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Abstract— We consider the task of training an obstacle de-
tection (OD) system based on a monocular color camera using
minimal supervision. We train it to match the performance of a
system that uses a laser range�nder to estimate the presence
of obstacles by size and shape. However, the lack of range
data in the image cannot be compensated by the extraction of
local features alone. Thus, we investigate contextual techniques
based on Conditional Random Fields (CRFs) that can exploit
the global context of the image, and we compare them to a
conventional learning approach. Furthermore, we describe a
procedure for introducing prior data in the OD system to increase
its performance in “familiar” terrains. Finally, we perform
experiments using sequences of images taken from a vehicle for
autonomous vehicle navigation applications.

I. I NTRODUCTION

Obstacle detection (OD) is important in many mobile robot
applications and autonomous vehicles. The most successful
OD systems rely on range information to detect obstacles by
size and shape. Among all the range sensors, laser range�nders
are the most popular and widely used range sensors, due to
their quality of data.

Unfortunately, laser range�nders contain mobile parts in
their design which makes them complex and expensive. Fur-
thermore, they may require extra hardware to scan the scene
and a precise calibration. In contrast, color cameras are mass-
produced and are comparatively inexpensive. However, the
lack of range data makes the OD problem more challenging.
Local features alone are not enough to extract enough infor-
mation to detect obstacles reliably. We alleviate this problem
by exploiting the contextual information in the image. For
example, since we cannot measure the shape of the rock
directly, we learn that rocks are gray objects with certain
texture properties and surrounded by brown dirt.

This paper investigates several contextual techniques based
on Conditional Random Fields (CRFs), which have been suc-
cessfully used in the past for classi�cation and segmentation
tasks, and allow to exploit contextual features in the image.
One of the CRF models presented in this paper uses a log-
linear model which imposes a linear combination of the input
features. Then, we apply the “kernel trick” to this model to
allow the use of different kernels with the hope that, in the
projected space, classes become linearly separable.

1: A John Deere tractor (4710 series) was used for some of
the experiments in agricultural applications. It was equipped
with cameras, positioning sensors, a computer and a SICK
laser for perception.

Moreover, we present an algorithm to improve the OD sys-
tem performance in agricultural environments and, in general,
in applications where the system re-visits the same areas. In
this case, we build a database of hand -or automatically- clas-
si�ed images of the terrain and integrate them in a contextual
model to improve the obstacle detection process.

The contextual methods presented in this paper are com-
pared to conventional non-contextual learning approaches. We
use a OD system equipped with a SICK laser, a color camera,
positioning sensors (IMU, GPS and wheel encoders for speed
measurements) to extract the precise location of the obstacles
(see �g. 1). Then, all the algorithms are trained to match the
performance of this OD system.

This paper is structured as follows. The next section gives
a short overview of prior work in this area. In section III
we introduce the basic CRF model. Section IV describes our
procedure to apply the kernel trick to a log-linear CRF model.
In section V we show an algorithm to make use of prior data.



2: Left: MRF graph structure.Right: CRF graph structure.

Finally, we show the effectiveness of our algorithm in a batch
of experiments in section VII.

II. RELATED WORK

In the obstacle detection and avoidance �eld, Dima pre-
sented an algorithm which combined the information provided
by different sensors in the image frame [3]. The data from each
sensor was transformed to image coordinates, thus each part
of the image contained features from the image plus features
from other sensors (i.e. infrared, LADAR, etc). Whereas the
algorithm enabled the fusion of heterogeneous sensors, the
classi�er that was used assumed independence among all the
parts in the image.

Many cues needed for obstacle detection are contextual
information, and Markov Random Fields (MRFs) are widely
used machine learning tools to exploit this information. How-
ever, in the MRF framework, the observed data is assumed to
be conditionally independent which can be very restrictivein
some applications (see �g. 2). Unlike MRFs, CRFs model di-
rectly the conditional distribution. Thus, the relations between
the input variables do not need to be explicitly represented. In
the past, their main limitation was the use of slow training
algorithm (such as iterative scaling -IIS-); however, recent
advances in CRF theory have found ef�cient algorithms for
parameter learning and inference in general CRF graphs [15].

