
Designing Petri Net Supervisors
from LTL Specifications

Bruno Lacerda∗ and Pedro U. Lima
Institute for Systems and Robotics – Instituto Superior Técnico

Lisbon, Portugal
Email: {blacerda,pal}@isr.ist.utl.pt

Abstract—We present a methodology to build a Petri net
realization of a supervisor that, given a Petri net model of a
(multi-)robot system and a linear temporal logic (LTL) specifica-
tion, forces the system to fulfil the specification. The methodology
includes composing the Petri net model with the Büchi automaton
representing the LTL formula and trimming the result using a
known method to reduce the size of the supervisor. Furthermore,
we guarantee that the obtained supervisors are admissible by
construction by restricting the LTL formulas that can be written
to an appropriate subset. To illustrate the method, we provide
an example on how to specify coordination rules for a team of
simulated soccer robots.

I. INTRODUCTION

The evolution of robotics in recent years, namely the devel-
opment of more accurate sensors and actuators, is allowing
the appearance of robot systems that perform increasingly
complex tasks. While the first approaches to the deployment of
such systems were specifically developed for the application
at hand, the need to define formal approaches that are more
general, in the sense that they provide a high-level language for
the design of complex systems, while guaranteeing that certain
safety, predictability, performance and robustness properties
are satisfied, is becoming a central issue in the field.

In this work, we present a methodology that unites Petri nets
(PN) [12] and linear temporal logic (LTL) [3], two formalisms
particularly well suited for, respectively, the design of models
of robot systems and the specification of rules for the systems
to fulfil. This approach allows the designer to model the system
as a PN that represents all possible behaviours of the robot(s)
situated in its environment, and to specify a set of rules for
the system to fulfil as LTL formulas. The PN model and the
LTL formulas are then used to build a PN that restricts the
behaviour of the system to one that is consistent with the
specifications. Thus, the use of LTL can be seen as a bridge
between the natural language specifications one has for the
system, and the PN that is guaranteed to realize them. We
argue that, for complex tasks, a direct construction of such
PN is less intuitive, thus more susceptible to errors in the final
result. This work is an extension of [11], which presented a
similar method for finite state automata (FSA) models.

Due to its suitability to model concurrent systems and the
wide range on analysis methods available, PNs have been

∗Work partially funded by FCT (ISR/IST pluriannual funding) through the
PIDDAC Program funds and FCT grant FRH/BD/45046/2008.

used for the modelling and execution of (multi-)robot tasks
[14, 2]. There has also been a considerable amount of work
on the control of PNs. For example, in [7] a method where the
specifications are written as linear constraints on the reachable
markings of the system and the number of firings of each
transition is defined and in [5] a study on the advantages and
limitations of using PNs to realize supervisors is provided. We
also refer the reader to [6], a survey on available methods for
the control of PNs. In general, these works rely on disallowing
the system to reach certain markings, with the specifications
being written as linear inequalities. Writing these specifica-
tions, especially when they deal with coordination between
different robots, can be quite cumbersome.

There have been several approaches to the use of temporal
logic as a tool to specify and synthesize goal behaviours. The
work presented in [13] introduces a planning algorithm over
a domain given as an non-deterministic FSA where the states
correspond to sets of propositional symbols and the goal is
given as a temporal logic formula over those symbols. In [8],
both the system and the goal specifications are encoded as a
temporal logic formula, which is in turn translated into an FSA
that satisfies it. In both of these works, contrary to our method,
the temporal logic formulas are written only over the state
space of the system, thus direct reasoning about sequences
of events is not allowed. In [9], a motion planning method
where the goals are defined as LTL formulas is presented.
Using LTL to define the goals allows the specification of not
only a goal region but also more intricate movements such
as visiting a set of regions sequentially or travel between
regions infinitely often. The work in [10] also deals with
motion planning with temporal logic goals but allowing the
robot to also react to sensor readings and perform actions other
than moving. This approach also encodes both the system and
the goal specifications as a temporal logic formula. In both
of these works dealing with motion planning, a discretization
of a linear system describing the robot motion capabilities is
needed before the LTL specification can be enforced. In our
discrete event system (DES) approach, particularly PNs, we
do not take into account the continuous dynamics associated
with the triggering of some of the events. This is reasonable
when handling higher abstraction levels in robot task models,
and significantly reduces the complexity of analysis. Moreover,
we assume sensor-based primitive actions (e.g., moving while
avoiding collisions), which handle/prevent some of the events

