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Abstract—This paper presents a hybrid particle-element ap-
proach, HyPE, suitable for recursive Bayesian searching-and-
tracking (SAT). The hybrid concept, to synthesize two recursive
Bayesian estimation (RBE) methods to represent and maintain
the belief about all states in a dynamic system, is distinct from the
concept behind “mixed approaches”, such as Rao-Blackwellized
particle filtering, which use different RBE methods for different
states. HyPE eliminates the need for computationally expensive
numerical integration in the prediction stage and allows space
reconfiguration, via remeshing, at minimal computational cost.
Numerical examples show the efficacy of the hybrid approach,
and demonstrate its superior performance in SAT scenarios when
compared with both the particle filter and the element-based
method.

I. I NTRODUCTION

Recursive Bayesian estimation (RBE) of the state of a dy-
namic system, under uncertain observation and state transition
processes, forms the basis for a variety of autonomous estima-
tion and control problems, including mobile robot localization,
environment mapping and exploration, target tracking and
optimal searching [1]. RBE techniques recursively update and
predict a probability density function (PDF) over the system’s
state with respect to time. Recursive Bayesian searching-
and-tracking (SAT) refers to those RBE problems involving
incorporation of sensor data, both when the target is observed
(tracking) and when it is not (searching) [2]. SAT may be
applied to any searching or tracking tasks (in the general sense
of the terms), or multi-objective tasks such as those requiring
a lost target to be found and then subsequently tracked.

Many of the fundamental concepts of search theory were
first posed by B. O. Koopman and colleagues in the Anti-
submarine Warfare Operations Research Group (ASWORG)
during World War II [3]. Since the search problem is primarily
concerned with the area to be searched, initial studies simpli-
fied the search problem to an area coverage problem. The in-
troduction of the probability of detection along with advances
in computational hardware led to more optimal allocation of
search effort [4], [5], [6]. Later years saw the implementation
of RBE for manned search and rescue and anti-submarine
search operations [7]. More recently, techniques have been
formulated for decentralized search using multiple vehicles [8]

and optimal autonomous search using the grid-based method
for RBE [9].

On the other hand, target tracking, which initially consisted
of simple feedback motion tracking, has evolved with the de-
velopment of a variety of RBE techniques such as the Kalman
filter (KF) [10], the extended Kalman filter (EKF) [11],
sequential Monte Carlo (SMC) methods [12] and sequential
quasi-Monte Carlo (SQMC) methods [13], [14], and their
variants. These techniques for tracking seek computational
efficiency in representing the sharp and often near-Gaussian
PDF of an observable target, with little thought about repre-
senting the boundary of the target search space, which is an
important consideration for search missions. While the KF and
EKF represent the target PDF with a mean and a covariance
matrix, the SMC and SQMC methods represent it with a
set of particles (the particle filter, PF), which move freely
with a resampling technique such as sequential importance
sampling [15], [16].

Recently, the unified SAT approach was introduced using
the grid-based method (GBM), and subsequently the element-
based method (EBM) [17]. However, the maintenance of a
large search space, necessary to include all the possible states
of the moving targets, yields an excessively large amount
of computational effort. Thus SAT approaches involving re-
configurable search spaces have been developed, using the
EBM [18] or PF [19]. The element-based space reconfiguration
guarantees the inclusion of the full extent of the target’s
motion, but introduces significant computational overheads in
doing so. Alternatively, PFs inherently reconfigure themselves,
but the representation of the full target space, desirable for
searching, is limited because only a finite set of discrete
samples are considered.

This paper presents HyPE, a hybrid particle-element ap-
proach, suitable for recursive Bayesian SAT. The hybrid con-
cept, tosynthesize two RBE methods to represent and maintain
the belief about all states in a dynamic system, is distinct
from the concept behind “mixed approaches”, such as Rao-
Blackwellized particle filtering [20], which use differentRBE
methods for different states. HyPE performs astatic conver-
sion between an element-based representation, used during



update and evaluation of the PDF, and a particle-based rep-
resentation, used for Bayesian prediction, and thus eliminates
the need for computationally expensive numerical integration.
The static conversion process also allows reconfiguration,via
remeshing of the target space, at minimal computational cost
(the cost associated with remeshing only).