Log-linear CRFs have been successfully used in the past
for image labeling. In this form, CRFs allow for a parameter
estimation guaranteed to �nd the global optimum due to the
convex property of their conditional likelihood function.For
instance, CRFs have been used for detection of man-made
structures in natural images [7]. CRFs have been used for
object detection and recognition given its parts in images [11].
They have been also used for object segmentation tasks in
images [14], and with occlusion handling [17]. Also, this idea
has been extended to segmentation in video sequences [16].
Saxena el al. [12] uses a discriminative MRF model to estimate
the depth using a single still camera, which could be used as
the input to an obstacle detection algorithm.

A linear relation between features and random variables in
the CRF model has been widely used, but in some cases this
can be a restrictive constraint. To overcome this limitation, an
extension to the CRF model to allow the use of custom kernels
was proposed by [8]. In this paper, we present an alternative
algorithm. In general, the possibility of changing the kernel
allows the model to adapt better to a speci�c problem resulting
in better performance.

III. C ONDITIONAL RANDOM FIELD MODEL

A. CRF model

A Conditional Random Field (CRF) is an undirected graph-
ical model in which edges represent conditional dependencies
between random variables at the nodes. The distribution of
each random variableyi is conditioned on an input sequence
x. The conditional dependency of the random variables on
x is de�ned by using feature functions with some associated
weights. Together, they can be used to determine the probabil-
ity of eachyi . Dependencies among the input variablesx do
not need to be represented because the model is conditional,
affording the use of complex and rich features of the input.
Thus, CRFs are discriminative models, that is, they model
p(y jx)1.

In a general way, to model the conditional probability
distribution of a sequence of labelsy given the observations
x, p(y jx) takes the form shown in (1):

p(y jx) =
1

Z(x)

Y

c2 C

	 c(� c ); (1)

where 	 c(� c ) is a potential function that depends on the
variables in a clusterc (de�ned as � c). Z(x) is called the
partition function, and it is a normalization factor to make
sure that

P
y i

p(yi jx ) = 1 . It depends on the data, therefore
it takes different values as the input (x) changes.

In this paper, we use a log-linear model for the CRF. Thus,
	 are potentials of the form shown in (2):

	 c(� c ) = exp

(
X

k

� k fk (x c ; y c )

)

; (2)

wherex c ; y c 2 � c and fk is featurek function overx; y .
In the image labeling task, the CRF model we use is a

lattice, forming an undirected graphG = ( V ; E). V are the
nodes or vertices andE are the edges. Every node and every
edge contain a potential function that operates on a subset
of the random variables present inG. Thus, we de�ne the
conditional probability distribution of the CRF as shown in
(3):

p(y jx) = 1
Z (x )

Q
i 2 V 	( x i ; yi )

Q
( i;j )2 E 	( yi ; yj ; x i ; x j )

Z (x) =
P

y

Q
i 2 V 	( x i ; yi )

Q
( i;j )2 E 	( yi ; yj ; x i ; x j );

(3)
where, functions	 are of the form:

	( x i ; yi ) = exp f
P

k � ky i gk (xi )g
	( yi ; yj ; x i ; x j ) = exp

� P
k � ky i y j fk (xi ; xj )

	 (4)

We set� 2 < K � L and � 2 < K � L � L . L is the number of
different labels or classes andK is the number of features.

1Bold letters denote an array of elements or variables. Functions are
represented by non-bold letters followed by parentheses, i.e. p(x ). All non-
bold no-function letters represent variables. In the CRF context, unless stated
differently, x denotes data andy denotes labels. Sub-indexes denote elements
of the array, i.e.x i denotes the data at the i-th node.yi denotes the label at the
i-th node.f yi ; yj g denotes a pair of labels ofy at nodesi; j . y = f yi ; yj g
represents all pair of labels of adjacent nodes ofy equal to the pairf yi ; yj g.
y m denotes the m-th sequence ofy labels.



