the state-space can
be reduced to 28 distinct and relevant states.

The observation model is derived from rules describing the
uncertainty of self-localization, the speech recognizer and the
human activity recognizer. The transition probabilities model
the behavior of each action, e.g. glitches in moving and also
stochastic human behavior in the scenario. Finally, the reward
model contains the rules to define the mission motives of
the robot. Actions (except idle) cost a small penalty while
fetching the cup when desired as well as delivering it to the
correct location give a reward.

The POMDP policy is generated from this model and used
for decision making during the experiments.

B. Setup for experiments with a physical robot

To evaluate the presented filterPOMDP approach on a
physical robot, it had to be controlled exclusively and
completely autonomously by the presented system, running
on onboard-computers, with the sole input being the sensor
domains as presented in sec. IV. For evaluation, the system
was also provided with the ability to use the MDP as
well as the classical POMDP approach for decision making
while using the same models and in the POMDP case
the same policy. In these cases, the observation probability
distributions of the sensor complexes were discarded and
instead the observation with the highest probability assumed
as distinct measurement. Additionally in one experiment, the
robot was controlled by an enhanced version of Flexible
Programs exclusively, which include dynamic branching and
recursive tree expansion, being able to model a complete
finite state machine (FSM).

Because of the open-ended nature of a scenario, time is
the only relevant measure of duration of an experiment when
comparing gathered rewards. In case a method takes a lot
of reassurance actions to determine a human intention, it
will be able to fetch and bring a cup less often. Thus, all
four experiments had exactly the same duration and starting
condition. Concerning the behavior of interacting persons
during experiments, it was assured that the behavior of

Fig. 4. The robot during experiments, after fetching a cup and awaiting a
destination order. The camera-head contains a stereo-color-camera and a 3D-
time-of-flight camera for human activity recognition. Speech recognition is
performed using an onboard microphone. The platform uses a laser-scanner
for self-localization. A live-visualisation of the belief state, a 3D cut of the
28D value function and the current Flexible Program as sent from the robot
over wireless can be seen projected at the background.

the human corresponded on average to the probabilities in
the transition model. Finally, true requests and actual robot
behavior were recorded by a human supervisor.

C. Results

A representative set of four runs with our robot Albert
2 (see fig. 4), each lasting exactly 30 minutes, but con-
trolled by different methods: FSM, MDP, classical POMDP
and filterPOMDP shall be further analyzed to compare the
techniques. The following tables show these correlations be-
tween the action requested (Req.) and the actually performed
behavior (Perf.) for the most important parts of the scenario.
Desired behavior is shown on the main diagonal, the first
column shows reassurance actions of all kinds, while other

entries indicate bad behavior.
1) Finite state machine experiment:

Req Perf. Reassure | Fetch cup | Putto A | Putto B
Other 0 1 0 1
Fetch cup 3 4 0 0
Put to A 5 0 2 0
Put to B 7 0 0 2

While the state machine does not make many big mistakes, it
is conservative and annoys the human with many reassurance
questions. Thus, it is not able to perform many delivery
actions in the given time, as it has no inherent risk assessment
as POMDP methods.

2) MDP experiment:

Perf.

Req Reassure | Fetch cup | Putto A | Putto B
Other 0 0 0 3
Fetch cup 0 8 0 0
Put to A 5 0 2 1
Put to B 2 0 0 2

First, it should be noted that the reassurance actions in
this case are performed, when only one of the two human



indicators (say and point) of the intention where to bring the
cup, are present. The MDP has problems with contradicting
point and say indicators because as soon as one of the two
indicators is measured with highest probability - even if it
is only slightly ahead of the other - the MDP will decide
for the wrong location. In that case a POMDP still performs

information gain actions.
3) Classical POMDP experiment:

Req Perf. Reassure | Fetch cup | Putto A | Putto B
Other 0 4 0 1
Fetch cup 1 5 0 0
Put to A 6 0 4 1
Put to B 3 0 0 3

In the POMDP, reassurance actions also include actions
indicating typical POMDP information gain. Concerning
the location to bring the cup to, the POMDP performs
information gain until it is quite sure that both indicators
(say and point) refer to the same location, thus it performs
better than the MDP. However, it tends to bring the cup even
when not requested, because of the reliance on a uniform
distribution concerning prediction of human intention and

the static observation model when calculating the belief.
4) filterPOMDP experiment:

Req Perf. Reassure | Fetch cup | Putto A | Putto B
Other 0 0 0 1
Fetch cup 1 9 0 0
Put to A 3 0 5 1
Put to B 1 0 0 2

The filterPOMDP shows to match both the strong points of
the MDP and the classical POMDP. When being requested
to fetch the cup, the decision is made, based on the actual
speech recognition uncertainty. In the case of deciding where
to bring the cup, it also performs information gain, but not as
often as the classical POMDP, because there is more precise
knowledge about current uncertainty.
5) Comparison:

Method

Type FSM | MDP | POMDP | fPOMDP
Correct fetch/put 8 12 12 16
Incorrect fetch/put 2 4 6 2
Reassurance 15 7 10 5

The table shows the performance summary. The FSM is
very conservative, as it has no dynamic risk assessment, the
MDP has more problems with initial human interaction than
the POMDP, thus it wastes time and the total number of
fetch/put actions is slightly smaller.