This paper is organized as follows. RBE and SAT are
outlined in Sect. II along with a description of PFs and the
EBM. Section III details the concept behind HyPE, and its
implementation. Numerical examples are shown in Sect. IV
and conclusions and future work are contained in the final
section.

II. RECURSIVE BAYESIAN SEARCHING-AND-TRACKING

This section outlines the general form of RBE, and describes
the formulation for the SAT class of problems. Various meth-
ods for representing PDFs, the belief metric generated with
RBE, are also reviewed.

A. Recursive Bayesian Estimation

RBE seeks to estimate the state,x, of a dynamical system
by considering sensor data in light of all previously collected
data. The belief aboutxk, the state of the system at a
discrete time stepk, is represented byp(xk|z1:k,u1:k−1), the
posterior probability density over the state spaceX . Here,
z1:k = {z1, . . . , zk} and u1:k−1 = {u1, . . . ,uk−1} are,
respectively, the sequence of all observations, includingthe
current observation, and the sequence of all previous control
actions.

The posterior is recursivelyupdated using Bayes’ Theorem,

p(xk|z1:k,u1:k−1) =
p(zk|xk)p(xk|z1:k−1,u1:k−1)

∫

p(zk|xk)p(xk|z1:k−1,u1:k−1)dx
,

(1)
where p(zk|xk) is the likelihood of the observation, de-
scribed by a sensor model, andp(xk|z1:k−1,u1:k−1) is the
predicted probability density. Given a posterior, the prediction
may be performed in light of a state transition probability,
p(xk+1|xk,uk), using the Chapman-Kolmogorov equation

p(xk+1|z1:k,u1:k) =
∫

p(xk+1|xk,uk)p(xk|z1:k,u1:k−1)dxk. (2)

Note that whenk = 1, the prior belief,p(x0), is used in place
of the prediction in (1).

This general form of RBE is a basis for probabilistic
state estimation, however the implementation of RBE requires
specific observation likelihood and state transition probability,
p(zk|xk) and p(xk|z1:k−1,u1:k−1), but also a method for
representing the updated and predicted PDFs,p(xk|z1:k,u1:k)
andp(xk+1|z1:k−1,u1:k−1).

B. Searching-and-Tracking

1) SAT observation likelihood: In SAT problems the obser-
vation likelihood for a sensor platforms making observations
about a targett, is denotedp(sz̃t

k|x̃
t
k, x̃s

k), as it depends on
not only the state of the target,x̃t

k ∈ X t, but also the state of

the sensor platform,̃xs
k ∈ X t. Note that the tilde is used to

signify an instance (̃· ) of a variable (· ).

Furthermore, the SAT observation likelihood also depends
on sdt

k ∈ {0, 1}, wheresdt
k = 1 signifies a detection event and

sdt
k = 0 signifies a non-detection event. The SAT observation

likelihood is therefore given by

p(sz̃t
k|x̃

t
k, x̃s

k) =

{

ld(x̃
t
k|x̃

s
k,s z̃t

k), sdt
k = 1

lnd(x̃
t
k|x̃

s
k), sdt

k = 0
(3)

whereld(x
t
k|x̃

s
k,s z̃k) is the detection, or tracking, likelihood

function, andlnd(x
t
k|x̃

s
k) is the non-detection, or searching,

likelihood function. Note that for a sensor with a field of
view, or ‘detection space’,sX d

k ⊂ X t, there is a possibility
of missing a detection or falsely detecting a target, that is
Pr(sdt

k = 0|∃x̃t
k ∈ sX d

k , x̃s
k) > 0 and Pr(sdt

k = 1|∄x̃t
k ∈

sX d
k , x̃s

k) > 0. Therefore the detection and non-detection
likelihoods are typically defined to represent the uncertainty
in both the positional observation error,e 6= 0, and the truth of
the detection. Example detection and non-detection likelihoods
and shown in figure 1. One consequence of considering
such observation likelihoods is that the resulting update and
prediction PDFs are typically non-linear, non-Gaussian and
potentially multimodal. For this reason RBE methods which
can accommodate arbitrary PDFs are generally preferred for
SAT.