Unlike other representations found in the literature, we chose
functionsgk and fk which only depend on the data, and not
on the labels. Because of this representation, the weights are
the ones that depend on the labels. Thus, to account for the
different classes,L � 1 hyper-planes are needed.

The total number of node weights is(L � 1)K and it
is equivalent to useL � K node weights and set8k =
1::K � kL = 0 . We chose the edge weights to be the absolute
value of the difference of features in adjacent nodes. Hence,
the total number of edge weights in this representation is
L � L � K because we need as many weights as node features
and combinations of pairs of labels. However, we restrict
� kls = � � kll 8l 6= s, which reduces the number of edge
weights toL � K .

It is interesting to note that the model de�ned in (3) contains
a logistic regression classi�er in each node. Simply, by setting
the edge weights to0 (i.e., de�ne 8i; j 2 E � ky i y j = 0 ) it
is easy to see that every node contains a multi-class logistic
regression classi�er.

In summary, the set of parameters for the CRF in our
representation is the union of the node weights and the edge
weights (� = f � 1:::K; 1:::L � 1; � 1:::K; 1:::L g), giving a total of
K � (2L � 1) parameters.

B. Inference in 2D CRF

It is worth noting that inference problems like marginal-
ization and maximization are NP-hard to solve exactly and
approximately (at least for relative error) in lattice graphical
models, and in general, for most of the graph structures. In
a CRF graph model, maximization is to �nd the most likely
sequence of labelsy given an inputx, that is:

y max = argmax
y

p(y jx ; � ) (5)

However, �nding y max exactly is infeasible in practical
cases for 2D CRFs. A brute force algorithm would need to
explore all possible labelings, which in a binary CRF of size
24� 32 would be1:5 � 10231. In theory, the marginalization
problem for graphical models with loops is #P-complete and
maximization is NP-complete. Thus, approximate inferenceis
used to solve these problems.

There are several methods in the literature for approximate
inference in graphs (i.e. maxent -although only works for
binary labels-, variational methods, Monte Carlo methods,
Belief Propagation (BP), etc...). We used BP for approximate
inference, because it gives good results in practice [9] and
provides solution to the marginalization and maximization
problems.

C. Maximum Likelihood parameter learning

In our work, we use the MLE principle to learn the
parameters� such that the regularized negative log-likelihood
is minimized. The algorithm assumes that we are given set of
i.i.d. labeled images(X m ; Y m ) 2 M . Regularization is added
in the form of a Gaussian centered at0 over the parameters to

avoid over-�tting. The negative regularized log-likelihood for
a CRF model is given by (6):

nll (� ) = �
X

m 2 M

logf p(y jxm ; � )g +
�
2

� T � (6)

Ignoring the regularization term, the derivatives of the log-
likelihood over the parameters� yield to equations in (7).
The �rst term is the value of the features under the empirical
distribution. The second term, which arises from the derivative
of logZ (x), is the expectation of the features under the model
distribution. Equation (7) shows the derivatives corresponding
to � and � , respectively:

@nll( � )
@�kl

= � E ~p(y= l; x ) [gk ] + Ep(y= l jx ;� )~p(x ) [gk ]
@nll( � )
@�kls

= � E ~p(y = f l;s g;x ) [fk ] + Ep(y = f l;s g) jx ;� )~p(x ) [fk ]
(7)

Unfortunately, there is no analytic solution to this equation
(setting the gradient to0 and solving for� does not always
yield to a closed-form solution). Thus, an iterative algorithm
is needed in order to approximate the optimal solution. Note
that the functionnll (� ) is concave, which follows from the
convexity of functions of the formg(x) = log

P
i expxi .

This property shows that every local optimum is also a global
optimum. AddingL2 regularization to the NLL ensures that
log l(� ) is strictly concave, which implies that it has exactly
one global optimum.

