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Abstract—This paper describes a fast algorithm for the pri-
oritized kinematic control of redundant manipulators. Building
on the classical prioritized task framework, the focus is set
on efficient computation and handling of inequality constraints
throughout priority levels. Classical approaches that tend to
account for inequality constraints through potential fields are
computationally competitive but have quality issues. Formulating
the same control problems with a Quadratic Program (QP)
removes these issues but is known to be costly. The following work
revisits the formulation of a hierarchy of QPs for the prioritized
control of redundant manipulators and proposes an algorithm
that can meet real time requirements for current humanoid
robots. Because lower control objectives often become infeasible,
a particular point of focus is the numerical stability, hereby
addressed with Tikhonov regularization. The method was tested
in simulation for the control of the humanoid robot HRP-2.

I. INTRODUCTION

The programmer of a humanoid robot must often specify
at least three layers of controls: the first to ensure critical
constraints, such as to maintain balance and avoid collision,
the second to try and achieve some goal task, like reaching
for an object, and the third to satisfy a secondary task of less
importance, for instance to stay as close to a reference posture
as possible.

The task-priority algorithm [14, 16, 18, 1] offers the means
to calculate controls respecting a strict prioritization. The
principle of this algorithm is to constrain the control for each
layer within the set that does not induce perturbations for
higher priority layers. For regulation tasks, the control for each
layer is defined as the solution to a set of linear equations [19],
thus the algorithm consists in a sequence of fast pseudo-
inversions, each within the affine subspace defined by higher
layers.

The problem with the classical task-priority framework is its
inadequacy to handle inequality constraints, which arise from
collision avoidance imperatives, limited operational range for
actuators, etc. A workaround solution consists in transform-
ing the inequality constraints into strict equality constraints
through artificial potential fields [12]. Although computation-
ally attractive, this was shown to have undesired effects on the
control [8, 13].

It has been proposed in [11, 5] to solve the prioritized con-
trol problem with Quadratic Programs (QP), one per priority
layer, thus leaving the constraints for the numerical solver to
handle. Although the algorithm was shown to be effective, the

potential of the QP was not fully used. At each priority level,
the involved QP was in fact a linearly-constrained least squares
problem. This meant that each new QP could be expressed
with fewer parameters as the priority level decreased. An
algorithm recently developed in [7] took advantage of this
structure.

A good implementation of a prioritized control algorithm
should be numerically stable, given that lower-priority objec-
tives become infeasible. Numerical stability in this framework
is dependent on the good conditioning of the task Jacobians.
Addressing this problem is known as regularization. One
way is to carry out the Singular Value Decomposition on
the Jacobian and truncate the offending singular directions.
However, this was shown in [4] to induce discontinuities on the
control. The algorithm presented in [7] resorts to a Complete
Orthogonal Decomposition, which suffer from the same issue.
A second category of techniques address the problem by
artificially boosting the singular values of the ill-conditioned
matrix, ensuring an upper bound on the condition number
and a smooth transition to it. Such techniques have been
used in the context of kinematic control where they yielded
the desirable regularity properties [4], for instance with the
Tikhonov regularization [17] and SVD filtering [15].

The contribution of the paper is a new algorithm relying
on a hierarchy of QPs to solve the prioritized kinematic
control algorithm. The primary goal is a faster and more stable
alternative to the algorithm by [7], that is reached through
the use of regularized QR factorizations. The secondary goal
is to show that using a stack of QPs for the kinematic
control of a humanoid robot is an affordable upgrade from
previous techniques, which is illustrated through simulations
of kinematic control for HRP-2.

The first part of the paper revisits the classical algorithm
excluding inequalities, rewrites it with QR factorizations and
tests its performance. The algorithm is then extended to handle
inequality constraints through an active set algorithm, as was
suggested in [7].

II. THE CLASSICAL TASK-PRIORITY FRAMEWORK WITH
QR FACTORIZATION

This section gives a quick overview of the task priority
framework and then proposes an efficient implementation
using QR factorizations with Tikhonov regularization.



