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Abstract—This paper presents a procedure to optimize the
quality of robotic grasps for objects that need to be held and
manipulated in a specific way, characterized by a number of tight
contact constraints. The main difficulties of the problem include
that the set of feasible grasps is a manifold implicitly defined
by a system of non-linear equations, the high dimension of this
manifold, and the multi-modal nature of typical grasp quality
indices, which make local optimization methods get trapped into
local extrema. The proposed procedure finds a way around these
difficulties by focussing the exploration on a relevant subset
of grasps of lower dimension, which is traced out exhaustively
using higher-dimensional continuation techniques. Using these
techniques, a detailed atlas of the subset is obtained, on which
the highest quality grasp according to any desired criterion can
be readily identified. Experiments on a 3-finger planar hand and
on the Schunk anthropomorphic hand validate the approach.

I. INTRODUCTION

The study of how to grasp and manipulate objects with
anthropomorphic hands is fundamental if robots are ever
to replace humans in dangerous or repetitive tasks, or to
cooperate with them in everyday activities. In many cases,
the objects are designed to be held and manipulated in a
specific way, characterized by a number of tight contact
constraints [2, 9, 8, 19, 18]. In such cases, a grasp planner
must be able to generate, not only a grasp satisfying the contact
constraints, but one of sufficient quality, guaranteeing that the
task will be successfully accomplished. For instance, Fig. 1
shows two different grasps of a can during drink service. While
the can easily escapes from the hand in the first grasp, it is
firmly held in the second one, even in the presence of external
disturbances. Since the quality of a grasp may be defined
according to a variety of criteria, including force-closure [6],
manipulability [1], or any other criterion particular to the task
to be performed [13], the grasp planner should ideally make as
few assumptions as possible on the continuity or smoothness
of the quality measure adopted.

When the object can be grasped in an arbitrary way, a
grasp can be optimized in a generate-and-test fashion, initially
relaxing the contact constraints [3]. The resulting search space
is of high dimension after such relaxation as it coincides with
the configuration space of the hand. Therefore, dimension-
reduction simplifications based on principal hand motions [21,
3, 20, 7] need to be introduced to define a search space that
can be explored in a reasonable time. This space is searched
effectively in [3], for example, using simulated annealing. The
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Fig. 1. Two grasps of the same object. (a) A low quality grasp where the
hand can not compensate external disturbances. (b) A grasp where the hand
firmly holds the object.

generated solutions, however, do not necessarily correspond to
hand configurations in contact with the object, and thus they
need to be evaluated with so-called pre-grasp quality indices.
Unfortunately, a good pre-grasp does not always result in a
high-quality grasp, once the required contact constraints are
finally enforced.

The problem is harder if, as considered in this paper, the
object has to be grasped and manipulated while respecting a
number of tight contact constraints with the hand. In this case,
the space of feasible grasps is a complex manifold, implicitly
defined by a system of nonlinear equations that express all
assembly and contact constraints of the hand-object system.
Typically, such manifold is not parametrizable and, thus, it
can not be effectively explored with randomized techniques
like [3] since the probability of obtaining a valid grasp using a
generate-and-test strategy is very low. Moreover, local methods
departing from a given configuration [15] are not likely to
find a globally optimal grasp, because grasp quality indices
are highly non-linear and present local extrema.

This paper proposes a grasp optimization procedure aimed
at circumventing the aforesaid limitations. The procedure en-
tails characterizing the manifold of feasible grasps as a system
of equations to be fulfilled (Section II), then extending this
system with meaningful equations to reduce the dimension of
its solution set (Section III), and finally performing an exhaus-
tive search over a point grid discretizing such set at a desired
resolution, to determine the highest-quality grasp attainable
on the grid (Section IV). The grid is derived by resorting to
recently-developed techniques for higher-dimensional contin-



uation [11], which are able to compute exhaustive chart-based
representations of implicitly-defined manifolds in reasonable
times, for moderate dimensions. The method can be applied
to optimize a grasp under any desired criterion, because it
only requires the evaluation of the adopted quality measure
on selected points, without making particular assumptions on
the mathematical properties of the measure. The approach
has been validated on simple and complex grasping devices
(Section V) using several quality indices.

II. FEASIBLE GRASP CHARACTERIZATION

Robotic hands are complex mechanical systems involving
multiple bodies articulated through lower-pair joints (Fig. 2).
In many situations, like when serving a drink or manipu-
lating a scalpel, a hand is required to grasp an object in a
specific way, characterized by a number of points qi on the
hand, i = 1, . . . ,m, that need to be placed in contact with
corresponding regions Oi on the object, keeping aligned the
surface normals to the hand, n̂i, and the object, m̂i, to avoid
interpenetrations (Fig. 3). While the hand points may derive
from known patterns of static prehension [12], the object
regions may be obtained from contact region delimitation
algorithms [14, 22, 16, 17], and the assignment of hand points
to object regions may be done using representative points on
the regions [24, 5]. As shown next, the set of feasible grasps,
i.e., those fulfilling such constraints, can be characterized by
a system of nonlinear equations.

