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Abstract—This paper presents a hybrid particle-element ap-
proach, HyPE, suitable for recursive Bayesian searching+ad-
tracking (SAT). The hybrid concept, to synthesize two recusive
Bayesian estimation (RBE) methods to represent and maintai
the belief about all states in a dynamic system, is distinctém the
concept behind “mixed approaches”, such as Rao-Blackwefled
particle filtering, which use different RBE methods for diff erent
states. HyPE eliminates the need for computationally expesive
numerical integration in the prediction stage and allows spce
reconfiguration, via remeshing, at minimal computational ©st.
Numerical examples show the efficacy of the hybrid approach,
and demonstrate its superior performance in SAT scenarios fven
compared with both the particle filter and the element-based

and optimal autonomous search using the grid-based method
for RBE [9].

On the other hand, target tracking, which initially coresikt
of simple feedback motion tracking, has evolved with the de-
velopment of a variety of RBE techniques such as the Kalman
filter (KF) [10], the extended Kalman filter (EKF) [11],
sequential Monte Carlo (SMC) methods [12] and sequential
quasi-Monte Carlo (SQMC) methods [13], [14], and their
variants. These techniques for tracking seek computdtiona
efficiency in representing the sharp and often near-Gaussia
PDF of an observable target, with little thought about repre

method. senting the boundary of the target search space, which is an

important consideration for search missions. While the K& a
EKF represent the target PDF with a mean and a covariance
Recursive Bayesian estimation (RBE) of the state of a dyratrix, the SMC and SQMC methods represent it with a

namic system, under uncertain observation and state ticansi set of particles (the particle filter, PF), which move freely
processes, forms the basis for a variety of autonomous &stirwith a resampling technique such as sequential importance
tion and control problems, including mobile robot localiea, sampling [15], [16].
environment mapping and exploration, target tracking andRecently, the unified SAT approach was introduced using
optimal searching [1]. RBE techniques recursively updatk athe grid-based method (GBM), and subsequently the element-
predict a probability density function (PDF) over the syste based method (EBM) [17]. However, the maintenance of a
state with respect to time. Recursive Bayesian searchingrge search space, necessary to include all the possitiés st
and-tracking (SAT) refers to those RBE problems involvingf the moving targets, yields an excessively large amount
incorporation of sensor data, both when the target is oksenof computational effort. Thus SAT approaches involving re-
(tracking) and when it is not (searching) [2]. SAT may beonfigurable search spaces have been developed, using the
applied to any searching or tracking tasks (in the genersese EBM [18] or PF [19]. The element-based space reconfiguration
of the terms), or multi-objective tasks such as those r@wyir guarantees the inclusion of the full extent of the target's
a lost target to be found and then subsequently tracked. motion, but introduces significant computational overtseiad
Many of the fundamental concepts of search theory wedeing so. Alternatively, PFs inherently reconfigure thelres
first posed by B. O. Koopman and colleagues in the Antbut the representation of the full target space, desiratnle f
submarine Warfare Operations Research Group (ASWORSHarching, is limited because only a finite set of discrete
during World War Il [3]. Since the search problem is primgril samples are considered.
concerned with the area to be searched, initial studieslsimp This paper presents HyPE, a hybrid particle-element ap-
fied the search problem to an area coverage problem. Thepneach, suitable for recursive Bayesian SAT. The hybrid-con
troduction of the probability of detection along with adeas cept, tosynthesize two RBE methods to represent and maintain
in computational hardware led to more optimal allocation dhe belief about all states in a dynamic system, is distinct
search effort [4], [5], [6]. Later years saw the implemeiotat from the concept behind “mixed approaches”, such as Rao-
of RBE for manned search and rescue and anti-submarBlackwellized particle filtering [20], which use differeRBE
search operations [7]. More recently, techniques have beamethods for different states. HyPE performstatic conver-
formulated for decentralized search using multiple vedsi¢8] sion between an element-based representation, used during

I. INTRODUCTION



update and evaluation of the PDF, and a particle-based répe sensor platformg; € X*. Note that the tilde is used to
resentation, used for Bayesian prediction, and thus edites1 signify an instance {) of a variable (- ).