that might occur otherwise, and naturally discretize the set of
actions that can be triggered by the PN. We claim that the use
of PNs is more adequate to model the system than i) FSA,
because the models are more expressive (PN languages are a
superset of regular languages) and compact and ii) modelling
the system directly in LTL, because the LTL formulas can
become quite large for more complex systems, which has a
big impact due to the complexity of solving SAT for LTL [3].

We start by providing the notions of logics and PN needed
for our algorithm, in Sections II and III. Then, in Section
IV, we define the composition between the Büchi automata
obtained from the LTL specifications and the PN model of
the system, and provide the rules to build the LTL formulas
that guarantee admissibility. Finally, in Section V we show
an application example to a simulated robot soccer scenario,
followed by some conclusions and further work in Section VI.

II. FUNDAMENTAL LOGIC CONCEPTS

A. Propositional Logic

Propositional formulas are written over a set Π by applying
the usual propositional connectives. In this work, we will
consider that propositional formulas are in the disjunctive nor-
mal form (DNF), i.e., written as a disjunction of conjunctive
clauses. A conjunctive clause is the conjunction of positive
(l = π, π ∈ Π) and negative (l = ¬π, π ∈ Π) literals. For a
given Π, we denote the set of all literals as lit(Π), the set
of all conjunctive clauses as C (Π) and the set of all DNF
formulas as dn f (Π).

Due to the fact that we will analyse the transitions of the
PN directly, we will have to represent incomplete information
about the state of the world after the firing of a given transition.
To do that, we resort to partial valuations v : Π→ {0,1,↓}.
For a partial valuation, there may exist propositional symbols
for which the truth value is not defined, i.e., π ∈ Π such
that v(π) =↓. This means that v might not provide enough
information to evaluate the truth value of the formula. We
extend v to propositional formulas as follows:
• When the information provided by v is enough to guar-

antee that ϕ is satisfied, regardless of the assignment
given to propositional symbols for which v is undefined,
JϕKv = true;

• When the information provided by v is enough to guaran-
tee that ϕ cannot be satisfied, regardless of the assignment
given to propositional symbols for which v is undefined,
JϕKv = f alse;

• When the truth value of ϕ cannot be evaluated with
only the information provided by v, JϕKv denotes the
formula composed of the conjunctive clauses that contain
the literals for which the truth value is undefined.

Consider the formula ϕ = (¬p ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∈
dn f ({p,q,r}) and the valuation v such that v(p) = 1, v(q) = 0
and v(r) =↓. We have that J¬p∧rKv = f alse, because v(p) = 1,
and Jp∧¬q∧¬rKv = ¬r because v does not provide informa-
tion about r. Hence, we also have JϕKv = ¬r. Note that, for
a conjunctive clause, it suffices that v does not satisfy one of

its literals, regardless of it not satisfying or being inconclusive
for the others, for v not to satisfy that conjunctive clause and,
for a DNF formula, it suffices that v satisfies a conjunctive
clause for v to satisfy that formula.

We will also need the notion of partial valuation generated
by a conjunctive clause ϕ , which is a function vϕ : Π→{0,1,↓
} that assigns 1 to the positive literals of ϕ , 0 to the negative
literals of ϕ and ↓ to the remaining propositional symbols in
Π. For example, formula ϕ = (¬p∧r)∈C ({p,q,r})generates
the valuation vϕ such that vϕ(p) = 0, vϕ(q) =↓ and vϕ(r) = 1.