Regardless of the specific formulation adopted, a grasp
configuration can be represented by a vector x = [xh,xo,xc]
of n generalized coordinates, where xh and xo encompass the
configuration variables of the hand and the object, respectively,
and xc encompasses contact-related variables. Without loss of
generality, we will assume that the absolute reference frame
is attached to the palm of the hand, so that its pose variables
do not intervene in x.

The x variables are subject to a number of constraints. A
first set of equations

H(xh) = 0 (1)

enforces xh to be a valid hand configuration, i.e., one respect-
ing the assembly constraints imposed by the joints (usually
revolute or universal) on the various bodies they connect (the
palm and the several finger phalanges). Note that Eq. (1) is
not necessary if the xh coordinates are independent, as it
happens for instance when choosing joint angles to represent a
configuration [4]. In our case, however, we use the dependent
coordinates proposed in [18] because they yield equations of
a simple structure, which has proved to be beneficial in the
context of continuation methods [23]. Thus, Eq. (1) encom-
passes the constraints relating such coordinates. In particular,
this formulation encodes the 6 degrees of freedom a body
with 12 variables providing its position vector and rotation
matrix. Therefore, in addition to the joint assembly equations,
Eq. (1) includes constraints to enforce the 12-tuple for each
body to be a member of SE(3). In a similar way, a second
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Fig. 2. Kinematic structure of the Schunk anthropomorphic hand. R stands
for revolute joint and U for universal.

the 12-tuple in xh for each body to be a member of SE(3).
In a similar way, a second set of equations,

L(xo) = 0, (2)

imposes xo to be a valid configuration tuple for the ma-
nipulated object. Finally, a third set of equations formulates
the contact constraints between the hand and the object. To
this end, we assume that each region Oi is specified as a
parametrized patch, i.e., as a smooth function of the form

oi = Oi(ui, vi,xo), (3)

providing the absolute coordinates of a point oi = (xi, yi, zi)
in the patch, in terms of two scalar parameters, ui and vi,
bound to lie within some interval, and of the object pose xo.
Analogously, the normal to any point in this patch is assumed
to be given as a function

m̂i = Mi(ui, vi,xo). (4)

Both Oi(ui, vi,xo) and Mi(ui, vi,xo) can be defined using,
for instance, Bézier patches [18]. Note that since the forward
kinematic map of the hand allows writing qi and n̂i as
functions of the hand variables

qi = Ki(xh), (5)

n̂i = Ni(xh), (6)

the contact of qi with oi can be expressed by setting

qi = oi, (7)

m̂i = −n̂i. (8)

In sum, thus, the set of feasible grasps is the set F of points
x ∈ Rn satisfying the system

F(x) = 0, (9)

formed by Eqs. (1) and (2), and Eqs. (3) to (8) for i =
1, . . . ,m. We will here assume that F(x) is smooth function,
whose Jacobian is full rank at all points satisfying Eq. (9),
which is the common situation in practice. Thus, F will be a
smooth manifold in our case.
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Fig. 3. Elements intervening in the i-th contact constraint. Points qi and
oi ∈ Oi must coincide, with the normals on such points, n̂i and m̂i, aligned.

III. DIMENSIONALITY REDUCTION

For a realistic hand and contact model, the dimension
of F is very large, which hinders the efficient exploration of
this space independently of the methodology adopted. In the
context of grasping, however, studies on the human behavior
suggest that humans do not use all the d degrees of freedom
of the hands independently, but in a coordinated way [21].
Following this idea, anthropomorphic hands are usually con-
trolled using so-called principal hand motions (also called
hand postural synergies [21, 7], eigengrasps [3] or principal
motion directions [20]), where few coordinated motions are
used to account for the overall motion capability of the hand.
By taking principal hand motions into account, the search of
a good grasp can be narrowed to a subset R ⊂ F of lower
dimension, thus speeding up the optimization.

Principal hand motions are computed via linear dimension-
reduction techniques, on a predetermined set of hand configu-
rations Xh = {xi

h | i = 1 . . . z}. Let x̄h be the average of the
configurations in Xh, and let T be a h× z matrix where each
column ti is xi

h − x̄h. The principal component analysis of T
can be performed by diagonalizing the covariance of T as

T T! = E S2 E!.