2) SAT state transition probability: Often the search vehicle
cannot know the control actions of the target vehicle, however
many SAT can be considered to be “one-sided” problems. One-
sided problems describe SAT tasks where the target cannot
deliberately act to aid nor avoid detection. An example of a
one-sided SAT problem would be a search and rescue mission
involving a powerless vessel adrift at sea. In such cases the
state transition probability depends only on the target state,
and may be written asp(xt

k|x
t
k−1).

The SAT update and prediction equations are therefore given

Fig. 1. SAT observation likelihoods.



by

p(xt
k|

sz̃t
1:k, x̃s

1:k)

=
p(sz̃t

k|x̃
t
k, x̃s

k)p(xt
k|

sz̃t
1:k−1, x̃

s
1:k−1)

∫

p(sz̃t
k|x̃

t
k, x̃s

k)p(xt
k|

sz̃t
1:k−1

, x̃s
1:k−1

)dxt
k

(4)

and

p(xt
k+1|

sz̃t
1:k, x̃s

1:k) =
∫

p(xt
k+1|x

t
k)p(xt

k|
sz̃t

1:k, x̃s
1:k)dxt

k, (5)

respectively.
Furthermore, autonomous SAT may be achieved by utilizing

RBE for SAT in the selection of search vehicle control actions.
For an objective functionJ and a finite planning horizon of
nk time steps, a sequence of control actions can be found by
solving

argmax J(uk:k+nk−1|

x̃s
k, {p(xt

k+κ|
sz̃t

1:k, x̃s
1:k), ∀κ ∈ {1, . . . , nk}}) (6)

wherep(xt
k+κ|

sz̃t
1:k, x̃s

1:k) can be recursively predicted using
the Chapman-Kolmogorov equation,

p(xt
k+κ|

sz̃t
1:k, x̃s

1:k)

=

∫

p(xt
k+κ|x

t
k+κ−1)p(xt

k+κ−1|
sz̃t

1:k, x̃s
1:k)dxt

k+κ−1. (7)

C. Particle and Element Based PDF Representations

1) Particle Filtering: Particle filtering approximates the
posterior distribution with a finite set of particles,Pt

k =
{tp1

k, tp2
k, . . . , tpM

k }, where each particle,tpm
k , m ∈

{1, . . .M}, represents a hypothetical state of the targett.
The update is performed by sampling theM particles in
the filter with a probability proportional to an importance
weighting, corresponding to the latest observation. As a result,
the particles are distributed according to the current posterior,
tpm

k ∼ p(xt
k|

sz̃t
1:k, x̃s

1:k). The prediction stage is carried out
by taking M samples from the state transition probability
and applying a single instance of the target’s motion to each
particle, thus avoiding any costly numerical integration in the
prediction stage.

2) Element Based Method: The element-based method
continuously approximates the target space and PDF using
irregularly shaped elements described by shape functions.
Generally the target space is first defined by a number of nodes
which are then connected so as to create elements. For two-
dimensional search spaces the simplest such elements are lin-
ear triangular elements generated via Delaunay triangulation.
However elements need not be limited by shape or linearity;
triangular or quadrilateral elements and higher-order elements
with more nodes are all possible, as shown in Figs. 2 and 3.

Let an approximate target spaceX e, consisting of ne

elements, be described by

X e ≡
{

X e
1 , . . . ,X e

ne

}

≈ X t, (8)

(a) 3 nodes (b) 6 nodes

Fig. 2. Triangular Element Types

(a) 4 nodes (b) 8 nodes (c) 9 nodes

Fig. 3. Quadrilateral Element Types

where
⋃ne

i=1
X e

i = X e and
⋂ne

i=1
X e

i = ∅. As such, any point
in the target space,̃xt ∈ X t may be located in one of the
elements. For a point in the theith element,̃xt ∈ X e

i , the point
may be expressed in terms of thenv nodes of the element.
For nodes,̌xe

ij = [x̌e
ij , y̌

e
ij ]

T , ∀j ∈ {1, . . . , nv}, x̃t may be
expressed as

xt = ϕx(ξ, η) ≡
nv
∑

j=1

x̌e
ijNj(ξ, η)

yt = ϕy(ξ, η) ≡
nv
∑

j=1

y̌e
ijNj(ξ, η) (9)

whereNj(ξ, η) is the shape function, which must satisfy

0 < Nj(ξ, η) < 1
nv
∑

j=1

Nj(ξ, η) = 1 (10)

and ξ ∈ Ξ = [ξmin, ξmax) and η ∈ H = [ηmin, ηmax) are
known as the natural coordinates.