A. Background

Consider the problem of regulating kinematic tasks that are
configuration-dependent. Such tasks are written as

f(q) = 0 (1)

with q ∈ Rn being the n-dimensioned configuration vector of
the robot and f an m-valued differentiable function of q. In a
differential inverse kinematics scheme [19], f(q) is regulated
to the target value 0 through the differential equation

∂f

∂q
q̇ = −λff(q), λf > 0. (2)

Equation 2 can be rank-deficient but a solution control is
always defined by the least squares formulation

min
q̇

1

2
‖∂f
∂q

q̇ + λff(q)‖2. (3)

The set of admissible controls is an affine subspace F ∈ Rn

whose dimension is greater than or equal to n − m. In the
presence of multiple regulation tasks of equal importance, the
corresponding objective functions are summed and minimized.
Prioritizing the tasks requires their objective functions be
minimized one after the other, each within the optimal set
of the previous layers. For instance, regulating a function
g(q) ∈ Rl to 0 in second priority defines the additional
minimization problem

min
q̇∈F

1

2
‖∂g
∂q

q̇ + λgg(q)‖2, λg > 0. (4)

Letting A = ∂f
∂q ∈ Rm×n and b = −λff(q), the particular

solution of problem (3) having the minimal L2 norm is given
by the pseudo-inverse A† of A,

q̇ = A†b. (5)

The general solution is written

q̇ = A†b+ (I −A†A)z, z ∈ Rn. (6)

The pseudo-inverse is usually calculated with the singular
value decomposition (SVD) of A (see for instance [4]). The
operator (I − A†A) is the orthogonal projector on the null
space of A, hence any secondary control z does not interfere
with the first control. This was observed and used in [14]
for the control of a robot arm, with a first task to position
the end effector and a secondary control deriving from an
artificial potential field pushing the arm away from obstacles.
The framework was extended by [16, 18, 1] to any number of
priority levels.

The cost of the prioritization algorithm is that of the
involved pseudo-inversions. The SVD being computationally
expensive, the alternative expression of the pseudo-inverse in
the under-determined case,

q̇ = AT (AAT )−1b. (7)

was often used instead. This is the fastest way to calculate the
pseudo-inverse solution and also the least numerically stable.
The expression is valid for a non singular A, therefore q̇ grows

unbounded when A approaches singularity. It was proposed
in [17] to calculate an approximate control using the damped
least squares solution

q̇ = AT (AAT + k2I)−1b ≡ A∗b, k 6= 0. (8)

The added diagonal term k2I ensures that AAT +k2I remains
well conditioned near singularities of A although it introduces
a systematic error [16]. The main problem of this approach
is that the operator (I − A∗A) is no longer an orthogonal
projector on the null space of A [6].

Rather than falling back to the use of a SVD, the research
by [7] suggested the use of a complete orthogonal decom-
position identified as a cheaper alternative. The following
sections describe an alternative formulation that makes use
of regularized QR factorizations, motivated both by better
numerical stability and lower cost.

B. Algorithm with QR factorizations

Consider again the linear system

Aq̇ = b. (9)

If A has full rank, there exists an orthogonal matrix Q ∈ Rn×n

and an upper triangular matrix R ∈ Rm×m such that

AT = Q

[
R
0

]
. (10)

The importance of the triangular form lies in the observation
that the lower triangular system

[
RT 0

]
y = b is easily

solved in y ∈ Rn by forward substitution. Partitioning the
matrix Q into

[
Y Z

]
with Y ∈ Rn×m and Z ∈ Rn×(n−m)

gives the orthonormal bases for the range space and the null
space of A respectively. Therefore, the particular vector y∗

where all components starting from rank m+1 are taken null
gives the solution of minimum norm to (9),

q̇ = Qy∗ = Y R−T b. (11)

Several methods can be used to compute a QR factorization
of A. An efficient one makes use of Householder transforma-
tions (see for instance [3]).