the need for computationally expensive numerical intégnat  £yrthermore, the SAT observation likelihood also depends
The static conversion process also allows reconfiguratian, sd € {0,1}, where*d! = 1 signifies a detection event and

remeshing of the target space, at minimal computational ceg: _ () signifies a non-detection event. The SAT observation
(the cost associated with remeshing only). likelihood is therefore given by
This paper is organized as follows. RBE and SAT are

outlined in Sect. Il along with a description of PFs and the

EBM. Section Il details the concept behind HyPE, and its s la(XL|%8 5 2L), *dl =1
implementation. Numerical examples are shown in Sect. IV p(°zy|x, X}) = ot g “dt -0 )
and conclusions and future work are contained in the final na (R [%5), ko

section.

Il. RECURSIVE BAYESIAN SEARCHING-AND-TRACKING  Wherely(x} |X;,° ;) is the detection, or tracking, likelihood

This section outlines the general form of RBE, and describ@@c_t'on’ andln,?(x};|xz) is the non-detection, or seaichlng,
the formulation for the SAT class of problems. Various metfi'—l_(el'hooq functl_on. Note ,Sth?it for ? sensor with a f_|e_lc_i of
ods for representing PDFs, the belief metric generated wiff\W: or detection space A C A ther_e 's a possibility .
RBE. are also reviewed. of missing a detection or falsely detecting a target, that is

’ Pr(*d, = 0|3%}, € X, %) > 0 and Pr(°d}, = 1|#x}, €
A. Recursive Bayesian Estimation sX¢,x;) > 0. Therefore the detection and non-detection

RBE seeks to estimate the state,of a dynamical system likelihoods are typically defined to represent the uncetyai
by Considering sensor data in ||ght of all previousiy caket in both the pOSitional observation err@r# 0, and the truth of
data. The belief abouk;, the state of the system at athe detection. Example detection and non-detection hields
discrete time step, is represented by(xy|z1.x, u1.5—1), the and shown in figure 1. One consequence of considering
posterior probabi]ity density over the state spake Here, such observation likelihoods is that the resulting Updm a
z1x = {zl,...,z;} and uy,_1 = {ul,...,u,_,} are, prediction PDFs are typically non-linear, non-Gaussiad an
respective|y’ the sequence of all observations, indudh‘&g potentially multimodal. For this reason RBE methods which
current observation, and the sequence of all previous cont¢an accommodate arbitrary PDFs are generally preferred for

actions. SAT.
The posterior is recursivelypdated using Bayes’ Theorem, 2y SaT gtate transition probability: Often the search vehicle
p(Zk |xK)P(Xk|Z1:6—1, U1:5—1) cannot know the control actions of the target vehicle, hawev

p(Xk|Z1:k, Urp—1) = T (2 %) p(Xn 2151, Urep_1)dx many SAT can be considered to be “one-sided” problems. One-

R (1) sided problems describe SAT tasks where the target cannot
where p(zg|xi) is the likelihood of the observation, de-deliberately act to aid nor avoid detection. An example of a
scribed by a sensor model, ap@x|zi.x—1,u1..—1) is the one-sided SAT problem would be a search and rescue mission
predicted probability density. Given a posterior, the predictioinvolving a powerless vessel adrift at sea. In such cases the
may be performed in light of a state transition probabilitystate transition probability depends only on the targetesta
p(xk11 Xk, u), using the Chapman-Kolmogorov equation and may be written ag(x}, |x}._;).

The SAT update and prediction equations are therefore given
P(Xkt1]z1k, wrg) =

[ plci e wplal e @

. Si Xtﬂ)N(S

Note that wherk = 1, the prior belief,p(xo), is used in place )
of the prediction in (1).

This general form of RBE is a basis for probabilistic
state estimation, however the implementation of RBE reguir ~ F------+
specific observation likelihood and state transition pluoliig,
p(zr|xx) and p(xk|z1.k—1,u1.5-1), but also a method for
representing the updated and predicted PDEs |21 .1, ui.x)
andp(Xp41]21:6—1, Ur:k—1).

