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Abstract—To effectively navigate in their environments and current position of the vehicle. However, even in situagion
accurately reach their target locations, mobile robots require with substantial overlaps between consecutive obsenatio
a globally consistent map of the environment. The problem of e matching processes might result in errors that linearly
learning a map with a mobile robot has been intensively studied in t fi d lead t bstantial absolut
the past and is usually referred to as the simultaneous localization propqgae over uime and lea 9 Substantial a _SO ute grrors
and mapping (SLAM) problem. However, existing solutions to the Consider, for example, a mobile robot mapping a linear
SLAM problem typically rely on loop-closures to obtain global structure (such as a corridor of a building or the passage
consistency and do not exploit prior information even if it is petween to parallel buildings). Typically, this corridorillw
available. In this paper, we present a novel SLAM approach e gjlightly curved in the resulting map. Whereas this is not

that achieves global consistency by utilizing publicly accessible itical i | th ted vl |
aerial photographs as prior information. Our approach inserts  CfltCal In general as the computed maps are generaily loca

correspondences found between three-dimensional laser rangeconsistent [13], they often still contain errors with respt
scans and the aerial image as constraints into a graph-basedthe global coordinate system. Thus, when the robot has to
formulation of the SLAM problem. We evaluate our algorithm  arrive at a position de ned in global coordinates, the maps
based on large real-world datasets acquired in a mixed in- and )it sing a standard SLAM algorithm might be sub-optimal.
outdoor environment by comparing the global accuracy with In this paper, we present an approach that overcomes
state-of-the-art SLAM approaches and GPS. The experimental ’ & . ;

results demonstrate that the maps acquired with our method these problems by utilizing aerial photographs for calkuga
show increased global consistency. global constraints within a graph-representation of th&ML
problem. In our approach, these constraints are obtained by
matching features from 3D point clouds to aerial images.

The ability to acquire accurate models of the environment is Compared to traditional SLAM approaches, the use of a
widely regarded as one of the fundamental preconditions fgiobal prior enables our technigue to provide more accurate
truly autonomous robots. In the context of mobile robotssth solutions by limiting the error when visiting unknown regg
models typically are maps of the environment that suppdr contrast to approaches that seek to directly localizebatro
different tasks including localization and path plannifidpe in an outdoor environment, our approach is able to operate
problem of estimating a map with a mobile robot navigatingeliably even when the prior is not available, for example,
through and perceiving its environment has been studibdcause of the lack of appropriate matches. Therefore, it is
intensively and is usually referred to as the simultaneossitable for mixed indoor/outdoor operation. Figure 1 shows
localization and mapping (SLAM) problem. a motivating example and compares the outcome of our

In its original formulation, SLAM does not require anyapproach with the ones obtained by applying a state-okthe-
prior information about the environment and most SLAMBLAM algorithm and a pure localization method using aerial
approaches seek to determine the most likely map and robotages.
trajectory given a sequence of observations without takita The approach proposed in this paper relies on the so called
account any prior information about the environment. Howgraph formulation of the SLAM problem [18, 22]. Every node
ever, there are certain scenarios, in which one wants a tobobf the graph represents a robot pose and an observation taken
autonomously arrive at a speci c location described in globat this pose. Edges in the graph represent relative transfor
terms, for example, given by a GPS coordinate. Considénns between nodes computed from overlapping obsenstion
for example, rescue or surveillance scenarios in which oAelditionally, our system computes its global position feery
requires speci ¢ areas to be covered with high probability thode employing a variant of Monte-Carlo localization (MCL)
minimize the risk of potential casualties. UnfortunatéBPS which uses 3D laser scans as observations and aerial images
typically suffers from outages or occlusions so that a robas reference maps. The use of 3D laser information allows our
only relying on GPS information might encounter substantiaystem to determine the portions of the image and of the 3D
positioning errors. Even sophisticated SLAM algorithmsa-ca scan that can be reliably matched by detecting structurésin
not fully compensate for these errors as there still might (3 scan which potentially correspond to intensity variagio
lacking constraints between some observations combingd win the aerial image.
large odometry errors that introduce a high uncertaintyhent GPS is a popular device for obtaining accurate position

I. INTRODUCTION
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Fig. 1. Motivating example comparing standard SLAM (a), lazion using aerial imagery as prior information (b), and cumbined approach (c).
Note the misalignment relative to the outer wall of the buildinga). Whereas the localization applied in (b), which reli@saerial images, yields proper
alignments, it cannot provide accurate estimates inside ulditig. Combining the information of both algorithms yield®tbest result (c).