The algorithm for prioritization is as follows. Let

A1q̇ = b1 (12)

be a linear system of size m1 where A1 is assumed to be of full
rank. Obtain the orthogonal and upper triangular factors Q1

and R1 and partition Q1 into
[
Y1 Z1

]
with Y1 ∈ Rn×m1

and Z1 ∈ Rn×(n−m1). The minimum-norm solution to (12) is
written

q̇1 = Y1R
−T
1 b1 (13)

and the general solution is

q̇ = q̇1 + Z1z1, z1 ∈ Rn−m1 . (14)

The next layer of priority should be efficiently written with
fewer parameters. If

A2q̇ = b2, A2 ∈ Rm2×n, b2 ∈ Rm2 (15)



is a secondary control objective, the control is defined as a
solution to

min
z1∈Rn−m1

1

2
‖A2Z1z1 − (b2 −A2q̇1)‖2, (16)

obtained by substituting q̇ in equation (15) with its expression
in (14). Let A′2 = A2Z1 and b′2 = b2 − A2q̇1, such that the
problem is re-written

min
z1

1

2
‖A′2z1 − b′2‖2. (17)

Supposing again that A′2 has full rank, factorize A′2
T to obtain

A′2
T
= Q2

[
R2

0

]
, (18)

where Q2 is (n − m1) × (n − m1) orthogonal and R2 is
m2 ×m2 upper triangular. As previously, it is convenient to
define a partition

[
Y2 Z2

]
of Q2 such that the general

solution for z1 may be written

z1 = Y2R
−T
2 b′2 + Z2z2, z2 ∈ Rn−m1−m2 . (19)

The same steps can be followed to define the solutions of all
stages.

C. Robustness to algorithmic singularities

Prioritizing control objectives will often make lower priority
tasks infeasible. In the above development, if the secondary
objective becomes infeasible, the equation A′2z1 = b′2 becomes
rank-deficient and this phenomenon is known as an occurrence
of algorithmic singularity [2]. The QR factorization of A′2

T

would give an ill-conditioned triangular part R2 whose inver-
sion would yield a large displacement z1 in the null space of
A′1.

Several ways exist to deal with algorithmic singularities. A
solution consists in truncating the SVD of the ill-conditioned
matrix according to a desired maximum condition number,
but this appears to generate an undesirable discontinuity in
the control [4]. A Complete Orthogonal Decomposition, by
definition of the algorithm, shares the same problem.

The solutions that rely on smooth regularization, such as
the damped least-squares solution (8), are free of this issue.
A similar property is desired here.

Considering again the linear system Aq̇ = b representing
equation (2), the standard problem

min
q̇

1

2
‖Aq̇ − b‖2 (20)

is replaced with the regularized alternative

min
u∈Rm+n

1

2

∥∥( A k2I
)
u− b

∥∥2 , (21)

with k 6= 0 and I denoting the identity matrix of rank m. In the
present context of kinematic control, appending the diagonal
matrix k2I to the Jacobian A can be thought of as the addition
of m virtual degrees of freedom, each useful for a unique row
of A. The parameter vector u in problem (21) is the vector
[q̇TwT ]T where w ∈ Rm captures the contribution of the m

Fig. 1. Upper window: for a small number of parameters (N = 40),
the implementations do not show significant performance difference between
a constantly full-sized QR algorithm and the proposed algorithm. Lower
window: the gain in computation time is more noticeable as N takes higher
values.

virtual degrees of freedom to the solution. The vector w can
be used to measure the error introduced by the regularization,
which is

∑m
1 k2wi.

The proposed solution has a problem at this point: the
factorization of

(
A k2I

)T
does not yield a basis of the null

space of A, therefore the results of the factorization cannot be
used for the subsequent priority levels as shown through (12)-
(19). This is essentially the same issue as what was discussed
for formula (8).

A simple workaround to this problem is to perform the
factorization of AT as well. This is based on the observation
that factorizing AT still gives the orthonormal basis needed
for the subsequent priority levels, the ill-conditioned triangular
factor being simply discarded. Factorizing both AT and its reg-
ularized counterpart seems inefficient but these factorizations
can be made in parallel, such that the effective cost remains
the same.

D. Performance comparison

The algorithm is compared in theoretical cost with a Com-
plete Orthogonal Decomposition(COD)-based approach and in
practice to a SVD-based approach.