Thanks to this property, methods like steepest descent can
be used, although they may require many iterations to converge
making them slow. Newton's method can converge much faster
because it takes into account the curvature of the likelihood.
However, computing the Hessian can be expensive, too, since
it is quadratic in the size of the parameters. An intermediate
solution for this problem is to use quasi-Newton methods, such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [1,
4, 6, 13], in which the Hessian is updated by analyzing
successive gradient vectors. BFGS is the algorithm that we use
in this work for optimization (throughfminunc in Matlab),
and, as it is discussed in [15], it provides a rapid convergence
to the optimal solution.

IV. K ERNEL CONDITIONAL RANDOM FIELDS

A. “Kernel Trick” and Logistic Regression

Logistic Regression (LR) is a discriminative linear classi�er
that estimates thep(yjx) by using a linear combination of
features ofx. The conditional likelihood for LR is de�ned in
(8):

p(yjx) =
expf

P
k � ky gk (x)g

1 +
P y= L � 1

y=1 expf
P

k � ky gk (x)g
(8)

By applying the “kernel trick”, one can convert a linear
classi�er algorithm into a non-linear one by using a non-
linear function to map the original observations into a higher-
dimensional space; this makes a linear classi�cation in the
new space equivalent to non-linear classi�cation in the original
space (see �g. 3). We apply the Mercer's theorem, which states
that any continuous, symmetric, positive semi-de�nite kernel



3: Example of a dataset not linearly separable in the orig-
inal dimension space (on theleft), but it becomes separable
after using a quadratic kernel (on theright ), augmenting the
dimensionality of the input space by1.

function K (x i ; x j ) can be expressed as a dot product in a
high-dimensional space, to equation 8:

p(yjx) =
exp

� P
x i 2 S � iy K (x; xi )

	

1 +
P L � 1

y=1 exp
� P

x i 2 S � iy K (x; xi )
	 ; (9)

where S is the space of vectors that span the kernel. As
with LR, the log-likelihood is a convex function, and it is
possible to compute the gradient and the Hessian of the
log-likelihood, making suitable Newton-Raphson methods for
rapid optimization. However, there are several performance
penalties by using this method:

� Computing the kernel matrix can be computationally
expensive (O(N 2), whereN is the number of vectors).

� A N � N matrix must be inverted at each iteration of
Newton-Raphson method, increasing the computational
cost of the training algorithm to the order ofO(N 3).

� In practice, most (if not all)� i have non-zero values,
which increases the cost of classifying samples (each new
sample needs to be projected into all thex i in the kernel).

These problems can be solved by �xingS to use a small subset
of x i . However, we need an algorithm to determine which and
how manyx i should be inS.

In this paper, we will use the method proposed by [18]. The
sub-modelS found by IVM algorithm is an approximation to
the full model found by KLR. The algorithm starts with an
empty set of vectors forS. Then, at every iteration the vector
that minimizes de NLL the most is added toS. The vectors
in the kernel spaceS are called import vectors. The algorithm
stops when the NLL does not decrease after some number of
iterations. A toy example is shown in �g. 4.

B. “Kernel trick” for CRFs (K-CRFs)

K-CRFs were originally introduced in [8], and they allow
the use of implicit feature spaces through Mercer kernels. Our
approach differs mainly in the way we �nd the kernel space.
In our algorithm, we use the IVM algorithm as described in
section IV-A to �nd the vectorsx i that will span the kernel
spaceS in the node potentials. Then, we compute thegk

projected into the kernel space found by the IVM algorithm

4: Example of boundaries obtained by a multi-class IVM
classi�er, 36 import vectors and a a Gaussian kernel (� = 0 :1).

in order to extract the set of node features that will be used
by KCRF. Finally, we use the algorithm described in section
III-C for parameter learning till its convergence.

In this work, we experiment with Gaussian kernels because
they often provide good performance [2]. When they are used,
the corresponding feature space is a Hilbert space of in�nite
dimension. However, the regularization used for parameter
learning avoids the in�nite dimension to spoil the results.In
this paper, we refer to the Gaussian kernels the ones that take
the form in (10):

K (x i ; x j ) = e�
k x i � x j k 2

2 � 2 ; (10)

wherex i ; x j are input vectors.

