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Abstract—In this paper we focus on the construction of
distributed formation control laws that permit the control of
individual mobile ground robots in a formation to a desired
distribution with minimal knowledge of the global state. As in
previous work, we consider an abstraction of the team that
is derived from a shape descriptor of the ensemble and the
position and orientation of the ensemble. We consider the control
of the abstract state with decentralized control laws which are
independent of the number of agents. However, we incorporate an
important departure from previous work by explicitly modeling
the shape of the robot, the geometric, non-interpenetration
constraints and nonholonomic, kinematic constraints. Further,
we propose a motion planning technique to plan motions for
ensembles of robots and a technique for the splitting and merging
of groups and subgroups. We demonstrate the effectiveness of the
algorithms on a team of differential drive robots in simulation
and on real hardware.

I. INTRODUCTION

Effective strategies for controlling large teams of robots in
complex environments are becoming increasingly relevant as
the development of pervasive embedded computing, sensing,
and wireless communication enables the application of multi-
agent systems to challenging tasks such as environmental
monitoring [1], surveillance and reconnaissance for security
and defense [2], and support for first responders in a search
and rescue operation [3]. In such scenarios, it is necessary to
apply control strategies that allow robots to adapt to differ-
ent environments and execute complex tasks, while avoiding
collisions. Further, robot controllers must be robust to permit
robot failures or changes in the team size.

Several methodologies exist to control large teams of robots.
One way of reducing the complexity of the controller is to
require the team to conform to a geometric rigid virtual struc-
ture [4]. Most of the recent works on stabilization and control
of virtual structures model formations using formation graphs
[5]. The controllers guaranteeing local asymptotic stability of a
given rigid formation can be derived using standard techniques
such as input-output linearization [6], input-to-state stability
[7], Lyapunov energy-type functions [8], and biologically-
inspired artificial potential functions [9]. Virtual structures
unnecessarily constrain the problem, making this approach
inappropriate for tasks in complex environments. Additionally,
graph formulations and leader-follower architectures require
identification and ordering of robots, which makes the overall
architecture sensitive to failures.

The problem of controlling the trajectory of the group and
shape of a large team of point robots was studied in [10],
[11]. The authors defined an abstraction of the team that
has a product structure of the Euclidean group and a shape
space, and is independent of the number of robots. The group
captures the pose of an ellipsoid spanning the team with
semi-axes given by the shape variables. The overall abstract
description is invariant to robot permutations. In addition, the
model and the formulation is invariant to left actions of the
group. This description allows one to define and control the
behavior of the abstract state or the abstract description of the
team at a high level, with automatic generation of individual
robot control laws based only on the feedback of this abstract
state. However, the control laws do not account for the physical
constraints of the robots and ignore inter-agent interactions.

Coverage control schemes proposed by [12], [13] and their
variants have a similar flavor. They enable large groups of
robots to use local information to distribute themselves so
that a suitable integral over this distribution is maximized.
However, this formulation does not lend itself to the control
of the position and orientation of the overall team.

In this paper we focus on a basic problem, the control of
the position and orientation of a formation of mobile robots
and the adaptation of the shape to the environment. Two
related problems, the planning of the shape and trajectory of
the ensemble and the development of effective coordination
strategies to split the team into subgroups and to merge two
subgroups, are also considered. We view these problems and
their solutions to be building blocks that can enable a robot
team to navigate an environment, adapting to the constraints
imposed by obstacles in the environment. In contrast to most
previous work we model the physical shape of the robot and
consider controllers that are guaranteed to avoid collisions
between the robots. Although the approach assumes global
observation of the abstract state, it is possible to develop an
estimator for individual robots to estimate this abstract state
[14]. However, in the context of our work, we emphasize the
control of the team of robots and decouple the challenges of
considering the estimation problem. Further, we believe that
some element of centralization is essential to command a large
team of robots.



Fig. 1. The frame B fixed to the group of robots moves with respect to the
inertial frame.