estimates. Whereas it has also been used to localize mo#ile effectiveness of the EKF approaches comes from the fact
vehicles operating outdoors, the accuracy of this estinsatethat they estimate a fully correlated posterior about lazudm
usually not accurate enough to obtain a precise map. Génerahaps and robot poses [16, 23]. Their weakness lies in the
the position estimate provided by GPS substantially dee®astrong assumptions that have to be made upon both, the robot
when the robot moves close to buildings or in narrow streetaotion model and the sensor noise. If these assumptions are
Our approach to deal with this problem is to use aerial image®lated, the lter is likely to diverge [14, 27].
and to match measurements obtained by the robot to obtairAn alternative approach designed to nd maximum likeli-
an accurate estimate of the global position. hood maps is the application of least square error minimiza-
The approach proposed in this paper works as follows: wien. The idea is to compute a network of relations given
apply a variant of Monte Carlo localization [3] to localizethe sequence of sensor readings. These relations represent
a robot by matching 3D range scans to aerial images of tthee spatial constraints between the poses of the robot. In
environment. To achieve this, our approach selects théopert this paper, we also follow this approach. Lu and Milios [18]
of the scan and of the image which can be reliably matchedst applied this technique in robotics to address the SLAM
These correspondences are added as constraints in a grapbblem by optimizing the whole network at once. Gutmann
based formulation of the SLAM problem. Note that our systeesnd Konolige [12] proposed an effective way for construgtin
preserves the exibility of traditional SLAM approachesdan such a network and for detecting loop closures while running
can also be used in absence of the prior information. Howevan incremental estimation algorithm.
when the prior is available our system provides highly aatur ~ All the SLAM methods discussed above do not take into
solutions also in pathological datasets (i.e., when no lo@gcount any prior knowledge about the environment. On the
closures take place). We validate the results with a lacgdes other hand, several authors addressed the problem ofingiliz
dataset acquired in a mixed in- and outdoor environment. fdeor knowledge to localize a robot outdoors. For example,
furthermore compare our method with state-of-the-art SLAMorah and Rasmussen [15] used image processing techniques
approaches and with GPS. to extract roads on aerial images. This information is then
This paper is organized as follows. After discussing relatapplied to improve the quality of GPS paths using a patrticle
work, we will give an overview over our system followed Iter by calculating the particle weight according to itsgtion
by a detailed description of the individual components irelative to the streets. Leungt al. [17] presented a particle
Section 1ll. We then will present experiments designed ttier system performing localization on aerial photograph
evaluate the quality of the resulting maps obtained with oby matching images taken from the ground by a monocular
algorithm in Section IV. In this section, we furthermorevision system. Correspondences between aerial images and
compare our approach with a state-of-the-art SLAM systegnound images have been detected by matching line features.
that does not use any prior information. These have been generated from aerial images by a Canny
edge detector and Progressive Probabilistic Hough Tramsfo
(PPHT). A vanishing point analysis for estimating building
SLAM technigues for mobile robots can be classi ed acwall orientations was used on the monocular vision. In @sttr
cording to the underlying estimation technique. The most poto laser-based approaches, their method maximally aaheve
ular approaches are extended Kalman lters (EKFs) [16, 23yerage positioning accuracy within several meters. hg
sparse extended information lters [7, 26], particle I&f19], al. [4] use vanishing point analysis to extract 2D corners from
and least square error minimization approaches [18, 9, 1agrial images and inertial tracking data, and they alscaektr
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2D corners from LiDAR generated depth maps. The extracted
corners from LIDAR are matched with those from the aerial <| <| <|
image in a multi-stage process. Corresponding matches are

used to gain a ne estimation of the camera pose that is
used to texture the LIDAR models with the aerial images.
Chen and Wang [2] use an energy minimization technique v

to merge prior information from aerial images and mapping. A
Mapping is performed by constructing sub-maps consisting o

3D point clouds, that are constrained by relations. Using a |>_, |>_,|>/
Canny edge detector, they compute a vector eld from the [ §

image that models force towards the detected edges. The sum

of the forces applied to each point is used as an energy

measure in the minimization process, when placing a SL\Q@. 2. The graph representation used by our approach. Itrasinto
map into vector eld of the image. Dogruet al. [5] utilized the standard approach, we additionally integrate globalstaints (shown
soft computing techniques for segmenting aerial images irif yellow / light gray) given by the prior information.