B. Searching-and-Tracking

1) SAT observation likelihood: In SAT problems the obser- 0
vation likelihood for a sensor platformmaking observations
about a target, is denotedp(*z} |x},x;), as it depends on
not only the state of the target, € X*, but also the state of Fig. 1. SAT observation likelihoods.
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Fig. 2. Triangular Element Types
t t tisst o t
/P(Xk+1|xk)l?(xk|szl:kaXf:k)dxkv (5)

respectively.

Furthermore, autonomous SAT may be achieved by utilizing
RBE for SAT in the selection of search vehicle control acdion
For an objective function/ and a finite planning horizon of

ny time steps, a sequence of control actions can be found by

solving
(a) 4 nodes (b) 8 nodes (c) 9 nodes

argmax J(We:ktn, —1]

iz,{p(xz+ﬁ|si’ik,if,€),Vne {Lvnk}}) (6)

wherep(x] . .|°Z}.,,%].,) can be recursively predicted using

Fig. 3. Quadrilateral Element Types

the Chapman-Kolmogorov equation, where(Ji2, &F = X¢ and(;“, X7 = (. As such, any point
in the target spacex’ € X* may be located in one of the

DX |21, X1k) elements. For a point in the thith elementx’ € X¢, the point
may be expressed in terms of the nodes of the element.

= /p(X§c+n|X§c+nf1)p(Xi+n71|Siﬁ:kaif:k)dxiﬂfr (") For nodesx; = [a¢;, 35,17, Vj € {1,...,n,}, X' may be

expressed as
C. Particle and Element Based PDF Representations

1) Particle Filtering: Particle filtering approximates the ¢ o,
posterior distribution with a finite set of particle®; = ¥ = galon) = inij(i,n)
{'pi,'p3,...,'pM}, where each particle!p?, m € Jn_l
{1,... M}, represents a hypothetical state of the target t_ — 7€ N 9
The update is performed by sampling tiié particles in Y (&) _;y” (&) ®)

the filter with a probability proportional to an importance
weighting, corresponding to the latest observation. Assalte where N, (£, 1) is the shape function, which must satisfy
the particles are distributed according to the currentgrast '
tpr ~ p(xk|®z},, %5 ). The prediction stage is carried out
by taking M samples from the state transition probability "
and applying a single instance of the target’s motion to each i:N_(g n) =1 (10)
particle, thus avoiding any costly numerical integratiorthe o I
prediction stage.

2) Element Based Method: The element-based methodhyng¢ ¢ = = (€10, max) aNd 7 € H = [fmin, Tmax) are
continuously approximates the target space and PDF usiithwn as the natural coordinates.

irregularly shaped elements described by shape functions-.l-he shape function and the ranges of the natural coordinates

Generally the target space is first defined byanumberofnoq;%ﬁy according to the type of element. In general the shape
which are then connected so as to create elements. For t‘?‘ﬁl’ction takes the form

dimensional search spaces the simplest such elementsare |i

ear triangular elements generated via Delaunay triarigulat Ny

However elements need not be limited by shape or linearity; N;(&m) =Y ajrbr(&,n) (11)
triangular or quadrilateral elements and higher-ordamelets k=1

with more nodes are all possible, as shown in Figs. 2 and 3. ) o ) )
Let an approximate target spack®, consisting of n wherea;;, is a coefficient determined by the constraints (10)
1 () . . . . .
elements, be described by andbi (&, n) is the basis function of monomials in the natural

coordinatesb, (¢, n) may be determined using the binomial
Xe={a7,.. x5 p = &Y (8) theorem:

0< N;(&m) <1



Ill. HYPE: HYBRID PARTICLE-ELEMENT APPROACH
HyPE seeks to imbue the RBE process with the strengths

bi(&m) =1 of each of its constituent methods. The key idea being the

b2(€,m) =&, b3(§,m) =1 synthesis of the two methods, in order to utilize the most
ba(€,m) =¢&n appropriate representation at different stages of themasti
bs(€,1) = €2, b6(€, 1) = n? tion.process. Through processegstzftic conve.rsion betwee_n
5 9 particle and element representations, HyPE is able to kwdtc
br(&,m) = &, bs(€,m) = &n either representation, without the need to maintain theroth

bo(&,m) = &0 Before HyPE is described in detail, certain terms must

(12) be defined. The set af,, nodes forming the element-based

representation of the search space is given by,
For triangular elements the ranges of the natural coorelinat o ,
are [Emin, Emax] = [0, 1] @nd [min, Nmax] = [0, 1 — &], and for N={ny,..,n, }= {xij|V2 e{l,..,n.}, Vi€l ...,n,}}.