II. BACKGROUND

This paper builds on the previous work in [10], [11], [15]. In
these papers, an abstraction map is used to transform the high-
dimensional state space into a smaller, tractable state space
which captures only the position, orientation, and shape of the
formation. The main advantages of this abstract representation
are: (a) its dimension is independent of the number of robots
in the team; and (b) it lends itself to planning in a lower
dimensional space.

The state space of the IN-robot system is constructed by
creating N copies of @, the state space of the i*" robot:

Q=01 xQ2x...xQN.

The abstract space, M, whose dimension is smaller and
independent of the dimension of (), is defined by a smooth,
differentiable map

o:Q— M, ¢(q) ==, (D

where ¢ is a mapping of the higher-dimensional state ¢ € @ to
the lower-dimensional abstract state € M. In this paper, we
consider kinematic robots in the plane (see [11] for a treatment
of the three-dimensional case). Thus, ¢ reflects the collection
of the positions of the robots, ¢ = [q1, .-, qiy -+, qn]T
where ¢; € R2.

As in previous work, the shape is modeled by characterizing
the distribution of robots about the mean position. The centroid
of the group is given by:

1
= quz
i=1

We can define a local frame, 3, whose origin is at the centroid,
as shown in Fig. 1, by requiring the orientation to be such
that the coordinates of the robots in this frame, p; = [x;, v,

satisfy
N
Z z;y; = 0.
i=1

The distribution of robots in this local frame can be approxi-
mated by the inertia tensor (assuming uniform unit mass) or
by a matrix of second moments:

N
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We define two shape variables proportional to the diagonal
elements:
s2 = K1a2,
where x # 0. Choosing xk = ﬁ gives the shape variables
a geometric interpretation. They become the semi-major and
semi-minor axes for a concentration ellipse for a group of
robots whose coordinates in the plane are chosen to satisfy a
normal distribution. Alternatively, the shape variables may be
defined such that abstract shape is described by a bounding
rectangle as discussed in [10].

The abstract description of the team of robots, x, is given
by the position and orientation of the team, g, and the shape
s. In this paper, we take g to be the position and orientation

of B:

s1 = k11,
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where p = (1, p2) are the components of the centroid in the
inertial frame and the shape s = (s1, s2). The map ¢ defined
in this way can be easily shown to be a submersion [10].

The abstract space, M, is naturally decomposed into a shape
space, .S, and a Lie group, G, which in our case is SFE(2).
Since ¢ is a submersion, it follows that there is a unique &
for every ¢ but not the other way around.

Using the natural kinetic energy metric on @), it is possible
to derive the optimal velocity (tangent vector) at any point g €
@ for a desired & at the corresponding point = ¢(q) € M.
It was shown in [10] that this input u*, for the system can be
found by considering the time derivative of the transformation
described by (1),

doq = . 2

From (1), the definitions of (u, 6, s1, s2), and algebraic
simplification, the transformation d¢ becomes
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Here H,, Hs, and Hj are defined by
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where I, is the 2 x 2 identity matrix and
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In [10] (and the extension to three-dimensions in [11]) it
was shown that the minimum-energy solution satisfying (2)
is obtained using the Moore-Penrose Inverse:

u* = doT(dpde") . )

Further algebraic simplification of (4) using (3) results in the
control law for each individual agent, u; = ¢;,

. S1— S .
uf = i+ ———=Hs(q; — p)f
S1 + So (5)
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Although the description of shape variables is fairly simple,
it is generalizable to include higher moments (beyond second
order). However, the development of minimum-norm control
inputs, such as (5), are harder with more general shapes.

In the next section, we will pursue a slightly different
formulation by writing these equations in the moving frame

B.
III. PROBLEM FORMULATION

A. Dynamics in the moving frame

At any point = (g,s) € M in the abstract space, the
derivative can be written as:
3
] [ ol (6)
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@ = (g, ) is the time derivative of the abstract space in the

inertial frame while ¢ = (£, o) is the time derivative in the
moving frame B, and
_|l9 0
= { 0 I ]

is a non-singular 5 x 5 transformation matrix. If v; is the robot
velocity in the frame B so that u; = Ry;,
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The minimum-energy solution (5) can be written as:

v* = doT (dpde™) ¢, @)

with the simplification:
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The control law defined by (8) does not consider inter-agent
collisions or the spatial size of individual robots. Although [15]
proposed an extension that resolved collisions, the strategy
requires communication and negotiations during collisions,
which adds unnecessary complexity. In the next subsection
we address an approach in which collision avoidance is done
without explicit arbitration.