different regions, such as buildings, roads, and foresteyT

applied MCL on the segmentgd maps. quever, _compareda@a”able) which in our case is given in form of an aerial
the approach presented in this paper, their technlquegéyronimage

depends on the color distribution of the aerial images sinCepis prior information is introduced to the graph-SLAM

different objects on these images might share similar COIﬂE\mework as global constraints on the nodes of the graph,

characteristics. as shown in Figure 2. These global constraints are absolute
: . Ycations obtained by Monte Carlo localization [3] on a map
IMages out of aerial photographs for 2D 'Iasgr-based IC‘3':"".1|'zcomputed from the aerial images. These images are captured
tion. As they stated in their paper, localization errors mig from a viewpoint signi cantly different from the one of the
occur if rooftops seen on the aerial image signi cantly eliff robot. However, by using 3D-scans we can extract the 2D

from the building fpotprmt observed by the 2D scanner. Tnﬁformation which is more likely to be consistent with the
method proposgd n this paper computes a 2_D structure fr%ﬂe visible in the reference map. In this way, we can prevent
a ‘?D tscgr}, Wh'ﬁ:‘ IS m.oTe. likely t;)_hma;[ch dW'tth the .featureﬂ*,]e system from introducing inconsistent prior informatido
exbracte rom d'e a?”a t_lmage. IS za s 1o ir(‘jd'_rgprov?rqtialize the particle Iter, we draw the particle positie from
robustness In nding focation correspondences. ! I@rn_a a Gaussian distribution, where the mean was determined by
our.system IS '?Ot limited to Ope“'?“e In areas whe_re the PBIOTEps We use 1,000 particles to approximate the posterior.
available. In this cases, our algorithm operates wnhdgt/&m I the following we explain how we adapted MCL to operate
performance loss compared to SLAM approaches which do Wt aerial images and how to select the points in the 3D scans

utilize any prior. This allows our system to operate in mixeg) be considered in the observation model. Subsequently we

indoor/outdoor scenarios. , , describe our graph-SLAM framework.
Sofmanet al. [24] introduced an online learning system

predicting terrain travel costs for unmanned ground vekiclA. Monte Carlo Localization

(UGVs) on a large scale. They extracted features from lpcall To estimate the pose of the robot in its environment, we
observed 3D point clouds and generalized them on overhesghsider probabilistic localization, which follows thetesive
data such as aerial photographs, allowing the UGVs to na®ayesian Itering scheme. The key idea of this approach is
igate on less obstructed paths. Montemerlo and Thrun [2@] maintain a probability densitp(x; j z1;Uot 1) Of the
presented an approach similar to the one presented in tidisationx; of the robot at time given all observations,.; and
paper. The major difference to our technique is that theyl usgll control inputsug.; 1. This posterior is updated as follows:
GPS to obtain the prior. Due to the increased noise which .

affects the GPS measurements this prior can result in Iarge"?(Xt J ZuUor 1) Z @

estimation errors. p(z¢ j Xt) P(Xt j U 1;Xt 1) P(X¢ 1) dX¢ 10

IIl. GRAPH-SLAM WITH PRIOR INFORMATION FROM

Here, is a normalization constant which ensures th@d; |
AERIAL IMAGES

Z1:t;Up:t 1) Sums up to one over al;. The terms to be de-
Our system relies on a graph-based formulation of trseribed in Eqn. (1) are tharediction modep(x: j uy 1;X¢ 1)
SLAM problem. It operates on a sequence of 3D scans aadd thesensor modgb(z; j X;). One contribution of this paper
odometry measurements. Every node of the graph represéstan appropriate computation of the sensor model in the case
a position of the robot at which a sensor measurement wéasat a robot equipped with a 3D range sensor operates in a
acquired. Every edge stands for a constraint between th@p generated from a birds-eye view.
two poses of the robot. In addition to direct links between For the implementation of the described Itering scheme,
consecutive poses, it can integrate prior information fwheve use a sample-based approach which is commonly known