quadrilateral elements the ranges of the natural coorelrae _ - (19)
[Emins Emax] = (1, 1] @nd [min, 7] = [—1, 1] The sets of posterior and prediction values, evaluateddt ea

In order to perform RBE using the EBM, one must bQode in the mesh, represent element-based beliefs, and are

able to both evaluate a function at a point in the stafdVen by

space, and integrate a function over the search space. Using 5, — {p(x} = n;|°z},;,%5.,)|Vi € {1,...,n,}}  (20)
the EBM the evaluation of a function at a point and the
integration of a function may be carried out by considerimg t and
natural coordinates. For a point in thh elementx’ € X7, B

t s5t S .
. A = =n; . . 1,... 21
the natural coordinates of the point in the element may be * {pOa =il 21, X)W € {1 ma}), (21)

determined using respectively. Also, the set of observation likelihood \esu
. evaluated at the nodes, is given by,
o= _ o —list
£ o) B s pea =nlgsvie (L)) @)

wherep~1 is the inverse of the set of functiogs= {¢., p,}. The HyPE approach is described by Algorithm 1. The
The function value ak! is then given by algorithm takes as input the prediction for the currenesttite
current observation likelihood, the state transition ptaility,

the set of nodes and the number of particles. The update is
performed using the element-based representation, wherea
prediction is carried out using the particle-based repriase
Integration is performed with respect to the natural coordion. The algorithm returns the element-based representat

FE = PR = Y SEONED. ()

nates according to the transformation of the prediction for the next time step.
Therefore line 1 of Algorithm 1 calls the element-based
dx' = det J(&,m)dédn (15) update functionupdat e, to determine the posterior values

whered is the Jacobian matrix
oz By ] Algorithm 1: HyPE: Hybrid Particle-Element Approach

JEn) = [ 55 (16)  Input : By, Z, p(xh,,|xL), N, M
9 0O Output: By 41

Bi. = updat e( By, Z) ;

W = cal cul at e_wei ght s( By, N);

P = generate_particles(W, N, M);

Pry1 = particle_prediction(Py, p(xt,;[x%));

[Optionall N = r emesh( Piy1) ;

Bri1 = extract _prediction(Pyi1.N);

Integration over the target space is given by

I= [ fxYax' =) If (17)
Xt i=1

o g s~ W N P

whereI?, the integral over an element, is

Ii= [, s = L, et et adcin. (18) Eio e 2

Output: By,
Note that this integral is only analytically derivable folah- ; forall nodes, i do
gular elements with three nodes. In general, Gauss integrat,  B(;), = aB(i),Z(i)k;
may be used to numerically calculate the integral over eaghgng
element.