B. Collision avoidance

The separation distance between the reference points on
robots ¢ and j is:

bij = llpi — pslI-

To avoid collisions between robots, we define a safe separation
distance between two robots:

€=2p+ €, )

where p is the radius of each robot and ¢, is a specified safety
region.

We define the neighborhood N; as the set of all robots
sensed by or communicating with robot ¢ such that ¢ is able
to gain knowledge of its neighbors’ positions and velocities,
{p;, vj}, Vj € N;. To ensure that the robots do not collide,
we require that

(pi —pj) - (vi —v;) >0, (10

for all j € NV; such that §;; <e.

C. Asymptotic convergence to a desired abstract state

In the absence of collisions, the easiest way to guarantee
convergence to a time-invariant abstract state 2%°* is to require
the error & = (2%°* — x) to converge exponentially to zero:

& =K &,

or equivalently,

(=T"'K z, (11)

where K is any positive-definite matrix, and use (7, 8) to
obtain robot velocities that guarantee globally asymptotic
convergence to any abstract state.

We next discuss the first contribution of this paper, where
we propose a control law that guarantees convergence to an
abstract state satisfying certain conditions, while guaranteeing
safety (i.e., there are no inter-agent collisions).

IV. CONTROL WITH COLLISION AVOIDANCE
A. Monotonic convergence

We relax the requirement of exponential convergence to an
abstract state and replace it with a slightly different notion of
convergence in order to accommodate the safety constraints in
(10). Specifically instead of insisting on the minimum-energy
solution, (7), we find the solution closest to the minimum-
energy solution satisfying the safety constraints.

First, we require that the error in the abstract state decrease
monotonically:

ZTK& > 0. (12)
Substituting (2) into (12), this inequality reduces to
Iy Iy vy
1 TE . 1 P TE v
FTKT | 5 —s, P11 s—s, PN 1 2 >,
p1 (I + Es) pN Lo+ Eo)| |---| =
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(13)

A sufficient condition to satisfy this monotonic convergence
condition in (13) is that each robot select inputs that satisfy:

I
=i Er
pi' (I + Es)
pi (Io — Es)

If all robots choose controls satisfying (14), the error in
the abstract state will monotonically decrease. It is useful to
show that the minimum-energy control law (8) satisfies this
inequality.

2T KT v; > 0.

(14)



Proposition 1. The minimum-energy control law (8) with (
given by (11) satisfies the monotonic convergence condition
(14).

Proof: We define g; and m; such that

S1 — S2 1 1
i = |L, Eipi, — (In + E2)ps, — (I, — Es)p;
m {2 S1t 59 1D 451(2+ 2)p 432(2 z)p}
1 T T T !
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Substituting (8) and (11) into the left hand side of (14) gives
the quadratic form:

2T KT [g;m] T7' K &.

The 5 x 5 matrix [g; m;], although asymmetric, can be shown
to be positive semi-definite with the two non-zero eigenvalues
to be given by:

112 2 2
/\1=1+7Hp7’” and Ao =14 Doz 4 Py,
S1 + S9 S1 52
Since K is chosen to be positive definite the inequality (14)

is satisfied. n

B. A safe minimum-energy control law

In this subsection we derive a decentralized control law that
selects a control input as close as possible to the minimum-
energy controls while satisfying the monotonic convergence
inequality and the safety constraints.