B. Linear Temporal Logic

LTL formulas are written over a set Π using the propo-
sitional connectives, as in propositional logic, plus a set of
temporal connectives. This set is composed of the next (X),
eventually (F), always (G) and until (U) connectives. LTL
formulas are evaluated over ω-strings of sets of propositional
symbols σ = σ0σ1σ2... ∈ (2Π)ω . For a given state σi, Xϕ is
satisfied if ϕ is satisfied in the next state σi+1, Fϕ is satisfied is
there exists a state σ j with j≥ i that satisfies ϕ , Gϕ is satisfied
if all states σ j with j ≥ i satisfy ϕ and ϕUψ is satisfied if
there exists j ≥ i such that σ j satisfies ψ and σk satisfies ϕ

for all i≤ k < j. If state σ0 satisfies a formula ϕ , we say that
the sequence σ satisfies ϕ , denoted σ
 ϕ .

A very useful property of LTL is that, for any formula ϕ ,
there exists a (non-deterministic) Büchi automaton (BA) Bϕ

accepting exactly the ω-strings that satisfy ϕ . We will translate
LTL formulas to BA using one of the most efficient transla-
tion algorithms, LTL2BA, described in [4]. The automaton
obtained by this implementation is a tuple

〈
Q,2Π, f ,q0,Q f

〉
where Q is the set of states, 2Π is the alphabet, f is the non-
deterministic transition function, q0 is the initial state and Q f
is the set of final states. An ω-string is accepted by the BA if
it generates a run that goes through at least one accepting state
infinite times. DNF formulas are used to describe the transition
labels in a more compact way, for example, if e∧¬d is a
transition label, then all elements of 2Π that contain e and do
not contain d are allowed in that transition. Also, the resulting
automaton is trimmed, i.e., all its states can be reached and
there is a path between each state and at least one accepting
state. This means that the finite behaviour of the observer1 of a
BA obtained from ϕ using the LTL2BA algorithm is consistent
with ϕ , in the sense that any string generated by a run of the
observer is a prefix of an ω-string that satisfies ϕ .

III. PETRI NETS

A. General Definitions

We will model our system as a Petri net (PN) with event
labels associated with the transitions and a subset of the
places representing the truth value of symbols that are used to
describe the state of the system. The alphabet for our temporal
logic specifications will be the union of the event set and
these state description symbols. We start by introducing the

1The observer of a non-deterministic automaton G is its deterministic
version, built using the known power-set construction [1].

PN basics and then show how the state description symbols
are added to the model and how one can obtain a description
of the state for a marking and for the firing of a transition.

A PN structure is a directed bipartite graph represented by
a tuple G = 〈P,T,W+,W−,M0〉. The two types of nodes are
given by sets P (places) and T (transitions). Matrices W−,W+ :
T×P→N represent, respectively, the arc weights from places
to transitions, and the arc weights from transitions to places.
The vector M0 : P→ N is the initial marking. A marking is a
distribution of tokens among places and represents a state of
the system.

Given a transition t, we define the vectors •t : P→N (preset
of t) and t• : P→ N (postset of t) as •t(p) = W−(t, p) and
t•(p) = W+(t, p). In a given marking M, t is active if •t ≤M.
If t is active in M, it can fire, evolving the PN to marking
M′ = M− •t + t•, i.e., when t fires it consumes the tokens
in its preset and adds tokens to its postset, according to the
respective weights. We denote this as M t→ M′. The set of
reachable markings in G, starting in M0 and following the
firing rule above, is denoted R(G).

We will be interested in the languages generated by PNs,
hence we add labels to the transitions. This is done by adding
to the PN structure an event set E and a labelling function
` : T → E, that assigns to each transition a label from E. The
language generated by a labelled PN G is defined as:

L (G) =
{
`(t1)...`(tn) ∈ (2E)∗ | exists M1, ...,Mn such that

M0
t1→M1

t2→ ...
tn→Mn

}
As we will see later, the elements of this language will be the
input for our PN supervisors.

B. Petri Net Model of a Robotic Task

For the system models, we require more information than
only the sequence of events. We want to also have some kind
of description of the states that are visited while executing
those events. This is done by partitioning the places into
a set PD that represents the truth value of state description
symbols and a set Pg of general places that do not influence
the state propositional description, and adding the following
to the labelled PN tuple:
• A set D of state description symbols;
• A bijection2 µ : lit(D)→ PD, where µ(l) is a place that

has one token whenever l is satisfied;
• A relation K ∈ C (E ∪D)×C (D) between conjunctive

clauses of E∪D and conjunctive clauses of D. Intuitively,
(ϕ,ψ) ∈ K means that whenever ϕ is satisfied in our
model, then ψ is also satisfied.