at each of the nodes. Thewhich appears in the update stageFunction gener at e_particl es(W, N, M)
is a normalization constant, used to ensure the PDF inegrat Qutput: P,
to unity. Note that neglecting to normalize the PDF using 1 p, = (;
will not alter the performance of HyPE. > for m=1to M do
Line 2 of Algorithm 1 calls the function ;3 draw i with probability oc W(i);
cal cul at e_wei ght s in order to determine a sampling4 add'p}’ = n; to Py;
weight for each of the nodes in the mesh. The set of sampliggend
weights is denotedV. The sampling weight for each node
is its posterior density, given by the product of its posteri
density value and its relative volume. Voronoi cells areduse Function par ti cl e_predi ction( Py, p(x}_,[x}))
to calculate the relative volume associated with each nOdeOutput: D
Line 1 ofcal cul at e_wei ght s computest™ the Voronoi Prrr = 0
:esse(ljlat'lon ofV, whereX? is the Voronoi cell corresponding 5> for m =1 to M do
0 Nnodexz. tm t t _ tyym)-
The Voronoi tessellation of a set of nodes randomly di§- er;til)znplk?& pka?kH'xk P
tributed in the plane is shown in Fig. 4. Each Voronoi cell onq *
XY defines the space within which all points are closento
thann;.;. Some Voronoi cells are unbounded, such as those
shown unshaded in Fig. 4, and therefore have infinite volume.
For that reason the relative volume, calculated in line Rega that remains to complete the HyPE approach is to extract
the intersection of the Voronoi cell and the search spiite the density of the predicted particle set node locations by
Note that if the nodes are equally spaced, such as in a reg@@#ingext ract _predi cti on. Existing density extraction
mesh, then the relative volumes of all nodes are equal. I sdgchniques which extract particle densities at certaimsoi
cases, calculation of the relative volume, and also theed¢fe May be called in line 6. An example of such a technique
\Voronoi tessellation, is unnecessary and can be neglected.is kernel density estimation, where each particle represents
The M particles to be used for the prediction stage afBe center of a “kernel”, with a known density function. The
then generated by callingener at e_parti cl es in line 3 Mixture (sum) of all kernel densities at a point in the search
of Algorithm 1. The particles are generated by samplingP@ce, gives the overall density at that point.
with replacement from thew, nodes. The probability of a AN alterna_\tive density extragtion_ technique i_s described
nodei being selected is proportional to its weighting)(;), Py the functionextract _predi ction (Voronoi Extrac-
resulting in the particle set being distributed according fion). This technique may be considered as an element-based
By. The standard particle filter prediction is then performe@eneralization of the grid-based technique in which a grid

by callingpar ti cl e_predi cti on, resulting inP;,. All 1S superimposed on the search space and the number of
particles which fall in each grid cell gives the density of

the cell. In the Voronoi extraction approach the density is

k+1

Function cal cul at e_wei ght s( By, N) given py the number of particles which fa_II within a node’s
Output: W Vorono! cell, Welghted by the cgll’s relative volume, .(and

1 AY(={XP, ..., X" }) = voronoi (N); normalized using a new value if ngcessary). Again, if a

» forall nodes, i do"" regular mesh is e_mployed the rela_uve_volume need not be

3 v =vol ume( X¥ N x*) /vol ume( X?; calc_ula_ted. Line 4_|rext ract _predi cti on makes use of

4 W(i) = ’UB(Z')]C;Z the indicator function,

5 end

1, ‘pp, ey
0, ‘p, &AL,

i("Piyy — ) = { (23)

Function extract _predi cti on( Pgy1, N)
(Voronoi Extraction)

Output: By 41
1 XV(={&},..., &Y }) = voronoi (N);
2 forall nodes, i do
3 v=volume( X’ N X" /vol ume( x?);
o w=Y 0 5P, —m);
5 B(i)g+1 = aw/v;
6 end

Fig. 4. 2D Voronoi Tessellation.




Both kernel density estimation and the Voronoi extraction
technique can be used to extract the density at arbitrantpoi
in the search space. For that reason the optiorewkshing
the search space has been included in line 5 of the HyPE
algorithm, before the density extraction function is adlle
Doing so eliminates the need for extraneous interpolation a
the new node locations, and enables the search space bpundar
and interior nodes to be reconfigured, in order to bettenrapt
the nature of the target state, at only the computational cos
required to generate the new mesh.

Also, HyPE can perform the multistep prediction often
required for the SAT control problem, simply by repetitioh o
the particle prediction step, with density extraction asdesl.