V. PRIOR DATA AND K-CRFS (PK-CRF)

In this section, we introduce an algorithm to take advan-
tage of situations where prior labeled data is available (i.e.,
agricultural applications where vehicles revisit the sameareas
multiple times). If we label the data that corresponds to the
working area once, we may be able to use these labelings to
improve future labeling performances. Thus, in cases where
the input image is similar to one in the prior data set, we
may be able to re-use the prior labels. The parts of the image
which experience changes (i.e. illumination, pose, new/missing
objects, etc) may need new evaluations.

The algorithm described in this section assumes that the
input data is tagged with pose (which does not need to be
exact), and that the ground plane is mostly �at. For this task,
we build a database with the prior labeled images tagged with
pose. Then, for every new input image, the closest image
in pose is recovered from the database and aligned with the
input image (see section VI). At this point, we can refer each
part/region in one image to the other. Thus, if we know the
ground truth for the labels of one of the images, we can use
this information in the image that we are trying to label.

In practice, there are differences between the input image
and the reference image, even after the alignment, due to errors
in the alignment process, errors in pose, possible changes in
the environment, moving obstacles, etc. However, we let the
CRF to decide for us whether the label in the reference image
should be used.



5: PK-CRF model. White nodes represent random variables.

We added the prior data into the CRF model in the form
of binary features for the nodes and real features for the
edge. These features incorporate labeling information of the
reference image to the input image. The node features have a
value of1 if the hypothesis about the label in the input image
is the same as the reference image, and0 otherwise. The edge
features contain information about the differences between the
region in the input image and the region in the reference image
(similar to the edge features in the CRF). We refer to these
features ashk .

Each of these features is multiplied by a weight that depends
on the class (
 n l ). Putting together this new features with the
CRF model, we get the following node potentials:

	( x i ; yi ) = exp

(
KX

k

� ky i gk (xi ) +
NX

n


 ny i hn (xi )

)

(11)

Where,K is the number of node features andN is the number
of prior features for each node. Fig. 5 shows a graphical
representation of the model. Discrete random variables are
connected to the image features and also connected to the
features and label information from the reference image. Some
of the prior features may be missing in the cases where no
match is found for a patch in the reference image.

By adding these features we expect the CRF model to learn
that if the node of the image and the node in the reference
image are similar, then there should be a bias towards using the
same label in the input image as the one used in the reference
image. However, if the regions differ, then the information
coming from the image taken in the past should be discarded
and a full evaluation of the region would be required. We
called this model Prior K-CRF (PK-CRF).

VI. I MAGE REGISTRATION

We use an algorithm for aligning two images with different
poses based in [10]. We work under the assumption that
our test environment has a planar surface. Thus, we use an
homography to transform the image to an orthonormal view
(top-down in our case) by means of four �xed reference points
in the ground. This transformation works for the ground (if it
is planar) but does not work for trees or other objects which
are not in the same plane which will often experience several
distortion (see bushes in rightmost images in �g. 6).

6: Axes alignment for two images. Images are recti�ed,
transformed to a top-down view, and rotated to align their
axes.

7: Normalized correlation between two images.

Once both images are transformed in these coordinates,
the optical axes are parallel. We can use the yaw angle to
rotate one of the images and align the axes of the two images
as shown in �g. 6. Due to differences in the actualX; Y; Z
coordinates where each image was taken, the resulting images
may not align, yet. However, after these transformations, the
camera axes are parallel and we can compensate for these
differences in pose by a simple translation. We use normalized
correlation to compute the relative translation of one image
w.r.t. the other (see �g. 7 for details). Finally, we can relate
each patch from the reference image to each one in the input
image (see �g. 8).

In our experiments, images with differences in position
smaller than3m, and differences in yaw smaller to10 de-
grees were successfully registered. Beyond these numbers,this
method may fail to successfully recover the correct translation
for every patch in one image to match the patches in the
reference image. Hence, it is important to �nd images in the
database which are very close in pose to the image that we
are labeling.