The set of propositional symbols associated with a PN
system model is Π = E∪D. We assume that all our PN system
models are propositionally consistent, i.e., for all M ∈ R(G)
and d ∈D, M(µ(¬d))+M(µ(d)) = 1. Propositionally consis-
tent PN system models always have, for each d, one token
in one of the places representing a truth value for d and zero

2Hence, each p ∈ PD corresponds to exactly one literal l ∈ lit(D), thus
|PD|= 2|D|, where |.| denotes the number of elements of the set.

tokens in the other. Also, we add a knowledge base K, which
states relations between different state description symbols that
the designer knows will always hold in the PN. We can now
define the set of true state description symbols and the corre-
sponding valuation describing the truth value of all elements
of D in a given marking M as DM = {d ∈ D | M(µ(d)) = 1}
and, for d ∈D, vM(d) = M(µ(d)), respectively. Note that vM is
a valuation which is defined for all state descriptions symbols
d ∈ D and undefined for all events e ∈ E.

We are now in conditions to define the language generated
by a PN system model:

L D(G) =
{
({`(t1)}∪DM1) ...({`(tn)}∪DMn) ∈ (2E∪D)∗ |

M0
t1→ ...

tn→Mn

}
The generated language is a sequence where each element is of
the form {e,d1,dn}, where e ∈ E is the event that occurred
and d1, ...,dn ∈ D are the state description symbols that are
true in the marking reached after the occurrence of that event.
Note that L D(G) does not include the initial marking M0. To
deal with this, we add an init place and an init transition to all
our PN system models and change their initial marking. The
init place has initial marking equal to 1, while all other places
have initial marking equal to 0. The system always starts by
firing the init transition, which consumes the token of the init
place and distributes tokens to the other places of the PN,
according to M0.

Since we want to avoid building the whole state space
of the PN to apply our method, we will analyse the PN
structure directly. To perform this analysis, in addition to the
valuations vM generated by markings M ∈ R(G), we will also
be interested in the valuations vt : E ∪D→{0,1,↓}, obtained
by the firing of transition t ∈ T . For events e ∈ E, vt is always
defined, being 1 for event `(t) and 0 for all others. For d ∈D,
vt(d) = 1 if the place representing that d is true is in the postset
of t (i.e., t•(µ(d)) = 1), vt(d) = 0 if the place representing that
d is false is the postset of t and vt(d) =↓ otherwise. Note that,
for all state description symbols d and markings M that can
be reached immediately after firing t, if vt(d) is defined then
vM(d) = vt(d). Hence, vt represents the information that is
guaranteed to hold immediately after the firing of t, regardless
of the marking from which t was fired.

One can augment this valuation, by defining truth values to
additional state description symbols, according to K:

vK
t (π) =


vt(π) if vt(π) 6=↓
vψ(π) if there exists (ϕ,ψ) ∈ K such that

vt
 ϕ and vψ(π) 6=↓
↓ otherwise

To ensure that the above function is well-defined, we
assume that the information given by K is consistent with
all the reachable markings of the PN, i.e., for all reachable
markings M,M′ and transitions t such that M t→ M′ and for
all (ϕ,ψ) ∈ K:

If vt
 ϕ then vM′
 ψ

The above statement means that, whenever we fire a transition
t satisfying ϕ , the PN evolves to a marking that satisfies
ψ . One should note that it is up to the designer to build a
relation K that is consistent. This relation is not required for
the application of our method, but it allows us to augment the
valuation associated with a transition, which, as we will see
later, may reduce the number of transitions in the PN realizing
the supervisor.

IV. SUPERVISOR SYNTHESIS

A. Supervisory Control concepts

The purpose of supervisory control (SC) is to restrict the
open-loop uncontrolled behaviour of a system – in our case
modelled as a PN G – to an admissible language La ⊆L (G).
We start by partitioning the event set E into set Ec of
controllable events – the events that the supervisor can disable
– and set Euc of uncontrollable events – events that are not
of the “responsibility” of the robot itself, e.g., changes in the
environment which are not related to the robot’s actions.