In the algorithm [7] which was the first to reduce the
problem size with every priority stage, the use of CODs was
demonstrated to be more efficient than carrying SVDs on
constantly full-sized priority levels. For a matrix A ∈ Rm×n

with m ≤ n, the reported COD cost was 6nm2 − m3, n
decreasing with each level. A Householder QR factorization
of AT , used for the present algorithm, costs 2nm2− 2

3m
3 [3],

with n also decreasing in the same manner. Even with a naive
factorization of the regularized matrix

(
A k2I

)T
(i.e.

without taking advantage of the sparsity of the regularizing
block), the cost actually increases to 2nm2+ 4

3m
3 and remains



lower than that of a COD.
The algorithm was tested against a classical SVD-based

algorithm and a simpler QR-based algorithm that solves each
stage in full coordinates. The testing platform was a notebook
computer with the Intel 540M 2.52Ghz processor. The results
are reported in Figure 1.

With its equality-only version covered, the algorithm is
extended in the next section to handle inequality constraints.

III. PRIORITY UNDER INEQUALITY CONSTRAINTS

This section revisits the previous algorithm to account for
linear inequality constraints at each priority level. First, the
algorithm is tied to an existing formulation.

A. Background

A formulation of a hierarchy of inequality-constrained least-
squares problems was shown in [11] to allow prioritization
of inequalities themselves. The present work considers in-
equalities in the constraints only. Note that that the algorithm
described in [7] handles the general case.

Let I be a set of ni linear inequality constraints acting on
the control q̇. Denote the inequalities by

cTi q̇ ≤ di (22)

with ci ∈ Rn, di ∈ R for 1 ≤ i ≤ ni. Consider the general
case where initial equality constraints must also be satisfied for
all control objectives and let m0 such constraints be denoted

A0q̇ = b0, A0 ∈ Rm0×n, b0 ∈ Rm0 . (23)

The first control objective A1q̇ = b1 is solved through the
minimization

min
q̇

1

2
‖A1q̇ − b1‖2 (24)

s.t. A0q̇ = b0 (25)

cTi q̇ ≤ di ∀i. (26)

According to the algorithm described in [11], a solution q̇∗1 to
problem (24) is used to define the minimization of the next
priority layer as

min
q̇

1

2
‖A2q̇ − b2‖2 (27)

s.t. cTi q̇ ≤ di ∀i (28)
A0q̇ = b0 (29)
A1q̇ = A1q̇

∗
1 , (30)

which says that the solution control for the secondary objective
is within the set optimizing the first.

Although sufficient, the description of the new set of
constraints may be too loose. A more efficient description
should follow from examining the Lagrange multipliers at
the optimal point q̇∗1 . The multipliers which are canceled at
point q̇∗1 correspond to the inequality constraints that should
be forwarded to the following stage. The remaining inequality
constraints, if any, are said saturated and would indicate
that the optimal solution q̇∗1 does not satisfy the equation

A1q̇ = b1. Therefore, following the same analysis in [11], the
saturated constraints should be transformed into equalities for
all following priority layers, saving the work of re-verifying
them.

Consequently, by regrouping the saturated inequality con-
straints in a subset Is ⊂ I, the secondary minimization (27)
is re-written

min
q̇

1

2
‖A2q̇ − b2‖2 (31)

s.t. cTi q̇ ≤ di i /∈ Is (32)

cTj q̇ = dj j ∈ Is (33)

A0q̇ = b0 (34)
A1q̇ = A1q̇

∗
1 . (35)

The third priority layer would have an additional equality
constraint A2q̇ = A2q̇

∗
2 and possibly a larger set Is. The

process is similar for the rest of the layers but solving each
of these problems in q̇ is not efficient.

B. Algorithm with QR factorizations

The aim of this section is to describe the resolution of
the above sequence of problems with QR factorizations and a
standard active set algorithm. Björck [3] previously described
a similar method for the particular case where the problem
has a single over-constrained objective. The algorithm given
here has the same inner workings but is written for the case
of prioritized under-determined linear equations.

The algorithm must start from a feasible control q̇0 strictly
satisfying all constraints (by opposition to control objectives).
To find a feasible point, first the equalities A0q̇ = b0 are solved
using a QR factorization of AT

0 as shown in (12) and (13). The
result is then taken inside the convex polytope defined by the
inequality constraints. This can be done in several ways, see
for instance [9].