1000

IV. NUMERICAL EXAMPLES

Ten two-dimensional SAT scenarios were considered in
order investigate the efficacy of HyPE and for comparison
with the EBM and PF. In each scenario a single sensor 1000

(a) Element-Based Prior

platform searched for a single target. The sensor was assume
to have perfect detection capabilities (no false negatimes 8007
false positives), with a range of 30 meters, but observation
of the target location were assumed to be noisy. The prior 600,
density used in all the scenarios was a mixture of two Ganssia 400"
distributions with means a250,250]7 and [450,450]7 and
covariances 200¢
150 O 90 0
21 = 722 = . O
0 100 0 90
The _element and p_artic_le based representatiqn of th_e_ prior 200 0 500 1000
density are shown in Figs. 5(a)&(b), along with the initial
position of the sensor platform and the targets from all ten o _
. . . : (b) Particle Filter Prior
scenarios. Figure 5(c) shows the velocity map which the
targets follow. The state transition probability conseteiin
the RBE used a Gaussian distributions of the velocity at each
point, with means given by the velocity map. The .control tani 1000 :\\\\\‘{{E—‘_{\\\\t{{i{itt&tiii:_
of the sensor platform and targets are given in Table I. A § Aot a W\ nant W N s
time step of Ak = 1 second was used, arzl0 instances ;{{-—;,’,;(’;,-7_1-}}:—-;,’,’,’,’,—':-}‘-}},’,’,’,
. . Voo AL L e S P aan P/
of the sensor control actions (speed and steering angle) wer S S S L et s s
used to evaluate a single step lookahead control strategy. 500 ;:\:1-_f__’;:__-::\:\:\\:—_’_{:_-:\\:\:\;-:_{:
The maximum allowable iteration time to complete the the i}:\\\‘:::::Q\\\\‘;_‘;":..":\\\\\\‘::::
observation, update, prediction and control was sehto ;\\\}}};;}:{\ N :{Qg}:;—,—;
__"':.‘:.",’/:/ 7 //:Z_‘::::z:/ //:/;":::::/,/ 7
TABLE | Y riniast ST S tminini 51 I S St 43 5
VEHICLE MODEL CONTROL LIMITS [~ e O e
RN a s S et g A\ ety
Sensor Platform _ Target : : ‘
Maximum Speed [knots] 100 50 0 500 1000 1500
Minimum Speed [knots] 10 0
Maximum Steer Angle [deg/s] 15 N/A (¢) Velocity Map
Two implementations of HyPE were evaluated, HyPE(a) Fig. 5. Search and Tracking Scenarios

and HyPE(b), both using regular meshes and the optional

remeshing step, to resize the mesh based on the underlying

particle distribution. The only difference in implemerdbat

between HyPE(a) and HyPE(b) was that HyPE(a) used fewerconfiguration technique for the EBM was prohibitivelyvglo
nodes in the mesh than HyPE(b). Despite running faster thfam meeting the iteration time requirement, thus a statisime
HyPE(b), only one iteration of HyPE(b) (including controwas used for the EBM. A fixed sample size was used in the
optimization) was performed per time step. The search spdle. The number of sample points used for each representation



are shown in Fig. 6. It can be seen that the median number

of sample points used for HyPE(a) was 30% of the number 300 _H oE

used for the EBM and 14% of the number used for the PF. For 250k H));PEEE;

HyPE(b) the percentages were 76% compared with the EBM \ — EBM

and 35% compared with the PF. 200¢ \ PF

Figure 7 shows the evolution of position errors over time for 150¢ Range

a single scenario. It can be seen that all approaches enabled

the sensor to find the target (indicated by the distance legtwe 1007

sensor and target falling below the 30m range line). Further 50} ]

more, despite using fewer sample points, the fast remeshing W /''”\_f_/\"/\’\/\/J\_/‘A

NELL T T )

ability of HyPE allowed higher resolution of sample points % 20 40 60

during tracking, resulting in smaller estimation error$isl

is demonstrated in terms of the error between the mode of (a) 2D position error between sensor and target

the posterior density and true target state (note that thenme (m) vs. time stepk.

of the particle positions was used calculate this error fer t

PF due to the ease its computation and because, for tracking,

the discrepancy between the two was negligible). Furtheemo 400y —

whilst the EBM and PF approaches had trouble maintaining - - -~ HyPE(b)

sensor contact with the found target, both implementations 3007 —EBM

of HyPE remained well within sensor contact subsequent to | PF

finding the target. 200! Range

Figure 8 shows the performance of each approach during

tracking (subsequent to the first detection of the targdie T 100}

boxplot represents the distribution of the average sensdr a .

posterior position errors taken over the tracking periofls o a\f\gg/‘:mM
; . o 0

each scenario. It can be seen that the median sensor position 0 20 40 60

error for HyPE(a) was 33% of the median error for the EBM

and 25% of the error for the PF. For HyPE(b) the percentages (b) 2D position error between the posterior

were 29% compared with the EBM and 22% compared with mode (mean for PF) and target (m) vs. time

the PF. The median posterior position error for HyPE(a) was stepk.