Proposition 2. Equation (15) is a decentralized control law
that selects a unique control input that has the smallest energy
instantaneously while satisfying the monotonic convergence
inequality and the safety constraints.

v; = argmin ||[vf — 5%, s.t. (10,14)
0, eU

15)

Proof: The constraints in (10, 14) provide the safety guar-
antees and the monotonic convergence condition. The function
being minimized is the discrepancy from the minimum-energy
input. Since the inequality constraints are linear in v; and
the function being minimized is a positive-definite, quadratic
function of v;, (15) is a convex, quadratic program with a
unique solution. Further, since each robot only relies on its
own state and knowledge of the error in the abstract state, it
is a decentralized control law. ]

Convergence properties of (15)
To investigate the global convergence properties, we intro-
duce the Lyapunov function

V(g) =

Since the solution of (15) must satisfy the inequality (14), we
know that ZT K& > 0. If K is chosen to be diagonal with
positive entries, this condition also implies &T& > 0. In other
words,

z'z.

N | =

From [10], we know that ¢ is bounded given that x is
bounded and that V(¢) — oo as ||g|| — oo. Further, V(q)
is globally uniformly asymptotically stable. Therefore, from
LaSalle’s invariance principle, we know that the abstract state
will converge to the largest invariant set given by '@ = 0.
From (2), we know that © = 0 only when v = 0. Thus the
invariant set is characterized by the set of conditions that lead
to the system of inequalities given by (10, 14) to have v =0
as the only solution.

Proposition 3. For any desired change in the abstract state
&, subject to the condition x4 > 0, 5 > 0, (i. e., a condition
where the size of the shape of the formation is not decreasing),
there is a non-zero solution to the inequalities (10, 14).

Proof: Consider the solution given by the minimum-
energy control law (8). In component form,

o]

i 51782 .. Yi
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It is easy to see that this satisfies the collision constraints (10)
for every pair of robots (7, j):

Ur
(o= 23) (s = )] 1 V] =0
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As shown earlier in Proposition 1, (8) also satisfies the
monotonic convergence inequality. [ ]

Remark 1. It is clear from the above proof that there are no
guarantees when the shape in the abstract state is shrinking
in area. If x4 < 0 or 5 < 0, there may not be a non-zero
velocity vector v that satisfies the inequalities (10, 14). It is
only in this condition that the system will reach an equilibrium
away from the desired abstract state.

We next discuss the second contribution of this paper,
where we propose an energy metric for motion planning of
a deformable ellipse. Such a metric permits the computation
of optimal motion plans in complex environments.

V. MOTION PLANNING IN THE ABSTRACT SPACE

The abstract representation of the team of robots permits
the planning of motions that only require consideration of an
abstract state space of fixed dimension, rather than one that
scales with the number of robots. In this section we consider
the problem of generating reference trajectories in the abstract
space.

We start by defining a metric on M. On SE(2), we can
define a Riemannian metric as a bi-linear form derived by an
inner product on se(2). Given two twists {&1, &2} € se(2),
we can define [16]:

<&, >= W,

where W is a positive definite matrix. At an arbitrary element
g € SE(2), the inner product between two velocities or
tangent vectors ¢j, g2 is obtained by left translation:

<G, G2 >g=<9""91, 97" G2 >e,



where ¢~'g; are tangent vectors at the identity element e
(the 3 x 3 identity homogeneous transformation) and therefore
lie in se(2). A metric defined in this way is a left-invariant
Riemannian metric. Following [17], we can use the inertia
tensor of a rigid body and its kinetic energy to define W:

_ ’ITLIQ 0
Wo = { 0 In +122] ’

in the body-fixed coordinate system B5.

The above treatment was for a rigid shape. However, since
M = G x S is a product space, we treat the shape space
independently. We assume a constant metric W, = als to
model the “cost” in changing the shape. Thus the rate of
change of the abstract shape in B3 given by ¢ has the norm:

o= 57" <

which is well-defined everywhere on M.