Formally, a supervisor is a function S : L (G)→ 2E that,
given s ∈L (G), outputs the set of events G can execute next
(enabled events). We only allow admissible supervisors, that is,
supervisors that never disable uncontrollable events which are
active for the uncontrolled system. In this work, we will use
modular SC, where the modular supervisor S is represented
by n supervisors S1, ...,Sn and the set of enabled events for
S is given by the intersection of the enabled events for each
supervisor Si. Each Si will be realized as a deterministic PN3

which runs in parallel with the system, executing the same
events, and outputting the set of enabled events given by the
labels of its current active transitions. The fact that we are
using PNs to realize the supervisor function requires them
to be deterministic: if a PN is not deterministic, then the
value of S(s) is not uniquely defined, as it depends on the
non-deterministic choices made when firing the transitions
corresponding to the events. Hence, we require the PN models
of the system to be deterministic and we build the observer
automaton of the non-deterministic BA on-the-fly, during the
composition. This guarantees that the obtained supervisor is
also deterministic. Given a PN system model G and PN
realizations of n supervisors S1, ...,Sn, we denote the language
of events plus state description symbols generated by G when
modularly supervised by S1, ...,Sn as L D(G/S1, ...Sn).

B. Constructing the LTL-based PN supervisor

Problem 1: Given a PN system model
G = 〈P,T,W+,W−,M0,E, `,D,µ,K〉 and a set of LTL
formulas Φ = {ϕ1, ...ϕn} written over the set Π = E ∪D,
build n PN supervisors Sϕ1 , ...,Sϕn such that the generated
language of G when modularly supervised by Sϕ1 , ...,Sϕn is

3A PN G is deterministic if in all of its reachable markings M ∈ R(G), if

M t→M′, M t′→M′′ and M′ 6= M′′, then `(t) 6= `(t ′).

the largest language contained in L D(G) such that:

If s ∈L D(G/Sϕ1 , ...,Sϕn) then there exists

σ1, ..., σn ∈ (2E∪D)ω such that


sσ1
 ϕ1
...
sσn
 ϕn

The ω-string sσ is the concatenation of string s with ω-
string σ . To solve this problem, we will define a composition
function that given the PN model of the system G and the (non-
deterministic) BA Bϕ , builds a PN system model Sϕ such that
if s∈L D(Sϕ) then there exists σ ∈ (2E∪D)ω such that sσ
 ϕ .
Thus, for a set of formulas Φ = {ϕ1, ...,ϕn}, by running G
modularly supervised by Sϕ1 , ...,Sϕn , we solve Problem 1. The
construction of this PN follows Algorithm 1.

The algorithm creates a PN that simulates a run in parallel
of the PN model of the system and the observer of the BA,
where a transition t can only fire in parallel with a transition
of the BA observer labelled by ψ when we are ensured that
the marking to which the PN evolves satisfies ψ . Thus, we
only allow the firing of transitions that lead to sequences of
events plus state descriptions that are in conformity with the
BA transitions (hence are consistent with the LTL formula).

We start by analysing the initial state {q0} of the observer,
and only analyse states Q′′ ∈ 2Q that are attained during the
execution of the algorithm (lines 22–26). When analysing a
state Q′′ of the observer, we start by building, for each state q
of the BA, the DNF formula `q (lines 7–9), which represents
all the members of 2E∪D that can take us from a state in
Q′′ to q. This DNF formula is simply the disjunction of the
DNF formulas labelling transitions from elements of Q′′ to q.
Then, for each t ∈ T , we apply vK

t to each `q (lines 12–18). In
the cases where vK

t satisfies `q, we are guaranteed that after
the firing of t, the observer will go from Q′′ to a state that
contains q. Hence, we add q to set next guaranteed states.
In the cases where vK

t is inconclusive for `q, we know that the
observer might be able to go from Q′′ to a state that contains
q in certain situations, depending on the marking from which
t was fired (formula J`qKvK

t
encodes the markings for which

the observer will go to a state that contains q). Hence, we add
q to set next possible states.