VII. E XPERIMENTS

In this section, we show that the use of contextual models
improves the performance for obstacle detection tasks from
images. We compare the different contextual models presented
in this paper (CRF, KCRF, PK-CRF), a logistic regression
classi�er (LR) and the Import Vector Machine (IVM).



8: Left: Flow for every16� 16 pixels patch to match patches
in the right image.Right: Reference image.

A. Data acquisition platform and features

In our experiments, we use data collected with a vehicle
equipped with several sensors: a color camera, an Inertial
Measurement Unit (IMU), a wheel encoder (for vehicle speed
input), a scanning laser and a Global Positioning System
(GPS).

Camera and laser sensors are registered w.r.t. each other
and the vehicle. We use a Kalman �lter to compute the local
pose of the vehicle using the speed of the vehicle and the
information collected by the IMU. Finally, the GPS is used to
acquire the global position of the vehicle at the start time,thus
we can reference the local position among different sequences
of data collected at different times (we call them logs).

Every image is divided into a grid of patches of16� 16, and
we extract feature information from each patch independently,
as described in [3]. The features extracted contain the mean
and standard deviation for the U,V components in the LUV
color space and texture information for a total of28 features.
Every feature was scaled to have0 mean and standard devia-
tion of 1.

The ground truth contains binary labels (obstacle/not ob-
stacle) for every patch in each image and it is automatically
computed using the laser data. The 3D data extracted from the
laser is very accurate and it is used to get a good estimation
of the ground. Once the ground is estimated, the detection
of obstacles becomes very simple (i.e. any 3D point above
the ground more than 0.5 m is an obstacle). We project the
object location to the image frame and use that information
for automatically getting the labels for every image patch in
the grid.

LR classi�er is trained using the28 features + a constant
feature to account for the bias. Similarly, we use the same
features for the CRF node potentials and a total of57 edge
features (28 � 2(classes)+ 1 (bias)). The edge features were
computed as the Euclidean distance of two adjacent node
features. Therefore, the total number of variables of the linear
CRF was 86, which were successfully learned using the
algorithm described in section III-C.

B. Comparison of LR and CRF

We compare the performance of LR and CRF (trained
using the same features as described in section VII-A)
for obstacle detection in an agricultural application. One

(a) Original images (b) CRF labelings (c) LR labelings

9: Red boxes denote detections.Top row: Orchard detection.
Bottom row: People detection.

of the tasks is to be able to drive a vehicle (i.e. trac-
tor) through orchard tree lanes. The classi�er must prop-
erly segment and detect the orchard tree lanes. We acquired
two sequences of images and we used one for training
the classi�ers and the second one for producing the video:
http://www.cs.cmu.edu/ � cvalles/videos/orchard.avi

As can be seen in the video and in �g. 9 (top row),
CRF provides a cleaner segmentation of the orchard tree
lanes. Furthermore, the number of false positives produced
by the CRF classi�er is much lower. LR produces false
positives continuously, some of them just in front of the
vehicle, which would make the vehicle to stop. However, CRF
does not produce any false positive in front of the vehicle
while properly segmenting the orchard tree lanes throughout
the video sequence. CRF signi�cantly outperformed LR for
detection and segmentation of people in our experiments as it
is shown bottom row of �g. 9.

C. Comparison of LR, CRF, IVM, KCRF and PKCRF

We collected8 sequences of data in a mostly �at and
grassy environment, driving at2m/s for about 4 minutes, with
several obstacles scattered around. We logged2 images per
second. Two sequences were used for training and the other
6 were used for testing. Our de�nition of obstacle in this
environment is anything that is above the ground more than
a certain distance (i.e.0:5m). Thus, in our gathered data, the
obstacles are bushes, cones, trees, vehicles, fences, etc (see
�g. 10). The data was collected in two different days, and
some of the obstacles were placed in different positions. We
followed similar trajectory for every log we took, just allowing
deviations from the original path smaller than 5m.