Realistically one must also model the potential energy
associated with deforming the shape. The simplest approach
to creating an abstract model for potential energy storage is to
think of the expansion or contraction as a reversible, adiabatic
process in which no energy is lost. Compression results in an
increase of internal energy which can then be recovered during
expansion. It is well known that in such processes the pressure
p and the volume v are related by the ratio of specific heats
~ by the equation:

(16)

pv” = constant

and the work done to effect a change in volume from v; to
v, and therefore an increase in internal energy, is given by:

AV =k

where k is a constant. In the plane, we can use the area of the
ellipse (with a unit depth) instead of volume, which we know
to be m,/5152. We define a reference shape s°(IN) as a circular
shape for IV robots with zero potential energy. It is intuitively
clear that the radius of a zero-energy circular shape, ro(NV),
must increase with N. In this paper, we take ro(N) = £
The potential energy associated with any shape s € S is given
by:
1 1

(5152)%_1 (rg(N))'y—l ’

where ( is a constant. Thus, the total energy associated with
any motion at any configuration is given by:

Vis)=p

a7

B(g.5.0) = 57 [Vgg Vg] C+V(s). a8
Equation (18) gives us a principled approach to determine the
cost of changes in configuration using a kinetic and potential
energy with two constants « and 3. It also allows us to
formulate trajectory generation and motion planning problems
as problems of finding geodesics.

Mation Plan, Alaha = 1.00, Bt - 1.00, Reference Radius = 1.00 Motian Plan, Alpha = 1.00, Beta = 100, Refercnce Radius - 5,00
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Fig. 2. Two motion plans depict the effects of changing the radius of zero-
energy, ro, from ro = 1 (Fig. 2(a)) to 7o = 5 (Fig. 2(b)). Although o =
B = 1 in both cases and the initial (red) and final (blue) abstract states are
consistent, two different optimal motion plans are computed (using a Bellman-
Ford search in a discretized abstract space). Obstacles are shown in magenta.

It is possible to split the space and derive the trajectories
for ;1 € R? and (6, 51, s2) € R? x SO(2) separately in open
environments because of the product structure of the metric
(18). Instead, we propose the design of motion plans using a
discretization of the abstract space with constraints defined by
obstacles and admissible abstract states. Many discrete optimal
planning algorithms exist that permit the application of the
energy metric defined by (18) to solve the for the minimum-
energy path through open or cluttered environments [18].

VI. SPLITTING AND MERGING OF GROUPS OF ROBOTS

When an ensemble of robots are forced to squeeze through
constrained spaces, the only allowable shapes have small areas
and correspond to large values of internal energy V(s) as
seen from (17). Therefore we define a threshold so that when
V(8) > Vinae the group splits into two subgroups with shapes
identical to the original shape but each with half the number
of robots. This allows the group to reset its energy to a lower
level by reducing the number of constraints, while remaining
in the same configuration. Alternatively, a supervisory agent
can decide when to divide the robots into subgroups. The
formulation of Sect. IV can be applied to multiple subgroups
with the new abstraction manifold M = M; x Ms,, where
M; = G; % S;. The only additional mechanism that is required
is a protocol for each robot to determine to which subgroup it
belongs. Clearly the motion plan for each subgroup, x4¢%(t),
can be generated and this desired trajectory can be broadcast
to the group. With the feedback of the abstract state, x;, each
robot can compute its own controls with the knowledge of
the specific subgroup ¢ to which it belongs. We propose two
different event-triggered techniques for splitting and merging
teams of robots in a decentralized and distributed manner.

A. Market-based auctioning method

Our first approach is based on the market-based auctioning
method proposed in [19] which is guaranteed to converge
in polynomial time but requires communication between the
robots. It allows a team of robots to divide into subgroups
by defining an auction determined by the desired abstract
subgroup states {z¢*, ..., x{**}, and the maximum number
of agents allowed in each subgroup {ni, ..., n;}, where k



is the number of desired subgroups. The end result of the
auction is that all agents are associated with a subgroup and
distributed in agreement with the maximum number of agents
in each grouE. To ensure correctness, the algorithm requires

that N = i—1 M-

B. Stochastic policy for splitting

As the number of robots grows, it is beneficial to use
a mean-field model to model the distribution of robots and
develop stochastic switching rules that guarantee the desired
ensemble properties [20]. As N — oo, the ensemble properties
of the group of robots using the stochastic switching rules
converge to the desired properties. In other words, if each robot
uses a probability distribution to select one subgroup versus
the other, the ensemble properties of the group can be inferred
from this probability distribution. From a practical standpoint,
a split between k subgroups with {n1, ..., ny} robots can be
implemented approximately by each robot preferring group
with probability p; = %i.