D. Discussion

As shown by the results, exploiting available information
about specific uncertainty of current perceptions can be
beneficial for decision making by a multi-modal service
robot. Static POMDP observation models only contain in-
formation about average uncertainty, not about the current
one. Using available dedicated methods for determining
this uncertainty is especially promising with multi-modal
robots where complex perceptive components like speech

recognition or human activity recognition exist. However,
the POMDP model is still valid for policy generation as it
has to use average observation uncertainties. This also holds
for the transition model.

VII. CONCLUSION AND OUTLOOK

As shown, using the reasoning capabilities of POMDPs in
real robot scenarios is promising as it leads to very robust
reasoning in partially observable and stochastic domains.
This work has presented a feature filter concept which incor-
porates sensor uncertainty directly, instead of using only an
indirect, static observation model for obtaining belief states.
The main remaining challenge is obtaining the transition
and observation models for arbitrary scenarios. As there has
been only very little research to learn models of real world
domains for discrete, model based POMDPs so far [16], this
should be pursued intensively now.

REFERENCES

[1] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan,
“A layered architecture for office delivery robots,” in Proceedings of
the First International Conference on Autonomous Agents (Agents’97),
W. L. Johnson and B. Hayes-Roth, Eds. New York: ACM Press, 5-8,
1997, pp. 245-252.

[2] E. Gat, “On three-layer architectures,” Artificial Intelligence and
Mobile Robots. MIT/AAAI Press, 1997.

[3] E. J. Sondik, “The optimal control of partially observable markov
decision processes,” Ph.D. dissertation, Stanford university, 1971.

[4] A.R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains,” in In Proceedings of the
Twelfth National Conference on Artificial Intelligence, 1994.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, ‘“Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol.
101, no. 1-2, pp. 99-134, 1998.

[6] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in International Joint Conference
on Artificial Intelligence (IJCAI), August 2003, pp. 1025 — 1032.

[71 M. Spaan and N. Vlassis, “Perseus: Randomized point-based value
iteration for pomdps,” Journal of Artificial Intelligence Research,
vol. 24, pp. 195-220, 2005.

[8] T. Smith and R. Simmons, “Focused real-time dynamic programming
for mdps: Squeezing more out of a heuristic,” in Nat. Conf. on Artificial
Intelligence (AAAI), 2006.

[9] A. Foka and P. Trahanias, “Real-time hierarchical pomdps for au-
tonomous robot navigation,” Robot. Auton. Syst., vol. 55, no. 7, pp.
561-571, 2007.

[10] J. D. Williams, P. Poupart, and S. Young, “Using factored partially
observable markov decision processes with continuous observations
for dialogue management,” Cambridge University Engineering Depart-
ment Technical Report: CUED/F-INFENG/TR.520, Tech. Rep., March
2005.

[11] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Grasping pomdps,”
in ICRA, 2007, pp. 4685-4692.

[12] S. Knoop, S. Vacek, and R. Dillmann, “Sensor fusion for 3d human
body tracking with an articulated 3d body model,” in Proceedings of
the 2006 IEEE International Conference on Robotics and Automation
(ICRA), Orlando, Florida, 2006.

[13] M. Losch, S. Schmidt-Rohr, S. Knoop, S. Vacek, and R. Dillmann,
“Feature set selection and optimal classifier for human activity
recognition,” in Robot and Human Interactive Communication 2007
(ROMAN 2007), 2007.

[14] A. Genz, “Numerical computation of rectangular bivariate and trivari-
ate normal and t probabilities,” Statistics and Computing, vol. 14, pp.
151-160, 2004.

[15] S. Knoop, S. R. Schmidt-Rohr, and R. Dillmann, “A Flexible Task
Knowledge Representation for Service Robots,” in The 9th Interna-
tional Conference on Intelligent Autonomous Systems (IAS-9), 2006.

[16] R. Jaulmes, J. Pineau, and D. Precup, “Active learning in partially
observable markov decision processes,” in ECML, 2005.