The shape function and the ranges of the natural coordinates
vary according to the type of element. In general the shape
function takes the form

Nj(ξ, η) =

nv
∑

k=1

ajkbk(ξ, η) (11)

whereajk is a coefficient determined by the constraints (10)
andbk(ξ, η) is the basis function of monomials in the natural
coordinates.bk(ξ, η) may be determined using the binomial
theorem:



b1(ξ, η) = 1

b2(ξ, η) = ξ, b3(ξ, η) = η

b4(ξ, η) = ξη

b5(ξ, η) = ξ2, b6(ξ, η) = η2

b7(ξ, η) = ξ2η, b8(ξ, η) = ξη2

b9(ξ, η) = ξ2η2

. . . (12)

For triangular elements the ranges of the natural coordinates
are [ξmin, ξmax] = [0, 1] and [ηmin, ηmax] = [0, 1− ξ], and for
quadrilateral elements the ranges of the natural coordinates are
[ξmin, ξmax] = [−1, 1] and [ηmin, ηmax] = [−1, 1].

In order to perform RBE using the EBM, one must be
able to both evaluate a function at a point in the state
space, and integrate a function over the search space. Using
the EBM the evaluation of a function at a point and the
integration of a function may be carried out by considering the
natural coordinates. For a point in theith element,̃xt ∈ X e

i ,
the natural coordinates of the point in the element may be
determined using

[

ξ̃, η̃
]T

= ϕ−1(x̃t) (13)

whereϕ−1 is the inverse of the set of functionsϕ = {ϕx, ϕy}.
The function value at̃xt is then given by

f(x̃t) ≈ fe(x̃t) =

nv
∑

j=1

f(x̌e
ij)Nj(ξ̃, η̃). (14)

Integration is performed with respect to the natural coordi-
nates according to the transformation

dxt = detJ(ξ, η)dξdη (15)

whereJ is the Jacobian matrix

J(ξ, η) =

[

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

. (16)

Integration over the target space is given by

I =

∫

X t

f(xt)dxt ≈
ne
∑

i=1

Ie
i (17)

whereIe
i , the integral over an element, is

Ie
i =

∫

X e

i

fe(xt)dxt =

∫

Ξ,H

fe(ϕ(ξ, η)) detJdξdη. (18)

Note that this integral is only analytically derivable for trian-
gular elements with three nodes. In general, Gauss integration
may be used to numerically calculate the integral over each
element.

III. H YPE: HYBRID PARTICLE-ELEMENT APPROACH

HyPE seeks to imbue the RBE process with the strengths
of each of its constituent methods. The key idea being the
synthesis of the two methods, in order to utilize the most
appropriate representation at different stages of the estima-
tion process. Through processes ofstatic conversion between
particle and element representations, HyPE is able to switch to
either representation, without the need to maintain the other.

Before HyPE is described in detail, certain terms must
be defined. The set ofnn nodes forming the element-based
representation of the search space is given by,

N = {n1, ...,nnn
} = {x̌e

ij |∀i ∈ {1, .., ne}, ∀j ∈ 1, ..., nv}}.
(19)

The sets of posterior and prediction values, evaluated at each
node in the mesh, represent element-based beliefs, and are
given by

Bk = {p(xt
k = ni|

sz̃t
1:k, x̃s

1:k)|∀i ∈ {1, . . . , nn}} (20)

and

Bk = {p(xt
k = ni|

sz̃t
1:k−1, x̃

s
1:k−1)|∀i ∈ {1, . . . , nn}}, (21)

respectively. Also, the set of observation likelihood values,
evaluated at the nodes, is given by,

Zk = {p(sz̃t
k = ni|x̃

t
k, x̃s

k)|∀i ∈ {1, . . . , nn}} (22)

The HyPE approach is described by Algorithm 1. The
algorithm takes as input the prediction for the current state, the
current observation likelihood, the state transition probability,
the set of nodes and the number of particles. The update is
performed using the element-based representation, whereas
prediction is carried out using the particle-based representa-
tion. The algorithm returns the element-based representation
of the prediction for the next time step.