as Monte Carlo localization(MCL) [3]. MCL is a variant To extract these points from the image we employ the
of particle ltering [6] where each particle correspondsdo standard Canny edge extraction procedure [1]. The ideabehi
possible robot pose and has an assigned weWhtThebelief this is, that if there is a height gap in the aerial image, eher
updatefrom Eqn. (1) is performed according to the followingwill often also be a visible change in intensity in the aerial
two alternating steps: image. This intensity change will be detected by the edge
1) In the prediction step, we draw for each particle with €xtraction procedure. In an urban environment, such edges
weight wlil a new particle according tali! and to the typically correspond to borders of roofs, trees, fencesitoer
prediction modeb(X¢ j Uy 1;X¢ 1). structures. Of course, the edge extraction procedurenstur
2) In the correction step a new observatiorz; is inte- @ lot of false positives that do not represent any actual 3D
grated. This is done by assigning a new weiglf to structure, like street markings, grass borders, shadoms, a
each particle according to the sensor mople j x;).  Other at markings. All these aspects have to be considered
y the sensor model. Figure 3 shows an aerial image and the

Furth , the particle set needs to be re-sampled dogord’ : : n a
urinermore, the particie set needs fo be re-sampled angor étracted canny image along with the likelihood- eld.

to the assigned weights to obtain a good approximation of th . i .
pose distribution with a nite number of particles. However Tobtransform tget 3ch scan mtq a set of 2DI pc:mts vxghm? f
the re-sampling step can remove good samples from the It%?nt ef comfhareSD 0 the cacrjmy |m'ac11ge, t;’]\/ © sZeDec a SE[J. et o
which can lead to particle impoverishment. To decide when INts from the scan and consider their 2L projection in
perform the re-sampling step, we calculate the nundhgrof the ground plane. This subset should contain all the points

. . R hich may be visible in the reference map. To perform this
effective particles according to the formula proposed i [6 : .

P 9 prop hi operation we compute thebuffer [8] of a scan from a bird's

Net = 1 i @) eye perspective. In this way we discard those points which
PN Q,[ilz ' are occluded in the bird's eye view from the 3D scan. By
i=1 simulating this view, we handle situations like overhaggin
roofs, where the house wall is occluded and therefore is not
whereli] refers to the normalized weight of sampland we visible in the aerial image in a more sophisticated way.
only re-sample il drops below the threshold & whereN The regions of thez-buffer which are likely to be visible
is the number of samples. In the past, this approach haslglremn the canny image are the ones which correspond to relevant
successfully been applied in the context of the simultaseogiepth changes. We construct a 2D scan by considering the 2D
localization and mapping (SLAM) problem [11]. projection of the points in these regions. This procedure is
So far we described the general framework of MCL. lillustrated by the sequence of images in Figure 4.
the next section, we will describe our sensor model for An implementation purely based on a 2D scanner (like
determining the likelihoogb(z j x) of perceiving the 3D scan the approach proposed by (ffr and Zakhor [10]) would
z from a given robot positiox within an aerial image. not account for occlusions due to overhanging objects. An
) . additional situation where our approach is more robust is in
B. Sensor Model for 3D Range Scans in Aerial Images  the presence of trees. In this case a 2D view would only sense
The task of the sensor model is to determine the likelihodtle trunk, whereas the whole crown is visible in the aerial
p(z j x) of a readingz given the robot is at pose. In our image.
current system, we apply the so called endpoint model orln our experiments, we considered variations in height of
likelihood elds [25]. Let zx be thek-th measurement of a0.5m and above as possible positions of edges that could
3D scanz. The endpoint model computes the likelihoodzpf also be visible in the aerial image. The positions of these
based on the distance between the scan pfiebrresponding variations relative to the robot can then be matched agtiest
to zx re-projected onto the map according to the pose the Canny edges of the aerial image in a point-by-point fashion
robot and the point in the magf, which is closest t@l as: and in a similar way like matching of 2D-laser scans against
) an occupancy grid map.
pzjx) = f(kz) dik;:iiikz?  dRk): (3  This sensor model has some limitations. It is susceptible
rl;goyisually cluttered areas, since it then can nd random
correspondences in the Canny edges. There is also the pos-
sibility of systematic errors, when a wrong line is used for
the localization, e.g., in the case of shadows. Since we use
position tracking, this is not critical, unless the robotves
through such areas for a long period. The main advantages of
Since the aerial image only contains 2D information abotiie end point model in this context are that it ignores pdssib
the scene, we need to select a set of beams from the 8@respondences outside of a certain range and implicifysd
scan, which are likely to result in structures, that can heith edge points that do not correspond to any 3D structure.
identi ed and matched in the image. In other words, we need The method, of course, also depends on the quality of the
to transform both, the scan and the image in a set of 2D poimatsrial images. Perspective distortions in the images csityea
which can be compared via the functibi ). introduce errors. However, in our experiments we did not nd