C. Merging of groups

The merging of separate groups is trivial in the proposed
framework using the controller (15). The redefinition of x to
account for the desired merged abstract state results in a single
group, while accounting for inter-agent collision avoidance.

VII. SIMULATION AND EXPERIMENTAL RESULTS

The remainder of the paper is dedicated to verifying the
effectiveness of the control algorithm with collision avoidance
presented in Sect. IV. We begin by discussing implementation
details relevant to the analysis and experiment discussion that
follows.

A. Implementation Details

The control algorithm was implemented in C++ us-
ing the open-source robotics software Player, part of the
Player/Stage/Gazebo project [21]. The Player server enables
network communications between multiple robots. Gazebo is
a three-dimensional simulation environment incorporating a
dynamics engine and collision detection. Player also permits
integration with Gazebo, allowing the same code base to
be used in both simulation and experimentation on the real
hardware.

The algorithm was tested in simulation via Gazebo and on
an experimental infrastructure consisting of a team of small
differential-drive robots, an indoor tracking system for ground-
truth purposes, and a computer infrastructure to support wire-
less communication and data logging. Accurate models of the
robots were created for use in simulation to emulate the real
robots. Further, the asynchronous and distributed nature of
the hardware was emulated by creating separate execution
threads for each agent where all inter-agent communication
was accomplished through the Player server.

Although robot dynamics play a significant role when
considering inter-agent interactions, we are able to ignore these
effects due to the fact that the robot platforms use stepper
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Fig. 3. A top view of the robot model used in both simulation and
experimentation showing the body-fixed coordinate system. P is a reference
point on the robot whose position is regulated by the vector fields (Fig 3(a)).
The convergence of a team of four robots in simulation to x5 = z
(Fig. 3(b)). The team of robots controlling to the desired abstract state
xdes = {22 0.5, 0.2, 0.1} (Figs. 3(c)-3(d)). The abstract states a and
a?es are shown in green and black, respectively. The e radius safety region
is shown in blue, which for the differential drive robots is defined with respect
to the feedback linearization point.

motors which permit “instantaneous” changes in velocity for
sufficiently small magnitudes given the mass of the robot. We
ensure during simulation and experimentation that the control
velocities respect these thresholds.

In both simulation and experimentation, the abstract state
x (assessed using simulation data or the tracking system) and
the desired abstract state £9°* were broadcast to the robots. As
the control law updates, each robot broadcasts its current pose
and velocity while listening for the pose and velocity of its
neighbors. The optimization defined by (15) is solved using
the quadratic program routines provided by the open-source
Computational Geometry Algorithms Library [22].

We consider a simple model of a point robot with co-
ordinates (x,y) in the world coordinate system. On the
differential-drive robot in Fig. 3(a), these are the coordinates
of a reference point P on the robot which is offset from the
axle by a distance [. Its velocities in the inertial frame and
moving frame B are u; and v;, respectively. The velocity of
the reference point P can be converted into linear and angular
velocities for the robot through the equations below:

{v}[cos@ sin@} {x]

It is well-known that if a robot’s reference point is at the point
P, and if r is the radius of a circle circumscribing the robot, all
points on the robot lie within a circle of radius r + [ centered
at P. In other words, if the reference point tracks a trajectory
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Fig. 4. The optimal control, w7, and u; from (15) defined in the robot’s local
frame (Figs. 4(a)—4(b)). In general, the optimal control law is the solution to
(15). However, during inter-agent interactions the resulting control varies from
the optimal solution. The linear and angular velocities resulting from feedback
linearization (Figs. 4(c)—4(d)).

(z4(t),ya(t)), the physical confines of the robot are within a
circle of radius r +{ of this trajectory. This allows us to use
a geometric abstraction of a circular robot at P with a radius
p = r + 1. By ensuring that the reference points of adjacent
robots are at least e away as in (9), we guarantee that there
are no collisions for the real robot.