Therefore line 1 of Algorithm 1 calls the element-based
update function,update, to determine the posterior values

Algorithm 1 : HyPE: Hybrid Particle-Element Approach

Input : Bk, Zk, p(xt
k+1|x

t
k), N , M

Output : Bk+1

Bk = update(Bk, Zk);1

W = calculate_weights(Bk, N);2

Pk = generate_particles(W , N , M);3

Pk+1 = particle_prediction(Pk, p(xt
k+1

|xt
k));4

[Optional] N = remesh(Pk+1);5

Bk+1 = extract_prediction(Pk+1,N);6

Function update(Bk, Zk)

Output : Bk

forall nodes, i do1

B(i)k = αB(i)kZ(i)k;2

end3



at each of the nodes. Theα which appears in the update stage
is a normalization constant, used to ensure the PDF integrates
to unity. Note that neglecting to normalize the PDF usingα
will not alter the performance of HyPE.

Line 2 of Algorithm 1 calls the function
calculate_weights in order to determine a sampling
weight for each of the nodes in the mesh. The set of sampling
weights is denotedW . The sampling weight for each node
is its posterior density, given by the product of its posterior
density value and its relative volume. Voronoi cells are used
to calculate the relative volume associated with each node.
Line 1 of calculate_weights computesX v the Voronoi
tessellation ofN , whereX v

i is the Voronoi cell corresponding
to nodei.

The Voronoi tessellation of a set of nodes randomly dis-
tributed in the plane is shown in Fig. 4. Each Voronoi cell
X v

i defines the space within which all points are closer toni

thannj 6=i. Some Voronoi cells are unbounded, such as those
shown unshaded in Fig. 4, and therefore have infinite volume.
For that reason the relative volume, calculated in line 2, takes
the intersection of the Voronoi cell and the search spaceX t.
Note that if the nodes are equally spaced, such as in a regular
mesh, then the relative volumes of all nodes are equal. In such
cases, calculation of the relative volume, and also therefore the
Voronoi tessellation, is unnecessary and can be neglected.

The M particles to be used for the prediction stage are
then generated by callinggenerate_particles in line 3
of Algorithm 1. The particles are generated by sampling
with replacement from thenn nodes. The probability of a
nodei being selected is proportional to its weighting,W(i),
resulting in the particle set being distributed according to
Bk. The standard particle filter prediction is then performed
by callingparticle_prediction, resulting inPk+1. All

Function calculate_weights(Bk, N)

Output : W
X v(= {X v

1 , . . . ,X v
nn

}) = voronoi(N);1

forall nodes, i do2

v =volume(X v
i

⋂

X t)/volume(X t);3

W(i) = vB(i)k;4

end5

Fig. 4. 2D Voronoi Tessellation.

Function generate_particles(W , N , M)

Output : Pk

Pk = ∅;1

for m = 1 to M do2

draw i with probability∝ W(i);3

add tpm
k = ni to Pk;4

end5

Function particle_prediction(Pk, p(xt
k+1

|xt
k))

Output : Pk+1

Pk+1 = ∅;1

for m = 1 to M do2

sampletpm
k+1

∼ p(xt
k+1

|xt
k = tpm

k );3

add tpm
k+1 to Pk+1;4

end5

that remains to complete the HyPE approach is to extract
the density of the predicted particle set node locations by
calling extract_prediction. Existing density extraction
techniques which extract particle densities at certain points
may be called in line 6. An example of such a technique
is kernel density estimation, where each particle represents
the center of a “kernel”, with a known density function. The
mixture (sum) of all kernel densities at a point in the search
space, gives the overall density at that point.