By assuming that the beams are independent and the se
noise is normally distributed we can rewrite (3) as

Y @ 402
f (k2 d%%;:::;kzd dPk) / e 2 : (4
i



(b)

Fig. 3. Google Earth image of the Freiburg campus (a), the sporeding Canny image (b), and the corresponding likelihageld computed from the Canny
image (c). Note that the structure of the buildings and théicadrelements is clearly visible despite of the consideraiblitter.

evidence that this is a major complicating factor.

Note that we employ a heuristic to detect when the prior
is not available, i.e., when the robot is inside of a building
or under overhanging structures. This heuristic is based on
the 3D perception. If there are range measurements whose
endpoints are above the robot, no global constraints from
the localization are integrated, since we assume that the
area the robot is sensing is not visible in the aerial image.
While a more profound solution regarding place recognition
is clearly possible, this conservative heuristic turned tawu
yield suf ciently accurate results.

C. Graph-based Maximum Likelihood SLAM

This section describes the basic algorithm for obtainirgy th
maximum likelihood trajectory of the robot. We use a graph-
based SLAM technique to estimate the most-likely trajggctor
i.e., we seek for the maximum-likelihood (ML) con guration
like the majority of approaches to graph-based SLAM.

In our approach, each node models a robot pose. The spa-
tial constraints between two poses are computed by matching
laser scans. An edge between two nodasdj is represented
by the tuplehj; jii, where j; and ; are the mean and
the information matrix of the measurement respectivelyt Le
€ (Xi;xj) be the error introduced by the constramtii.
Assuming the independence of the constraints, a solution to
the SLAM problem is giv)?n by

(X1;::;%X0) = argmin & (Xi;%))" ji&i (Xi3%;): (5)
(X135 Xn) b i

To account for the residual error in each constraint, we can
(d) (e) additionally consider the prior information by incorpanaf
the position estimates of our localization approach. T thi

Fig. 4. A 3D scan represented as a point clda)l the aerial image of the end, we extend Eqgn. (5) as follows:
corresponding aregb), the Canny edges extracted from the aerial im@ge X

the 3D scene from (a) seen from the (@) (gray values represent the maximal (Xl; v ;Xn) = argmin & (Xi X )T i e (Xi X )
height per cell, the darker a pixel, the lower the height, #regreen/bright (X235 X ) o J " J
gray area was not visible in the 3D scan), and positions etetafrom (d), X hiii i

where a high variation in height occurréel). + (Xi R )T R, (Xi Ri ) (6)

i2G



where®; denotes the position as it is estimated by the local-

ization using the bird's eye image amR} is the information

matrix of this constraint. In our approach, we compiRe

based on the distribution of the samples in MCL. We use non-

linear conjugate gradient to ef ciently optimize Eqn. (@he

result of the optimization is a set of poses which maximibes t

likelihood of all the individual observations. Furtherrapthe

optimization also accommodates the prior information abou

the environment to be mapped whenever such information

is available. In particular, the objective function encedbe

available pose estimates as given by our MCL algorithm

described in the previous section. Intuitively the optiatian

deforms the solution obtained by the relative constraiatth p Fig. 5. The robot used for carrying out the experiments is gupd with
to maximize the overall likelihood of all the observations? !aser range nder mounted on a panttiit unit. We obtain 3Daday
. . . . . L . ¢ontinuously tilting the laser while the robot moves.

including the priors. Note that including the prior infortiza

about the environment yields a globally consistent esenoht
the trajectory.

If the likelihood function used for MCL is a good approxi-
mation of the global likelihood of the process, one can re ne
the solution of graph-based SLAM by an iterative procedure.
During one iteration, new global constraints are computed
based on the gradient of the likelihood function estimated a
the current robot locations. The likelihood function cortgul
by our approach is based on a satellite image from which
we extract “potential” 3D structures which may be seen from
the laser. Whereas the heuristics described in Section III-B
reject most of the outliers, there may be situations where
our likelihood function approximates the true likelihoodiyp
locally. We observed that applying the iterative procedure

discussed above may worsen the initial estimate genergteddy 7 comparison between GPS measurements (blue crosseg)ohad

our approach. poses from the localization in the aerial image (red circl&jshed lines
indicate transitions through buildings, where GPS andahemages are
unavailable.