The h × h orthonormal matrix E gives the directions of
variance of the data, and the diagonal matrix S2 is the variance
in each one of these directions, sorted in decreasing magnitude.
The set E of the p principal hand motions is spanned by the
first p columns of E, and the matrix Es, including the rest of
columns of E, spans the remaining s = h − p hand motions.
Therefore, Eq. (9), together with

E!
s (xh − x̄h) = 0, (10)

defines the system

R(x) = 0, (11)

characterizing the set R = F ∩ E of relevant grasps.

For a given t, the dimension of F , and a given k, the
required dimension of R, the number of additional constraints
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Fig. 4. Schematic representation of all the elements involved in the
optimization framework presented in this paper. See the text for details.

in Eq. (10) to add to Eq. (9) must be

s = t − k. (12)

Note that s must be smaller than h, which limits the amount of
dimension reduction introduced by the use of principal hand
motions. As we will see, this is not an issue in practice, since,
due to the presence of the contact constraints, the amount of
dimension reduction to be introduced is moderate in all cases.

However, care must be taken, because the introduction of
principal hand motions might lead to an empty set R. In order
to avoid this issue, and to guarantee the intersection of F
and E , we approximate Eq. (10) by

E!
s (xh − x1,h) = 0, (13)

where x1,h corresponds to the hand parameters of an initial
feasible grasp, x1 ∈ F , which may be obtained using grasp
synthesis techniques [2, 18]. This approximation ensures that
the hand always conforms to the object surface since R
includes at least one feasible grasp, x1. However, in general, R
is large since the difference of using the x1,h instead of x̄h is
small. This is due to the fact that the components of any hand
configuration along Es are typically small and, thus, x1,h is
usually close to the original set of principal motions.

Figure 4 summarizes the different elements involved in the
approach. F is the set of feasible grasps defined in the space of
xh, xo, and xc. In this representation, the configurations in Xh

are shown as black dots, the white dot is their average, x̄h,
and the original set of principal hand motions is shown as a
dashed line in the xh plane. The latter set is approximated by
a line through x1,h, shown in dots in the figure, which, when
extended to the whole space, generates the linear space E .
Finally, the set R = F ∩ E is the space where the grasp
optimization is performed.
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IV. GRASP QUALITY OPTIMIZATION

In this paper, the optimal grasp is computed by obtaining
an atlas of R. An atlas is composed by a collection of charts
where each chart Ci defines a map from Rk to a portion
of R around a given point xi ∈ Rn. This atlas will allow
enumerating a representative collection of grasps in R, on
which any given quality index can be evaluated. The atlas
will be computed using the higher-dimensional continuation
method proposed in [10]. This method defines the map for
chart Ci using Φi, an orthonormal basis of Txi

R, the k-
dimensional tangent space of R at xi. The map is defined
by first selecting a k-dimensional vector uj

i of parameters
(Fig. 5a), which is used to generate a point x̃j ∈ Rn in the
neighborhood of xi as

x̃j = xi + Φi uj
i . (14)

Then, a point xj on R is computed by orthogonally project-
ing x̃j . This projection is obtained by solving

R(xj) = 0,
Φ! (xj − x̃j) = 0,

(15)

using a Newton process initialized at x̃j .
Each point on the manifold is the potential center of a new

chart (see Fig. 5b). Henderson [10] introduces a method to
determine how to select the centers for the charts, ensuring a

Fig. 7. Three stages in the construction of an atlas over a sphere. Red and
blue polygons represent charts under expansion and charts whose domain is
already bounded, respectively.

good coverage of the manifold. In his approach, the domain Pi

of chart Ci is initialized as a k-dimensional hypercube enclos-
ing a ball Bi of radius r, both defined in Txi

R, as illustrated
in Fig. 6a. A vertex of Pi exterior to Bi, with position vector
v, is used to generate a point x̃j , using Eq. (14) with

uj
i =

α

‖v‖ v, (16)

where α is initialized to r. If the projection from x̃j to R
does not converge, or if the new chart Cj at xj is too far or
too different from Ci, i.e., if

‖xj − x̃j‖ > ε, (17)

or

‖Φ!
i Φj‖ < 1 − ε, (18)

for a given threshold ε, then the new chart is discarded and a
new attempt of chart generation is performed with a smaller α.
This procedure adapts the size of the area covered by each
chart to the local curvature of the manifold. When Cj is valid,
it is used to refine Pi from the intersection between Bi and
C̃i

j , the projection on Txi
R of the part of the manifold covered

by Cj . This projection is approximated by a ball Bi
j in Txi

R, as

shown in Fig. 6b. The intersection of Bi and Bi
j defines a new

face of Pi that eliminates some of its vertices (in particular v)
and generates new ones. Similarly, the polytope Pj associated
with Cj is cropped using the projection of Ci into Cj . When Ci

is surrounded by other charts, Pi becomes a convex polytope
included in Bi, and the domain for Ci gets bounded. When all
charts are bounded, the connected component of R containing
the initial point x1 gets fully covered, as shown in Fig. 7.