CRF and LR were trained as described in section VII-A.
We used a Gaussian kernel for IVM, KCRF and PKCRF
classi�ers, and we experimentally found the optimal kernel
width to be � = 3 by plotting the histogram of distances
mapped by the kernel as proposed in [5]. The IVM algorithm
found 119 import vectors. K-CRF used an extra57 variables
for the edge potentials (same ones as in the linear case) and
1 for bias, totaling177 variables. In the case of PK-CRF,
one of the sequences was used as reference to extract features
described in section V, and was used as database for the test



10: Some snapshots of the environment in which data was
collected. Note that an obstacle can be anything that may be
a hazard for the vehicle (bushes, cones, other vehicles, trees,
etc.)

TPR LR IVM CRF KCRF PKCRF
0.95 61:6% � 0:4 37:3% � 0:7 37:0% � 1:3 20:1% � 2:8 13:5% � 5:4
0.92 38:9% � 0:5 16:6% � 3:0 10:5% � 6:1 4:3% � 3:3 2:9% � 2:4
0.90 24:3% � 4:4 10:9% � 2:2 4:1% � 3:2 1:9% � 1:6 1:6% � 0:8
0.88 15:2% � 3:5 7:2% � 1:0 2:0% � 1:6 1:2% � 0:5 0:9% � 0:3
0.85 9:5% � 1:4 4:7% � 0:5 1:0% � 0:3 0:6% � 0:2 0:4% � 0:2
0.80 5:1% � 0:6 2:8% � 0:2 0:6% � 0:1 0:3% � 0:1 0:2% � 0:1
0.75 3:3% � 0:3 1:9% � 0:1 0:4% � 0:1 0:2% � 0:1 0:1% � 0:1

I: False Positive Rate (FPR) for a given True Positive Rate
(TPR) for each algorithm evaluated in this paper.

experiments.
In order to compare the performance of the different al-

gorithms, we considered a false positive an alarm from the
classi�er in an area of a3 � 3 image patches that does not
contain an obstacle. In this application, a false positive may
cause the vehicle to stop for no apparent reason, degrading
the performance of the autonomous vehicle. However, a false
negative may be fatal. Hence, it is very important to achieve
high obstacle detection rates when working at low false
positive rates.

Table I shows the false positive rate of the various classi�ers
at different performance points. In this case, differencesamong
the classi�ers become apparent, specially at low false positive
rates. The false positive rate (FPR) for a �xed true positive
rate (TPR) is shown in table II. Whereas neither LR nor
IVM could be used in practice because of its large FPR at
any performance point in the table, contextual methods give
enough performance boost to be considered.

At low FPRs, contextual methods perform several times
better than non-contextual ones. For instance, at a �xed FPRof
1=250, LR and IVM achieve obstacle detection rates of30%
and43%, respectively (see table II). Contextual methods (CRF,
KCRF and PKCRF) give performances over75%. PKCRF
gives a performance just shy of85% at the same FPR.

Also, note that PKCRF achieves an obstacle detection

FPR LR IVM CRF KCRF PKCRF
1/1000 4:5% � 0:2 15:0% � 1:3 57:1% � 2:5 70:5% � 3:3 75:3% � 3:3
1/750 7:6% � 0:50 21:2% � 0:9 63:5% � 2:8 73:2% � 3:3 77:2% � 3:3
1/500 12:7% � 1:3 28:4% � 1:5 68:5% � 3:0 76:9% � 3:0 80:0% � 3:3
1/250 29:7% � 1:5 43:3% � 1:8 76:3% � 2:7 82:1% � 2:9 84:7% � 3:0
1/100 50:2% � 1:8 64:3% � 2:2 84:7% � 2:6 87:4% � 2:8 88:2% � 2:6
1/75 56:3% � 2:0 70:2% � 2:5 86:2% � 2:6 88:7% � 2:6 89:0% � 2:7
1/50 66:46% � 2:0 75:9% � 2:6 88:1% � 2:4 90:3% � 2:5 91:0% � 2:4
1/25 77:3% � 2:3 83:6% � 2:7 89:9% � 2:4 91:8% � 2:3 92:7% � 2:1
1/10 85:5% � 2:3 89:9% � 2:3 91:9% � 2:2 93:7% � 1:9 94:4% � 1:8

II: True Positive Rate (TPR) for a given False Positive Rate
(FPR) for each algorithm evaluated in this paper.