39% of the median error for the EBM and 26% of the error
for the PF. For HyPE(b) the percentages were 26% compared Fig. 7. Example of the evolution of position errors over time
with the EBM and 16% compared with the PF.

In terms of searching performance, the time taken to make
the first detection of the target was recorded for each sienar
and each approach. The detection times for each scenar@ weq, ! 80
then ranked to determine in which order the approaches four , 6 . ;
the target. Figure 9(a) shows that on three occasions HYPE( | D

was quicker than both the EBM and PF in detecting the targe w0 40
In the other seven scenarios HyPE(a) was second behind eitf = 2 = =
the EBM (6 times) or the PF (once). Figure 9(b) shows that ir | == — = _

0 0
HyPE(a) HyPE(b) EBM PF HyPE(a) HyPE(b) EBM PF

10 ‘ ‘ ‘ ‘ (a) Average 2D position error (b) Average 2D position error

between sensor and target dur-  between posterior mode (mean

ing tracking. for PF) and target during track-
ing.

10°% | Fig. 8. Average position errors during tracking.

‘ ‘ ‘ ‘ half of the scenarios HyPE(b) was quicker than both the EBM
HyPE(a) HyPE(b) EBM PF and PF in detecting the target. In in the other five scenarios

HyPE(b) was second behind either the EBM (4 times) or the
Fig. 6. Number of nodes used in each SAT implementation. PF (once).




IHyPE(a) (C]EBM [ IPF I HyPE(b) C_EBM[_PF
8 8 [1]
6 6 [2]
4 4 IH IH
2 2
[3]
. o I . ol "
1st 2nd 3rd 1st 2nd 3rd [4]
(a) HyPE(a). (b) HyPE(b). [5]

(6]
(7]

Fig. 9. Search Performance: Number of scenarios rankedr132 o

(8]
V. CONCLUSION

[9]
This paper presented HyPE, a hybrid particle-element 3Bo)
proach, suitable for recursive Bayesian SAT. The hybrid
concept, tosynthesize two RBE methods to represent and
maintain the belief about all states in a dynamic system, [}éll
distinct from the concept behind “mixed approaches”, such
as Rao-Blackwellized particle filtering, which use differe [12]
RBE methods for different states. HyPE perfornsaic con-

REFERENCES

S. Thrun, W. Burgard, and D. FoRrobabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-yt# “Re-
cursive Bayesian search-and-tracking using coordinat@dsUor lost
targets,” inProc. |EEE Int. Conf. Robot. Autom., Orlando, Florida, May
2006, pp. 2521-2526.

J. M. Dobbie, “A survey of search theoryQperations Research, vol. 16,
no. 3, pp. 525-537, May 1968.

L. D. Stone, “Search theory: a mathematical theory fodifig lost
objects,”Mathematics Magazine, vol. 50, no. 5, pp. 248-256, Nov. 1977.
——, Theory of Optimal Search. Arlington, VA: Operations Research
Society of America (ORSA) Books, 1989.

——, “What's happened in search theory since the 1975 haster
prize?” Operations Research, vol. 37, no. 3, pp. 501-506, May-Jun 1989.
H. R. Richardson, L. D. Stone, W. R. Monach, and J. H. Digeg
“Early maritime applications of particle filtering,” O. E.rDmmond,
Ed., vol. 5204, no. 1. SPIE, 2003, pp. 165-174.

F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “GCdioated
decentralized search for a lost target in a Bayesian worndEEE/RS]
Int. Conf. Intel. Robot. Sys., 2003, pp. 48-53.