The computational cost of the previous procedure is expo-
nential in k and, therefore, it is only practical to compute an
atlas on manifolds of moderate dimension, as it is the case of
the manifold R herein considered.

Once the atlas is computed, we can readily evaluate the
quality measure all over R. For simplicity, our implementa-
tion only evaluates the quality criterion at the chart center.
However, if there were abrupt changes in the quality measure,
the chart maps could be used to obtain a denser grid of points,
either in particular areas or all over the manifold. Collisions
could be considered as well, along with the evaluation of the
quality measure, returning the best collision free grasp in the
end.
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IV. GRASP QUALITY OPTIMIZATION

In this paper, the optimal grasp is computed by obtaining
an atlas of R. An atlas is composed by a collection of charts
where each chart Ci defines a map from Rk to a portion
of R around a given point xi ∈ Rn. This atlas will allow
enumerating a representative collection of grasps in R, on
which any given quality index can be evaluated. The atlas
will be computed using the higher-dimensional continuation
method proposed in [10]. This method defines the map for
chart Ci using Φi, an orthonormal basis of Txi

R, the k-
dimensional tangent space of R at xi. The map is defined
by first selecting a k-dimensional vector uj

i of parameters
(Fig. 5a), which is used to generate a point x̃j ∈ Rn in the
neighborhood of xi as

x̃j = xi + Φi uj
i . (14)

Then, a point xj on R is computed by orthogonally project-
ing x̃j . This projection is obtained by solving

R(xj) = 0,
Φ! (xj − x̃j) = 0,

(15)

using a Newton process initialized at x̃j .
Each point on the manifold is the potential center of a new

chart (see Fig. 5b). Henderson [10] introduces a method to
determine how to select the centers for the charts, ensuring a

Fig. 7. Three stages in the construction of an atlas over a sphere. Red and
blue polygons represent charts under expansion and charts whose domain is
already bounded, respectively.

good coverage of the manifold. In his approach, the domain Pi

of chart Ci is initialized as a k-dimensional hypercube enclos-
ing a ball Bi of radius r, both defined in Txi

R, as illustrated
in Fig. 6a. A vertex of Pi exterior to Bi, with position vector
v, is used to generate a point x̃j , using Eq. (14) with
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where α is initialized to r. If the projection from x̃j to R
does not converge, or if the new chart Cj at xj is too far or
too different from Ci, i.e., if

‖xj − x̃j‖ > ε, (17)

or
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for a given threshold ε, then the new chart is discarded and a
new attempt of chart generation is performed with a smaller α.
This procedure adapts the size of the area covered by each
chart to the local curvature of the manifold. When Cj is valid,
it is used to refine Pi from the intersection between Bi and
C̃i

j , the projection on Txi
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by Cj . This projection is approximated by a ball Bi
j in Txi

R, as

shown in Fig. 6b. The intersection of Bi and Bi
j defines a new

face of Pi that eliminates some of its vertices (in particular v)
and generates new ones. Similarly, the polytope Pj associated
with Cj is cropped using the projection of Ci into Cj . When Ci

is surrounded by other charts, Pi becomes a convex polytope
included in Bi, and the domain for Ci gets bounded. When all
charts are bounded, the connected component of R containing
the initial point x1 gets fully covered, as shown in Fig. 7.

The computational cost of the previous procedure is expo-
nential in k and, therefore, it is only practical to compute an
atlas on manifolds of moderate dimension, as it is the case of
the manifold R herein considered.

Once the atlas is computed, we can readily evaluate the
quality measure all over R. For simplicity, our implementa-
tion only evaluates the quality criterion at the chart center.
However, if there were abrupt changes in the quality measure,
the chart maps could be used to obtain a denser grid of points,
either in particular areas or all over the manifold. Collisions
could be considered as well, along with the evaluation of the
quality measure, returning the best collision free grasp in the
end.

(a) (b)

Fig. 6. Polytope-based chart construction. (a) The validity area for chart Ci,
Pi, is a box including a ball of radius r around xi. (b) Pi is refined using a
ball Bi

j that approximates C̃i
j , the projection on Ci of the part of the manifold

covered by Cj .