The factorization of AT
0 gives the upper triangular matrix

R0 and the orthogonal matrix Q0 = [Y0 Z0] as seen before.
The optimization of the first priority stage can then be written

min
z0∈Rdim(Z0)

1

2
‖A1Z0z0 − (b1 −A1q̇0)‖2 (36)

s.t. cTj q̇ ≤ dj , j ∈ I. (37)

The general principle of an active set algorithm is to step
towards the optimum while sticking to the boundary of the
admissible region when encountered. The first step z0 is found
by solving the unconstrained version of the problem (36),
written

min
z0∈Rdim(Z0)

1

2
‖A1Z0z0 − (b1 −A1q̇0)‖2. (38)

The displacement z0 may lead the control q̇ = q̇0 + Z0z0
out of the admissible region, that is, the convex polytope
defined by all inequality constraints. In that case, the control
is trimmed back to the boundary and the remainder of the
algorithm computes successive displacements on the boundary
until a point achieving the global minimum is reached. Moving



on the boundary means that some inequality constraints are
added to or removed from the problem as equality constraints.
The addition or the removal of a constraint changes the null
space where the unconstrained optimization (38) is conducted
and this change is reflected in the null space basis Z0. An
important feature of the QR decomposition appears in the fact
that the factorization of the augmented matrix

[
AT

0 ci
]

can
be obtained from that of AT

0 without added cost with respect
to factorizing

[
AT

0 ci
]
. Also, updating the QR factorization

to discard a constraint may be conducted more efficiently
than recomputing from scratch, depending on the rank of the
constraint to remove. Details of these techniques can be found
in [3].

When the active set algorithm terminates, the outcomes of
interest are (a) an optimal point q̇1, (b) the set I1 referencing
the saturated inequality constraints and (c) the QR factor-
ization of

[
AT

0 C1 A
T
1

]
where C1 is defined as a matrix

regrouping the column vectors ci whose indices are in I1. Call
Q1 the orthogonal matrix in this factorization and separate Q1

into Y1 and Z1 as done previously. Then, the general solution
of the first control objective is written

q̇ = q̇1 + Z1z1 such that cTj q̇ ≤ dj , j /∈ I1 (39)

with z1 any vector in Rdim(Z1). This gives the efficient
expression of the secondary optimization problem

min
z1∈Rdim(Z1)

1

2
‖A2Z1z1 − (b2 −A2q̇1)‖2 (40)

s.t. cTj q̇ ≤ dj , j /∈ I1. (41)

which has the same shape as (36).
The third stage is detailed for the generalization. Call

q̇2 an optimal control from solving (40) and I2 the set of
new inequality constraints saturated in the second stage at
point q̇2. As previously, define C2 = [{ci}i∈I2 ] the matrix
regrouping the inequality constraints in I2. Recalling that the
QR factorization (Q2, R2) of

[
AT

0 C1 A
T
1 C2 A

T
2

]
follows

from the active set algorithm, partition Q2 into Y2 and Z2 to
write the third stage

min
z2∈Rdim(Z2)

1

2
‖A3Z2z2 − (b3 −A3q̇2)‖2 (42)

s.t. cTj q̇ ≤ dj , j /∈ {I1 ∪ I2}. (43)

The problem at rank p is defined and solved in the same
manner:

min
zp−1

1

2
‖ApZp−1zp−1 − (bp −Apq̇p−1)‖2 (44)

s.t. cTj q̇ ≤ dj , j /∈
p⋃

t=1

It. (45)

This algorithm was implemented using the Householder QR
factorizations. It was tested in simulation for the kinematic
control of a humanoid robot and the results are reported in
the following section.

Fig. 2. Basic control scenario:8 equality constraints, 72 inequality constraints,
the first task layer has 3 equalities. The yellow cylinders represent the
simplified model of the geometry useful for efficient avoidance of collision.

Fig. 3. Simulation results for the basic control scenario. From top to
bottom: distance of hand to target, calculation time per iteration, number
of inequality constraints activated per iteration. The calculation time accounts
for the preparation of the linear systems.

IV. SIMULATION RESULTS

This section describes three test scenarios for the control of
the humanoid robot HRP-2 with increasing difficulty.

A. Setting

The humanoid robot, HRP-2, is modeled by a 28-degree-
of-freedom kinematic tree: 6 in each limb, 2 in the trunk and
2 in the neck. The robot has additional degrees of freedom for
opening/closing its hands but they are irrelevant to the present
tests and not accounted for in the computations.