——, “Process model, constraints and the coordinatedckestrategy,”

in |IEEE Int. Conf. Robot. Autom., vol. 5, 2004, pp. 5256-5261.

D. Salmond, “Target tracking: introduction and Kalmtaacking filters,”

in Proc. |IEE Target Tracking: Algorithms and Applications, vol. Work-

shop, Oct. 2001, pp. 1/1-1/16 vol.2, (Ref. No. 2001/174).

A. E. Nordsjo, “Target tracking based on Kalman-typéefé combined
with recursive estimation of model disturbances,” Rnoc. |IEEE Int.

Radar Conf., May 2005, pp. 115-120.

C. Hue, J.-P. Le Cadre, and P. Pérez, “Sequential MGatdo methods
for multiple target tracking and data fusion|EEE Transactions on

Sgnal Processing, vol. 50, no. 2, pp. 309-325, Feb. 2002.

version between an element-based representation, used dufirsy S. Julier, J. Uhimann, and H. F. Durrant-Whyte, “A new thoel for

update and evaluation of the PDF, and a particle-based rep-
resentation, used for Bayesian prediction, and thus edites

the need for computationally expensive numerical intégnat [14]
The static conversion process also allows reconfiguratiian,
remeshing of the target space, at minimal computational c
(the cost associated with remeshing only). The efficacy ef t
proposed approach was shown through a number of simulated
SAT scenarios. Furthermore, it was shown that the abili[3116
to quickly remesh the search space allowed HyPE to reduce
estimation and position errors by over 39%, whist also uaimg [17]
little as 14% of the number of sample points used by existing
methods for RBE.

It should be noted that the two static conversion procesétla%
necessarily introduce a degree of approximation errortimo
estimation which would not otherwise occur. Furthermdne, t [19]
resolution of the mesh with respect to the range of motion in
the target states must be considered, as within the GBM and
EBM. If the mesh is too coarse, the predicted particles m&f!
never escape the influence of the nodes from which they are
sampled.

As this paper represents a first proof of concept for the
hybrid particle-element approach, investigation of sorhte

practical consequences of using the approach remains. For

example, an investigation into how the time and memory
requirements and transmissibility scale with the scope and
dimension of the problem, has been left for future work. Also
the reduction in the number of sampling points requiredgisin
HyPE may hold significance for the area of data communi-
cation in multi-robot cooperation and coordination missio
This will be a focus of future work.

the nonlinear transformation of means and covariances terdiland
estimators,”|EEE Transactions on Automatic Control, vol. 45, no. 3,

pp. 477-482, Mar. 2000.

D. Guo and X. Wang, “Quasi-Monte Carlo filtering in naréar dynamic
systems,”|EEE Transactions on Signal Processing, vol. 54, no. 6, pp.
2087-2098, Jun. 2006.

D. Siegmund, “Importance sampling in the Monte Carloadst of

sequential tests,The Annals of Satistics, vol. 4, no. 4, pp. 673-684,
Jul. 1976.

| A. Doucet, S. Godsill, and C. Andrieu, “On sequential i® Carlo

sampling methods for Bayesian filtering@atistics and Computing,
vol. 10, no. 3, pp. 197-208, Jul. 2000.

T. Furukawa, H. F. Durrant-Whyte, and B. Lavis, “The ralnt-based
method - theory and its application to Bayesian search awtitrg,” in
Proc. IEEE/RS) Int. Conf. Intelligent Robots and Systems, San Diego,
California, Oct. 2007, pp. 2807-2812.

B. Lavis, T. Furukawa, and H. F. Durrant-Whyte, “Dynamspace
reconfiguration for Bayesian search and tracking with mpvargets,”
Int. Journ. Auton. Robot., Jan. 2008, in print.

B. Lavis and T. Furukawa, “Patrticle filters for estinmatiand control in
search and rescue using heterogeneous UAVsPrit. 4th Int. Conf.
Comp. Intel., Robotics and Auton Sys., 28-30 November 2007, pp. 217—
222.

C. Stachniss, G. Grisetti, and W. Burgard, “Informatigain-based
exploration using rao-blackwellized particle filters,”Robotics. Science
and Systems, 2005, pp. 65-72.