IV. GRASP QUALITY OPTIMIZATION

In this paper, the optimal grasp is computed by obtaining
an atlas of R. An atlas is composed by a collection of charts
where each chart Ci defines a map from Rk to a portion
of R around a given point xi ∈ Rn. This atlas will allow
enumerating a representative collection of grasps in R, on
which any given quality index can be evaluated. The atlas
will be computed using the higher-dimensional continuation
method proposed in [10]. This method defines the map for
chart Ci using Φi, an orthonormal basis of Txi

R, the k-
dimensional tangent space of R at xi. The map is defined
by first selecting a k-dimensional vector uj

i of parameters
(Fig. 5a), which is used to generate a point x̃j ∈ Rn in the
neighborhood of xi as
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Then, a point xj on R is computed by orthogonally project-
ing x̃j . This projection is obtained by solving
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determine how to select the centers for the charts, ensuring a
good coverage of the manifold. In his approach, the domain Pi

of chart Ci is initialized as a k-dimensional hypercube enclos-
ing a ball Bi of radius r, both defined in TxiR, as illustrated
in Fig. 6a. A vertex of Pi exterior to Bi, with position vector
v, is used to generate a point x̃j , using Eq. (14) with

uj
i =

α

‖v‖ v, (16)

where α is initialized to r. If the projection from x̃j to R
does not converge, or if the new chart Cj at xj is too far or
too different from Ci, i.e., if

‖xj − x̃j‖ > ε, (17)

or
‖Φ>i Φj‖ < 1− ε, (18)

for a given threshold ε, then the new chart is discarded and a
new attempt of chart generation is performed with a smaller α.
This procedure adapts the size of the area covered by each
chart to the local curvature of the manifold. When Cj is valid,
it is used to refine Pi from the intersection between Bi and
C̃ij , the projection on TxiR of the part of the manifold covered
by Cj . This projection is approximated by a ball Bij in Txi

R, as
shown in Fig. 6b. The intersection of Bi and Bij defines a new
face of Pi that eliminates some of its vertices (in particular v)
and generates new ones. Similarly, the polytope Pj associated
with Cj is cropped using the projection of Ci into Cj . When Ci
is surrounded by other charts, Pi becomes a convex polytope
included in Bi, and the domain for Ci gets bounded. When all
charts are bounded, the connected component of R containing
the initial point x1 gets fully covered, as shown in Fig. 7.

The computational cost of the previous procedure is expo-
nential in k and, therefore, it is only practical to compute an
atlas on manifolds of moderate dimension, as it is the case of
the manifold R herein considered.

Once the atlas is computed, we can readily evaluate the
quality measure all over R. For simplicity, our implementa-
tion only evaluates the quality criterion at the chart center.
However, if there were abrupt changes in the quality measure,
the chart maps could be used to obtain a denser grid of points,
either in particular areas or all over the manifold. Collisions
could be considered as well, along with the evaluation of the
quality measure, returning the best collision free grasp in the
end.



Algorithm 1: The grasp optimization procedure.
GraspOptimization(F,Xh,x1,Q, t, k, r, ε)
input : The set F of equations describing F , the set Xh

of representative hand configurations, the initial
grasp x1, the quality measure Q to be
optimized, the dimension t of F , the desired
dimension k for R, and the parameters r and ε
used to define the atlas.

output: The configuration giving the optimal grasp.
E← HANDMOTIONS(Xh)1

s← t− k2

R← F ∪ {Es(xh − x1,h)}3

A ← {GENERATECHART(R,x1, r)}4

while not BOUNDED(A) do5

Ci ←NOTBOUNDEDCHART(A)6

α← r7

v←EXPANDIBLEVERTEX(Ci)8

repeat9

Cj ←NEWCHART(R, Ci, α,v, r)10

α← α · 0.911

until not SIMILARCHARTS(Ci, Cj , ε)12

A ← A∪ {Cj}13

g ← 014

forall C ∈ A do15

x←CENTER(C)16

q ← Q(x)17

if q ≥ g then18

xg ← x19

g ← q20

RETURN(xg)21

Algorithm 1 summarizes the proposed optimization proce-
dure. The algorithm receives as inputs the set F of equations
describing F , the set Xh of representative hand configurations,
the initial grasp x1, the quality measure Q to be optimized,
the dimension t of F , the desired dimension k for R, and the
parameters r and ε used to define the atlas. The algorithm
determines the hand motions as described in Section III
(line 1). The number of constraints introduced in F to obtain R
is computed as a function of t and k (line 2). Then, the
atlas is initialized with a chart on x1 (line 4), and the atlas
construction proceeds while any of the charts can be extended
(lines 5 to 13). The extension of a chart Ci starts by selecting
a vertex of Pi not included in Bi (line 8). This vertex is
used to generate a new chart Cj (line 10) using Eqs. (14)
and (15) to determine its center. If the difference between
the new chart and the previous one is too large, according to
Eqs. (17) and (18), chart generation is attempted closer to xi.
Otherwise, the new chart is added to the atlas, intersecting it
with the charts already included in it (line 13). Once the atlas
is completed, the quality criterion is evaluated at the chart
centers (lines 15 to 20), identifying the point with a larger
quality. This point is returned as the optimal grasp (line 21).