B. Basic control

First, the model of HRP-2 is programmed to reach for a
static target point while standing on two feet and maintaining
balance (Figure 2). The algorithm is required to solve a
single control objective (or task) under equality and inequality
constraints. The task is written

p(q) = pt. (46)

p(.) is the Cartesian position of a point belonging to the
reaching hand, referenced in a fixed global frame, and pt is



the position of the target point. Following equation (2), the
regulation equation for this task is written

∂p

∂q
q̇ = −λ(p(q)− pt), λ > 0. (47)

The gain λ is taken such that ‖λ(p(q) − pt)‖2, which is ho-
mogeneous to a linear velocity, is bounded above by 0.25m/s.

The first equality constraints maintain the balance of the
robot for quasi-static motion. The motion of the COM is au-
thorized vertically above the support polygon. The regulation
equations are derived as above, but the gain λ is set at the high
value of 1s−1. For the computation of all jacobians, a foot
is conveniently considered as the base link for the kinematic
model, such that only one foot is constrained. There is a total
of 8 equality constraints for this scenario.

A first set of inequality constraints is derived from the joint
limits. As for equalities, a function f(.) of the configuration
can be regulated to satisfy an inequality f(q) ≤ 0 following
the linear differential inequality

∂f

∂q
q̇ ≤ −λff(q) (48)

where λf is a positive number scaling the feedback. The joint
limits are expressed as

qmin � q � qmax. (49)

Applying the regulation (48) for upper limits gives the velocity
bounds

q̇ � −λ(q − qmax) (50)

and the lower joint limits are obtained similarly, for a total of
56 inequality constraints. The gain λ is taken equal to 0.5s−1.
In a simple Euler integration scheme, this means that a joint
angle update cannot exceed half the gap separating its current
value from its bounds. For a control on the real robot, the
bounds are usually more conservative to satisfy the limits on
the velocities and accelerations. This will be used in the last
scenario to stress-test the implementation.

The second set of inequality constraints is for self collision
avoidance. The geometrical model of HRP-2 is wrapped link
by link in sphere-capped cylinders. Calling d the distance
between the cores of two cylinders of radii r1 and r2 and
letting dmin = r1 + r2 be the minimal distance required
between the cylinders, the constraint is expressed

d ≥ dmin (51)

and regulated by

− ḋ ≤ −λ(dmin − d). (52)

Consider a pair of cylinders checked for collision, called CR1

and CR2. Call P1 the point on CR1 that is closest to CR2 and
let P2 be its counterpart on CR2. Define the mutual normal
vector ~n =

−−−→
P1P2/‖

−−−→
P1P2‖. As previously shown in [8], the

inequality (52) expands to

− 〈J2 − J1|~n〉q̇ ≤ −λ(dmin − d), (53)

Fig. 4. Prioritized control scenario. The task of of hand positioning is
prioritized over keeping the vision field centered at the target.

with J1 and J2 being the jacobians of the positions of points
P1 and P2 respectively. 16 such constraints are set in the solver
to avoid self collision.

The results of the simulation are reported in Figure 3.
The fast computation times are due to the rare activations of
inequality constraints.

C. Prioritized control

In this scenario where the effect of strict priority is shown,
the robot has an additional task layer to keep the gaze on the
target point. The target point is positioned high over the robot
as shown in Figure 4). This constraints and the type of the
first task are identical to those seen in the first scenario. The
vision field regulation task is defined as

−→ov ×−→opt = ~0 for −→ov.−→opt ≥ 0 (54)

where o is a point on the optical axis and−→ov is a vector lying on
the optical axis ahead of o. The regulation equation is derived
as

[−→opt × (−→ov × Jw)−−→ov × Jo]q̇ = −λ(−→ov ×−→opt) (55)

where Jw and Jo respectively stand for the orientation Ja-
cobian and position Jacobian at point o (this is a point
attached to the head). The scaling factor λ is chosen to bound
‖λ2(−→ov ×−→opt)‖ above by 2.10−4m2/s.

The results as reported in Figure 5.