LR IVM CRF KCRF PKCRF
> 100 img/s � 20 img/s � 10 img/s � 3 img/s � 1 img/s

III: Number of processed images per second in a Intel Core
2 Duo class machine.

rate of 75% generating a false positive every1000 positive-
classi�ed patches. IVM and LR produce1 false positive every
50 and25 positive-classi�ed patches to get the same obstacle
detection rate. At this performance point, PKCRF performs20
and40 times better, respectively.

We brie�y evaluated the computational complexity of these
methods. We ran these experiments in a Intel Core 2 Duo class
machine running at 2.0 Ghz. Code was not optimized to make
use of the two cores, though. Table III shows the number of
images per second that every classi�er was able to process.
This timing does not take into account the time needed to
pre-process the image and extract its features.

We included the full Receiver Operator Characteristic
(ROC) curves in �g. 11 and in table IV, we show the Area
Under the Curve(AUC) for each of the methods. Note that the
differences among the various algorithms shown in this table
are small, and AUC is not signi�cative enough to establish
conclusions. However, in practice, non-contextual algorithms
do not offer enough performance to be used in practice in
these experiments, due to its bad obstacle detection rates at
low false alarm rates.

Finally, we generated a video for one of the sequences
with the outputs of each classi�er discussed in the paper:
http://www.cs.cmu.edu/ � cvalles/videos/test-obs.avi

In this sequence, the vehicle was manually driven and there
were obstacles at different locations. The video shows red
patches for detections, and a blinking red box around the
image of the classi�er that produces a false positive that
would make the vehicle to stop. A snapshot of the video is
shown in �g. 12 where the outputs of the different classi�ers
evaluated in this paper are displayed.

VIII. C ONCLUSION

In this work, we presented an obstacle detection algorithm
for autonomous vehicles using a monocular color camera. We
extended a CRF model to allow the use of non-linear kernels
and prior data. In the experimental section, we showed that
the use of lattice models for image labeling tasks helps to
obtain globally more accurate segmentations than classi�ers
that make locally independent decisions. Furthermore, we
showed that Gaussian kernels work better than linear kernels



LR IVM CRF KCRF PKCRF
91:9% � 1:4 94:9% � 1:1 95:7% � 1:2 97:0% � 0:9 97:4% � 0:8

IV: Area Under the Curve (AUC) for each algorithm.

11: ROC curves for LR, IVM, CRF, KCRF and PKCRF.

in our obstacle detection experiments. Finally, prior datawas
introduced in the CRF model to produce better segmentations
in “familiar” environments.

Even though the set of features we used for every image
part was very limited (just color and texture features), the
obtained results are promising towards building an obstacle
detection system based only on a monocular color camera.
Gaussian K-CRFs were the best performers when no prior
data was available. However, PK-CRFs performed even better
when prior data was available.

The algorithms proposed in this paper are not limited to
monocular camera approaches. Future work includes the use
of multiple camera solutions with different �lters on them,the
use of stereo features, experiments with different patch sizes
(or non-uniform image divisions, such as super-pixels), the use
of more node features, and extracting speci�c edge featuresfor
the CRF model. As one of the main issues when dealing with
camera-only solutions is the exposure, High Dynamic Range
(i.e. capture images at different exposures) could be used to
address this problem.

In conclusion, CRFs provide a probabilistic framework
with superior performance compared to classi�ers that do not
exploit context in image labeling applications. The model for
CRFs is �exible enough to support different kernels, or the
addition of a large variety of features. In our experiments,
features that incorporate prior data helped to boost the obstacle
detection performance, making PK-CRFs suitable for some
robotic applications that use a monocular color camera.
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