Algorithm 1: The grasp optimization procedure.

GraspOptimization(F,Xh,x1,Q, t, k, r, ε)
input : The set of equations defining the feasible

grasps, F, a set of hand configurations, Xh, the
initial grasp x1, a grasp quality function, Q, the
dimensionality of F , t, the desired
dimensionality for R, k, and the two parameters
to define the atlas, r, and ε.

output: The configuration giving the optimal grasp.
E ← PRINCIPALHANDMOTIONS(Xh)1

s ← t − k2

R ← F ∪ {Es(xh − x1,h)}3

A ← {GENERATECHART(R,x1, r)}4

while not BOUNDED(A) do5

Ci ←NOTBOUNDEDCHART(A)6

α ← r7

v ←EXPANDIBLEVERTEX(Ci)8

repeat9

Cj ←NEWCHART(R, Ci,α,v, r)10

α ← α · 0.911

until not SIMILARCHARTS(Ci, Cj , ε)12

A ← A ∪ {Cj}13

g ← 014

forall C ∈ A do15

x ←CENTER(C)16

q ← Q(x)17

if q ≥ g then18

xg ← x19

g ← q20

RETURN(xg)21

Algorithm 1 summarizes the proposed optimization proce-
dure. The algorithm receives as inputs the set F of equations
describing F , the set Xh of representative hand configurations,
the initial grasp x1, the quality measure Q to be optimized,
the dimension t of F , the desired dimension k for R, and
the parameters r and ε used to define the atlas. The algorithm
determines the principal hand motions (line 1), as described
in Section III. The number of constraints introduced in F to
obtain R is computed as a function of t and k (line 2). Then,
the atlas is initialized with a chart on x1 (line 4), and the atlas
construction proceeds while any of the charts can be extended
(lines 5 to 13). The extension of a chart Ci starts by selecting v
a vertex of Pi not included in Bi (line 8). This vertex is
used to generate a new chart Cj (line 10) using Eqs. (14)
and (15) to determine its center. If the difference between
the new chart and the previous one is too large, according to
Eqs. (17) and (18), chart generation is repeated closer to xi.
Otherwise, the new chart is added to the atlas, intersecting it
with the charts already included in it (line 13). Once the atlas
is completed, the quality criterion is evaluated on the chart
centers (lines 15 to 20), identifying the point with a larger
quality. This point is returned as the optimal grasp (line 21).
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Fig. 8. A simple planar hand with three fingers holding an object. Parameters
are only indicated for one finger but apply for the three of them.

V. EXPERIMENTS AND RESULTS

For the sake of clarity, we will first describe in detail the
grasp optimization for a simple example and then summarize
the results for the Schunk anthropomorphic hand. All results
correspond to an implementation in C and Matlab, running on
an Intel Core 2 Duo at 3 Ghz.

Figure 8 shows the planar hand with three fingers and two
phalanges per finger. The length of j-th phalanx of the i-th
finger is given by the constant parameter li,j . The configuration
space is of dimension d = 6, but here a configuration, xh, is
represented by 12 variables giving six unit vectors v̂i,j ∈ R2,
xh = (v̂1,1, . . . , v̂3,2). Under this redundant formulation,
accordingly, Eq. (1) is

‖v̂i,j‖2 − 1 = 0, (19)

for all fingers and phalanges. The object pose is parametrized
using xo = (to,vo), where to = (xo, yo) and vo = (so, co)
are the object position and normalized orientation vectors,
respectively. Then, Eq. (2) is

‖vo‖2 − 1 = 0. (20)

Eq. (5) giving the contact point on each finger is given by

qi = ai + li,1 v̂i,1 + li,2 v̂i,2, (21)

where ai is the attachment of finger i to the palm and Eq. (6)
providing the associated normal is simply

n̂i = v̂i.2. (22)

In a planar case, the contact patches on the object reduce
to one-dimensional curves that, in this example, are arcs of
circumference. Thus, Eq. (3) is

oi = (to +

[
co −so

so co

]
ci) + li,3 ŵ(ui), (23)

where ci is the center of the circumference in local coordinates
of the object, li,3 is its radius, and

ŵ(ui) =

[
cos ui

sin ui

]
, (24)

Fig. 8. A simple planar hand with three fingers holding an object. Parameters
are only indicated for one finger but apply for the three of them.