An alternative density extraction technique is described
by the functionextract_prediction (Voronoi Extrac-
tion). This technique may be considered as an element-based
generalization of the grid-based technique in which a grid
is superimposed on the search space and the number of
particles which fall in each grid cell gives the density of
the cell. In the Voronoi extraction approach the density is
given by the number of particles which fall within a node’s
Voronoi cell, weighted by the cell’s relative volume, (and
normalized using a newα value if necessary). Again, if a
regular mesh is employed the relative volume need not be
calculated. Line 4 inextract_prediction makes use of
the indicator function,

δi(
tpm

k+1 − ni) =

{

1, tpm
k+1

∈ X v
i

0, tpm
k+1

6∈ X v
i .

(23)

Function extract_prediction(Pk+1, N)
(Voronoi Extraction)

Output : Bk+1

X v(= {X v
1 , . . . ,X v

nn
}) = voronoi(N);1

forall nodes, i do2

v =volume(X v
i

⋂

X t)/volume(X t);3

w =
∑M

m=1
δi(

tpm
k+1 − ni);4

B(i)k+1 = αw/v;5

end6



Both kernel density estimation and the Voronoi extraction
technique can be used to extract the density at arbitrary points
in the search space. For that reason the option ofremeshing
the search space has been included in line 5 of the HyPE
algorithm, before the density extraction function is called.
Doing so eliminates the need for extraneous interpolation at
the new node locations, and enables the search space boundary
and interior nodes to be reconfigured, in order to better capture
the nature of the target state, at only the computational cost
required to generate the new mesh.

Also, HyPE can perform the multistep prediction often
required for the SAT control problem, simply by repetition of
the particle prediction step, with density extraction as needed.

IV. N UMERICAL EXAMPLES

Ten two-dimensional SAT scenarios were considered in
order investigate the efficacy of HyPE and for comparison
with the EBM and PF. In each scenario a single sensor
platform searched for a single target. The sensor was assumed
to have perfect detection capabilities (no false negativesor
false positives), with a range of 30 meters, but observations
of the target location were assumed to be noisy. The prior
density used in all the scenarios was a mixture of two Gaussian
distributions with means at[250, 250]T and [450, 450]T and
covariances

Σ1 =

[

150 0
0 100

]

, Σ2 =

[

90 0
0 90

]

.

The element and particle based representation of the prior
density are shown in Figs. 5(a)&(b), along with the initial
position of the sensor platform and the targets from all ten
scenarios. Figure 5(c) shows the velocity map which the
targets follow. The state transition probability considered in
the RBE used a Gaussian distributions of the velocity at each
point, with means given by the velocity map. The control limits
of the sensor platform and targets are given in Table I. A
time step of∆k = 1 second was used, and210 instances
of the sensor control actions (speed and steering angle) were
used to evaluate a single step lookahead control strategy.
The maximum allowable iteration time to complete the the
observation, update, prediction and control was set to∆k.

TABLE I
VEHICLE MODEL CONTROL L IMITS

Sensor Platform Target
Maximum Speed [knots] 100 50
Minimum Speed [knots] 10 0

Maximum Steer Angle [deg/s] 15 N/A

Two implementations of HyPE were evaluated, HyPE(a)
and HyPE(b), both using regular meshes and the optional
remeshing step, to resize the mesh based on the underlying
particle distribution. The only difference in implementation
between HyPE(a) and HyPE(b) was that HyPE(a) used fewer
nodes in the mesh than HyPE(b). Despite running faster than
HyPE(b), only one iteration of HyPE(b) (including control
optimization) was performed per time step. The search space

(a) Element-Based Prior
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(b) Particle Filter Prior
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(c) Velocity Map

Fig. 5. Search and Tracking Scenarios

reconfiguration technique for the EBM was prohibitively slow
for meeting the iteration time requirement, thus a static mesh
was used for the EBM. A fixed sample size was used in the
PF. The number of sample points used for each representation



are shown in Fig. 6. It can be seen that the median number
of sample points used for HyPE(a) was 30% of the number
used for the EBM and 14% of the number used for the PF. For
HyPE(b) the percentages were 76% compared with the EBM
and 35% compared with the PF.