D. A stress test

The final scenario stresses the algorithm by strongly con-
straining the velocity limits and adding external collision
avoidance constraints. The Figure 6 shows the setup where
a few square-shaped obstacles are placed in front of HRP-2 to
further constrain the motion of the hand towards its target. The
inner width of the smallest of the squares is only 1mm larger
than the diameter of the cylinders surrounding the hands and
the forearms. This is a typical case of narrow passage where
an approach based on potential fields would fail (see [13] for
details).

The first and second control objectives are similar to those
in the previous scenario. The regulation inequalities due to
the collision avoidance constraints are identical to (53) except
for the fact that in every pair of cylinders checked, one is not



Fig. 5. Prioritized control scenario: 8 equality constraints, 72 inequality
constraints, 3 equalities for the first task layer and 3 more for the second. The
gaze drifts at the end of the motion letting the higher hand positioning task
be satisfied.

Fig. 6. Stress test scenario. The robot must reach for an object through some
obstacles while its joint velocities are significantly reduced.

moving. The velocity limits are significantly shrunk by setting
the maximum absolute velocity to 3.10−4rad/s for each joint
parameter. Moreover, the regulations of the first and second
tasks are set such that the authorized steps were 0.1m/s and
0.1m2/s respectively. These values are guaranteed to make
the objectives for each instance of the algorithm infeasible,
pushing the control q̇ to the edges of the polytope defined by
the inequality constraints, thus activating many of them.

The results are as reported in Figure 7. It should be noted
that the time spent in the calculation of the involved linear
systems was below 10µs for every iteration, thus non signif-
icant given the results. As expected, the active set algorithm
spends a lot of time stepping on the boundary of the admissible
control region. The calculation times can be improved in
the future by including techniques for efficient downdate of
QR factorizations, not implemented at the time of testing.
Nonetheless, this heavily-constrained scenario shows that the
algorithm is suitable for real time control on HRP-2 at the
comfortable rate of 200Hz.

V. CONCLUSION AND FUTURE WORKS

This paper presented a fast algorithm for the prioritized
kinematic control of redundant manipulators. The method

Fig. 7. Stress test scenario: 8 equality constraints, 160 inequality constraints,
the first task layer has 3 equalities and the second layer has also 3. The joint
velocities have small bounds while the tasks are set with large steps, such
that the active set algorithm is tested for the worst case.

followed the choice of enforcing inequality constraints on the
manipulator by means of inequality-constrained optimization.
The obtained results demonstrate that the method is effective
for use in real time kinematic control. The algorithm relied
on standard QR factorizations and an active set method to
enforce linear inequality constraints at every priority stage.
A smooth regularization scheme was adopted to make the
proposed algorithm numerically stable.

In future works, the integration with general purpose search-
based algorithms may be considered, such as to evaluate the
efficiency that a more powerful inverse kinematics algorithm
may add in solving motion planning problems, especially for
manipulation objectives involving narrow passages.
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[14] A. Liégeois. Automatic Supervisory Control of the
Configuration and Behavior of Multibody Mechanisms.
IEEE Transactions on Systems, Man, and Cybernetics, 7
(12):868–871, 1977.

[15] A.A. Maciejewski and C.A. Klein. Numerical filtering
for the operation of robotic manipulators through kine-
matically singular configurations. Journal of Robotic
Systems, 5(6):527552, 1988.

[16] Y. Nakamura. Advanced robotics: redundancy and opti-
mization. Addison-Wesley Longman Publishing, 1990.

[17] Y. Nakamura and H. Hanafusa. Inverse kinematic solu-
tions with singularity robustness for robot manipulator
control. Journal of dynamic systems, measurement, and
control, 108(3):163–171, 1986.

[18] B. Siciliano and J.J.E. Slotine. A general framework for
managing multiple tasks in highly redundantrobotic sys-
tems. In International Conference on Advanced Robotics,

pages 1211–1216, 1991.
[19] D. E. Whitney. Resolved motion rate control of ma-

nipulators and human prostheses. IEEE Transactions on
Man-Machine Systems, 10:47–53, 1969.


	Introduction
	The classical task-priority framework with QR factorization
	Background
	Algorithm with QR factorizations
	Robustness to algorithmic singularities
	Performance comparison

	Priority under inequality constraints
	Background
	Algorithm with QR factorizations

	Simulation results
	Setting
	Basic control
	Prioritized control
	A stress test

	Conclusion and future works