V. EXPERIMENTS AND RESULTS

For the sake of clarity, we first describe in detail the
grasp optimization for a simple example and then summarize
the results for the Schunk anthropomorphic hand. All results
correspond to an implementation in C and Matlab, running on
an Intel Core 2 Duo at 3 Ghz.

Figure 8 shows a planar hand with three fingers and two
phalanges per finger holding an object composed of circles.
The length and global orientation of the j-th phalanx of the
i-th finger are given by the constant parameter li,j and the unit
vector v̂i,j ∈ R2, respectively. The configuration of the hand
can be encoded in a simplified form in this case, by the vector
xh = [v̂1,1, . . . , v̂3,2] subject to the constraints

‖v̂i,j‖2 = 1 (19)

for all phalanges. Thus, Eq. (1) is the system formed by
Eqs. (19). Since this system contains 6 equations and 12
variables, its solution set will be 6-dimensional, which agrees
with the number of degrees of freedom of the hand. The
object pose is given by xo = (to, v̂o), where to = (xo, yo)
and v̂o = (so, co) are global position and orientation vectors,
respectively. Then, Eq. (2) is

‖v̂o‖2 = 1. (20)

Eq. (5) giving the contact point on each finger is given by

qi = ai + li,1 v̂i,1 + li,2 v̂i,2, (21)

where ai is the palm anchor point of finger i, and Eq. (6)
providing the associated normal is simply

n̂i = v̂i.2. (22)

In this example, the contact patches reduce to arcs of circum-
ference. Thus, Eq. (3) is

oi = (to +

[
co −so
so co

]
ci) + li,3 ŵ(ui), (23)
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Fig. 9. Top and bottom views of the atlas over the set R of relevant feasible grasps, evaluated with three different indices related to the manipulability
ellipsoid: (a) the inverse of the condition number, (b) the volume, and (c) the minimum semiaxis length. Green corresponds to configuration with a large
value of the corresponding manipulability index, red to configurations with small value, and black to singular configurations. The insets on the left show
representative configurations for the hand and the corresponding projection of the manipulability ellipsoid.

where ci is the center of the circumference in local coordinates
of the object, li,3 is its radius, and

ŵ(ui) =

[
cosui
sinui

]
, (24)

where ui ∈ [ai, bi] is the angular range defining the arc for
contact patch i. Finally, Eq. (4) giving the normal of the
contact patch is

m̂i = ŵ(ui). (25)

Thus, Eq. (9) encompasses Eqs. (19) to (25) in this case. This
equation, together with Eq. (13) relative to the principal hand
motions, yields Eq. (11) defining R. In this case, the dimen-
sion t of F is 3. The proposed optimization procedure can be
directly applied to problems of this dimension. However, to
complete the example and to facilitate the visualization of the
results, it is better to reduce the dimension of R to k = 2.
Thus, using Eq. (12), s must be 1. In this simulated case,
the hand motions are computed from a set Xh of randomly-
generated hand configurations.

Figure 9 shows the results obtained with the proposed
method on this example. In the figure, each polygon cor-
responds to one chart. The total number of charts is about
750 obtained with r = 0.125 and ε = 0.4. Since contact
patches can be selected to ensure reasonable force-closed
grasps [14, 22, 16, 17], the final atlas is used to optimize
three indices related to the manipulability ellipsoid of the
grasp [1]. These are the inverse of the condition number (the
ratio between the smallest and largest semiaxis lengths of
the ellipsoid), the volume of the ellipsoid, and its smallest
semiaxis length. the manipulability ellipsoid degenerates in a
singularity, indicating that the hand can not move the object
in some directions. In this case, the manipulability indices
are zero. In the plot, green and red correspond to grasps
with large and low manipulability, respectively, and black

corresponds to singular grasps. A point is considered singular
if the corresponding manipulability index is below 10−3,
10−4, and 10−3, respectively. As it can be seen, different
indices result in different qualities for the same grasps. The
insets on the left show representative grasps for this problem,
corresponding to local extrema of the condition number,
and the associated manipulability ellipsoid projected on the
plane of the largest and smallest semiaxis lengths. The top
configuration corresponds to the global optimum obtained. The
middle configuration is singular. As it can be seen, one of
the fingers is fully extended. This is a well-known singular
configuration of the 3RRR planar parallel platform, which
is kinematically equivalent to this grasp. Finally, the bottom
configuration corresponds to a local maximum. The presence
of local extrema makes local search methods not adequate
for this problem. In this example, the optimization takes 1.6
seconds, 0.1 to generate the atlas (implemented in C) and
1.5 to evaluate the manipulability criteria (implemented in
Matlab).