IV. EXPERIMENTS

The approach described above has been implemented and

evaluated on real data acquired witiMabileRobots Powerbot localization. We also fec‘?fP',ed the GPS da.ta for comparison
with a SICK LMSlaser range nder mounted on ahmtec purposes. The data acquisition took approximately one.hour

wrist unit. The 3D data used for the localization algorithm F19Uré 7 compares the GPS estimate with the one obtained

has been acquired by tilting the laser up and down while th¥ MCL on the aerial view. The higher error of the GPS-based

robot moves. The maximum translational velocity of the mb@pproach is clearly V'S'bk_a'_NOte thgt GPS, n contrast t ou

during data acquisition was 0.35 m/s. This relatively lowexh approach, does not explicitly provide the orientation oé th

allows our robot to obtain 3D data which is suf ciently dens&©POt

to perform scan matching without the need to acquire thessca® Experiment 2 - Global Map Consistency

in a stop-and-go fashion. During each 3D scan the robot move

up to 2m. We used the odometry to account for the distorti%
t

caused by the movement of the platiorm. Figure 5 depicts tdoor environment and to compare it against a stateesf-th

setup of our robqt. Although _the robot is equipped with alrt SLAM approach similar to the one proposed by Olson [21].
array of sensors, in the experiments we only used the dewce@ve evaluate the global consistency of the generated maps
mentioned above. obtained with both approaches. To this end, we recorded ve
data sets by steering the robot through our campus area. In
each run the robot follows approximately the same trajgctor
This experiment aims to show the effectiveness of thehe trajectory of one of these data sets as it is estimated by
localization on aerial images compared with the one achievaour approach and a standard graph-SLAM method is shown
with GPS. We manually steered our robot along a 890 m Figure 6.
long trajectory through our campus, entering and leaving For each of the two approaches (our method using the aerial
buildings. The robot captured 445 3D scans that were used fimage and the graph-based SLAM technique that uses no prior

dl’he goal of this experiment is to evaluate the ability of our
stem to create a consistent map of a large mixed in- and

A. Experiment 1 - Comparison to GPS



Fig. 6. Comparison of our system to a standard SLAM approaghdomplex indoor/outdoor scenario. The center image showsdfetory estimated by

the SLAM approach (bright/yellow) and the trajectory gexted by our approach (dark/red) overlaid on the Google Harttye used as prior. On the left
and right side, detailed views of the areas marked in the cémigge are shown, each including the trajectory and map. Therumages show the results
of the standard SLAM approach; detail A on the left and B onright. The lower images show the results of our system (A onlgfteside and B on the

right). It is clearly visible, that, in contrast to the SLAMgarithm without prior information, the map generated by oppmach is accurately aligned with
the aerial image.
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. . . o ) Fig. 9. Error bars ( = 0:05) for the estimated distances between the six
Fig. 8. The six points (corners on the buildings) we used f@iugtion are points used for evaluation of the map consistency.
marked as crosses on the map.

. . ) o Compared to SLAM without prior information, our ap-
information) we calculated the maximum likelihood map byroach has a smaller error and it does not require frequept lo
processing the acquired data of each run. closures to limit the error of the estimate. Note that usiog o
For each of the ve data sets we evaluated the globghproach loop closures are not required to obtain a globally
consistency of the maps by manually measuring the distanggssistent map. Additionally, the standard deviation daé th
between six easily distinguishable points on the campus. \Wgtimated distances is substantially smaller than thedaten
compared these distances to the corresponding distantes indeviation obtained with a graph-SLAM approach that does
maps (see Figure 8). We computed the average error in § utilize prior information. Our approach is able to roitys

distance between these points. The result of this comparissstimate a globally consistent map on each data set.
is summarized in Figure 9. As ground-truth data we used the

so-calledAutomatisierte Liegenschaftskamhich is provided C- Experiment 3 - Local Alignment Errors

by the German land registry of ce. It contains the outer wall Ideally, the result of a SLAM algorithm should perfectly
of all buildings where the coordinates are stored in a Gaugsrespond to the ground truth. For example, the straiglit wa
Kruger reference frame. of a building should lead to a straight structure in the résgl
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