Figure 7 shows the evolution of position errors over time for
a single scenario. It can be seen that all approaches enabled
the sensor to find the target (indicated by the distance between
sensor and target falling below the 30m range line). Further-
more, despite using fewer sample points, the fast remeshing
ability of HyPE allowed higher resolution of sample points
during tracking, resulting in smaller estimation errors. This
is demonstrated in terms of the error between the mode of
the posterior density and true target state (note that the mean
of the particle positions was used calculate this error for the
PF due to the ease its computation and because, for tracking,
the discrepancy between the two was negligible). Furthermore,
whilst the EBM and PF approaches had trouble maintaining
sensor contact with the found target, both implementations
of HyPE remained well within sensor contact subsequent to
finding the target.

Figure 8 shows the performance of each approach during
tracking (subsequent to the first detection of the target). The
boxplot represents the distribution of the average sensor and
posterior position errors taken over the tracking periods of
each scenario. It can be seen that the median sensor position
error for HyPE(a) was 33% of the median error for the EBM
and 25% of the error for the PF. For HyPE(b) the percentages
were 29% compared with the EBM and 22% compared with
the PF. The median posterior position error for HyPE(a) was
39% of the median error for the EBM and 26% of the error
for the PF. For HyPE(b) the percentages were 26% compared
with the EBM and 16% compared with the PF.

In terms of searching performance, the time taken to make
the first detection of the target was recorded for each scenario
and each approach. The detection times for each scenario were
then ranked to determine in which order the approaches found
the target. Figure 9(a) shows that on three occasions HyPE(a)
was quicker than both the EBM and PF in detecting the target.
In the other seven scenarios HyPE(a) was second behind either
the EBM (6 times) or the PF (once). Figure 9(b) shows that in
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Fig. 6. Number of nodes used in each SAT implementation.
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Fig. 7. Example of the evolution of position errors over time.
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Fig. 8. Average position errors during tracking.

half of the scenarios HyPE(b) was quicker than both the EBM
and PF in detecting the target. In in the other five scenarios
HyPE(b) was second behind either the EBM (4 times) or the
PF (once).



1st 2nd 3rd
0

2

4

6

8
HyPE(a) EBM PF

(a) HyPE(a).

1st 2nd 3rd
0

2

4

6

8
HyPE(b) EBM PF

(b) HyPE(b).

Fig. 9. Search Performance: Number of scenarios ranked 1,2 or 3.

V. CONCLUSION

This paper presented HyPE, a hybrid particle-element ap-
proach, suitable for recursive Bayesian SAT. The hybrid
concept, tosynthesize two RBE methods to represent and
maintain the belief about all states in a dynamic system, is
distinct from the concept behind “mixed approaches”, such
as Rao-Blackwellized particle filtering, which use different
RBE methods for different states. HyPE performs astatic con-
version between an element-based representation, used during
update and evaluation of the PDF, and a particle-based rep-
resentation, used for Bayesian prediction, and thus eliminates
the need for computationally expensive numerical integration.
The static conversion process also allows reconfiguration,via
remeshing of the target space, at minimal computational cost
(the cost associated with remeshing only). The efficacy of the
proposed approach was shown through a number of simulated
SAT scenarios. Furthermore, it was shown that the ability
to quickly remesh the search space allowed HyPE to reduce
estimation and position errors by over 39%, whist also usingas
little as 14% of the number of sample points used by existing
methods for RBE.

It should be noted that the two static conversion processes
necessarily introduce a degree of approximation error intothe
estimation which would not otherwise occur. Furthermore, the
resolution of the mesh with respect to the range of motion in
the target states must be considered, as within the GBM and
EBM. If the mesh is too coarse, the predicted particles may
never escape the influence of the nodes from which they are
sampled.

As this paper represents a first proof of concept for the
hybrid particle-element approach, investigation of some of the
practical consequences of using the approach remains. For
example, an investigation into how the time and memory
requirements and transmissibility scale with the scope and
dimension of the problem, has been left for future work. Also,
the reduction in the number of sampling points required using
HyPE may hold significance for the area of data communi-
cation in multi-robot cooperation and coordination missions.
This will be a focus of future work.
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