Figure 10a shows the results of applying the procedure on
the Schunk anthropomorphic hand holding a can with three
fingers. Assuming that all joints are independently actuated,
this grasp involves 13 degrees of freedom of the hand. In this
case, Eq. (1) involves 95 equations and 108 variables and,
hence, its solution set is 13-dimensional, as expected. The can
is fixed to one of the fingers to avoid repeated solutions caused
by its axial symmetry, and the two other fingers are allowed
to contact bidimensional patches defined all over the surface
of the can. Despite the apparent simplicity of the example,
the large extension of the contact patches make this test case
a hard one. In this example Eq. (9) involves 126 equations
in 134 variables and, hence, t = 8. To obtain a set R of
dimension k = 2, which is easier to compute and visualize, s
must be set to 6. By removing only 6 hand motions out
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Fig. 10. Grasp optimization results for the Schunk anthropomorphic hand: (a) when holding a can and (b) holding an oil drizzler. In both cases the
manipulability is evaluated using the volume of the manipulability ellipsoid. The atlases are shown at the center of the figure with green and red representing
configuration with large and small manipulability, respectively, and black representing singular configurations. The top and bottom figures show the worst and
the best configurations, respectively, with the associated projections of the manipulability ellipsoid.

of 13, we keep more than 99% of the motion capability of
the hand. In this case, the hand motions are computed from a
database of human hand configurations [20]. The figure shows
the results attending to the volume criterion. In this case, the
atlas includes 4800 charts obtained with r = 1 and ε = 0.5.
The atlas is relatively small due to the joint limits. The worst
and best grasps are shown in the top and bottom part of the
figure, respectively. As depicted, the manipulability ellipsoid
of the worst grasp is much smaller than that of the best one. As
in the planar case, the manipulability is low when the fingers
are almost extended. Notice that in this example local extrema
are also present, hindering the obtention of good results with
local optimization methods. The overall optimization takes 140
seconds to generate the atlas and 10 seconds to evaluate the
manipulability criterion.

Figure 10b shows the results obtained when optimizing
the grasp of a Marquina oil bottle. To comply with the task
requirements, the index finger must contact the top of the
bottle along a curve, and the two other fingers are constrained
to contact patches in the middle and bottom sections of the
bottle. Therefore, the fingers contact the object on disjoint
patches with different sizes and orientations, which represents
a general situation for the proposed approach. Due to the
contact constraints, the number of variables is n = 142, the
dimension of F is t = 9 and, thus, 7 constraints derived
from the principal hand motions are used to obtain a set R of
dimension k = 2. The figure shows the obtained atlas, the best

and worst grasps, and the associated manipulability ellipsoid
projected as in the previous example. In this case, using the
same parameters as before, the obtained atlas is smaller (1400
charts) resulting in a smaller processing time (45 seconds).
The same problem can be optimized with k = 3 simply by
considering one less constraint derived from the principal hand
motion analysis. In this case, the atlas includes 95000 charts
and the optimization takes 1300 seconds. However, the optimal
grasp is almost the same as that obtained with k = 2. Thus, in
this example, taking 6 principal hand motions is good enough
to capture the relevant hand mobility.

VI. CONCLUSIONS

This paper has proposed a new procedure to obtain an opti-
mal grasp satisfying a number of contact constraints between
a robotic hand and an object. The procedure uses higher-
dimensional continuation tools to compute an atlas of the
relevant grasp manifold. Each chart in this atlas parametrizes
a portion of the manifold, and can be used to generate a grid
of representative points to evaluate any quality index.

The procedure is global, in the sense that the grid spans
the whole set of relevant grasps attainable from a given point,
determining the optimal one up to the atlas resolution, without
being trapped into local extrema. Moreover, the method is
general as it can be applied to any hand structure, and
to any desired quality index. The efficiency of the method
critically depends on the dimension of the traced manifold.



In the case of grasps, however, principal hand motions allow
reducing the dimension of such manifold considerably. Note,
that the proposed method keeps a large number of principal
hand motions (up to 7 out of 13 for the Schunk hand),
while previous methods [3, 20, 7] use a smaller number of
them (typically 2). This is because the method integrates all
contact constraints a priori, which already introduces a large
dimension reduction.

The presented method operates in the connected component
including an initial grasp. In most robotic hands, this is not
an issue however, since, due to joint range limitations, the set
of feasible grasps only contains one connected component.
However, this might not be the case in general. We have to
investigate ways to obtain one starting point in each connected
component of the feasible grasp set. Finally, it would be
interesting to generalize the method to deal with other contact
models, including region-region contacts.
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[17] M. Roa and R. Suárez. Computation of Independent
Contact Regions for Grasping 3-D Objects. IEEE Trans-
actions on Robotics, 25(4):839–850, 2009.

[18] C. Rosales, L. Ros, J. M. Porta, and R. Suárez. Syn-
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