B. Simulation

In this section we present two representative trials of the
control law for collision avoidance: a basic system with limited
interactions, and a large team of robots with numerous inter-
actions. In both cases, we let K = diag(1, 1, 0.8, 0.8, 0.8),
r=0.15m, ¢, = 0.1m, [ = 0.1 m, and the maximum linear
and angular velocities are 0.3 m/s and 1rad/s, respectively.

1) Controlling four robots with limited interactions: A
small team of four stationary differential-drive ground robots
were sent a desired abstract state (see Fig. 3). The convergence
of the controller to the desired abstract state is shown in
Fig. 3(b). A comparison of the resulting optimal control law
(5) and the collision avoidance control law (15) in the separate
kinematic controller dimensions is depicted in Figs. 4(a)-4(b).
Indeed, as stated in Proposition 1, in general the optimal
control law, w7}, is applied. However, during collisions, the
control varies from the optimal control to account for the inter-
agent interactions. The linear and angular velocities of the
first agent resulting from feedback linearization and velocity
saturation are shown in Figs. 4(c)—4(d). These interactions are
apparent after feedback linearization.

2) Controlling a team of twenty robots: The team of twenty
robots depicted in Fig. 5 demonstrates the effectiveness of
the controller in large groups to ensure collision avoidance
while controlling to a desired shape. From Fig. 5(c) it is clear
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Fig. 5. A team of twenty robots control to %% = {3, 3, 0.5, 1.5, 1}. A
red e safety region indicates a state where d;; < €, but in this case & = 0
(Fig. 5(b)). A comparison of u; ; from (15) and the optimal control, uf’x
defined in the robot’s local frame (Fig. 5(c)). A comparison of u; 4 to ui*’ v
results in similar control variations. Although there are numerous interactions
between the agents, as depicted by the many variations of w; , from uf o
the system converges to the desired shape (Fig. 5(d)).
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0.0

5 10 15 20 25 30
time (s)

Fig. 6. The convergence of the team of seven robots in experimentation
to @S, The trial represents a merging scenario where the robots were
distributed in distinct groups separated by several meters.

that numerous interactions occur between the agents and yet
the system converges to the desired shape. In general, agents
will control to a separation distance of € since each agent is
individually computing the collision constraints (10). However,
it is possible that robots remain within the e safety region of
other robots at the time of convergence (see Fig. 5(b)) but do
not collide since the solution to (15) when € = 0 is u; = 0.

C. Experiments

The control algorithm was verified on a team of seven
nonholonomic robots. A trial run is depicted in Fig. 7. The
algorithm was tested with several trials over a variety of
desired states and scenarios with performance consistent with
the convergence shown in Fig. 6. The noise associated with



(b)

Fig. 7.

(c) (@

A team of seven robots control through a series of abstract states in a corridor passing maneuver. A visualization of the experiment (following the

representation defined in Fig. 3) corresponding to the system state in Fig. 7(a) depicts the current and desired abstract states, robot states, and corridor location

(Fig. 7(b)).

the estimation of the abstract state via the localization system
is observable in the smoothness of & in Fig. 6.

VIII. CONCLUSION AND FUTURE WORK

We presented solutions to the problem of planning and
controlling the position, orientation, and shape of a formation
of a team of robots. In contrast to most previous work, we
model the physical shape of the robot and consider controllers
that are guaranteed to avoid collisions between the robots.
We also derive software abstractions that lend themselves to
implementation on real platforms and to experimentation. In
addition, we present a metric for the planning of deformable
shapes and trajectories of the ensemble and the development
of effective coordination strategies to split the team into
subgroups and to merge subgroups. We view these problems
and their solutions to be building blocks that can enable a
robot team to navigate an environment adapting to the con-
straints imposed by obstacles in the environment. Simulation
and experimental results demonstrate the effectiveness of the
control algorithm when applied to nonholonomic robots.

As a direction of future research, we are interested in
pursuing time-parameterized trajectories in the abstract space.
We have also assumed the existence of a global observer in
past work and are currently considering distributed estimation
algorithms to relax this requirement.
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