After the creation of these sets, if both of them are empty,
it means that t can never occur when the observer is in
state Q′′, i.e., when there is a token in the place of the PN
supervisor representing state Q′′. If at least one of them is not
empty, it means that there are situations where t can fire when
there is a token in the place representing that the observer is
in state Q′′. The observer will always evolve to a superset
of next guaranteed states, because whenever t fires, there
is a DNF transition label from a state in Q′′ to a state in
next guaranteed states that is satisfied. Then, we check for
each Q′ ∈ 2next possible states, what are the markings from which
we jump to Q′ when t is fired (lines 20–36). These markings
are encoded by the DNF formula ψ (line 27), and satisfy all
the labels that take us to a state in Q′ and do not satisfy any of
the labels that take us to a state in next possible states\Q′.

Algorithm 1 Büchi/System composition
Input: PN G = 〈P,T,W+,W−,M0,E, `,D,µ,K〉 and LTL formula ϕ

Output: PN Sϕ = 〈P′,T ′,W+′ ,W−
′
,M′0,E, `′,D,µ,K〉

1: Bϕ =
〈
Q,2E∪D, f ,q0,Q f

〉
← LT L2BA(ϕ)

2: P′← P; M′0←M0
3: states queue.push({q0})
4: add place p with label {q0} to P′; M′0(p)← 1
5: while states queue 6= /0 do
6: current states← states queue.pop()
7: for all q ∈ Q do
8: `q←

∨
q′∈current states

`(q′,q) {`(q′,q) is the label ψ of tran-

sition f (q′,ψ) = q, if it is defined or f alse otherwise}
9: end for

10: for all t ∈ T do
11: next guaranteed states← /0; next possible states← /0
12: for all q ∈ Q do
13: if J`qKvK

t
= true then

14: add q to next guaranteed states
15: else if J`qKvK

t
6= f alse then

16: add q to next possible states
17: end if
18: end for
19: if next guaranteed states∪next possible states 6= /0 then
20: for all Q′ ∈ 2next possible states do
21: next possible label← next guaranteed states∪Q′
22: if 6 ∃p ∈ P′ with label next possible label then
23: states queue.push(next possible label)
24: add place p′ with label next possible label to P′
25: M′0(p′)← 0
26: end if
27: ψ ← (

∧
q′∈Q′

J`′qK
K
vt
)∧ (

∧
q′∈next possible states\Q′

¬J`′qKK
vt
)

28: if ψ 6= f alse then
29: for all conjunctive clauses γ ∈ DNF(ψ) do
30: add transition t ′ to T ′; `′(t ′)← `(t)
31: read places←{µ(l) ∈ P′D | l occurs in γ)}
32:

•t ′(p)←


•t(p) if •t(p) > 0
1 if p has label

current states or
p ∈ read places

0 otherwise

33:

t ′•(p)←


t• if t•(p) > 0
1 if p has label

next possible label or
p ∈ read places

0 otherwise

34: end for
35: end if
36: end for
37: end if
38: end for
39: end while

Hence, whenever we fire t and already are in a marking that is
consistent with ψ (i.e., a marking M such that vM satisfies the
part of ψ for which vt is undefined), the observer goes from
state Q′′ to state next guaranteed states∪Q′. This means that
whenever t fires in such a marking, a token must be taken

from the place representing observer state Q′′ and placed in the
place representing observer state next guaranteed states∪Q′.
Hence, for each conjunctive clause γ in ψ , we create a
transition (t,γ)4 in the supervisor, with the following 3 types
of arcs:

1) System arcs, i.e., the same arcs as in t. These arcs take
into account the evolution of the system when t is fired;

2) Büchi arcs, i.e., arcs that consume a token from the
place representing the observer state Q′′ and put one
token in the place representing the observer state
next guaranteed states∪Q′. These arcs take into ac-
count the evolution of the observer of the BA;

3) Reflexive-arcs, i.e., arcs going to and from the places in
the set read places (line 31) obtained from γ . This set
contains the places that must have a token in order to
guarantee that γ is satisfied after the firing of t. These
arcs guarantee that (t,γ) only fires when we are in a
marking consistent with γ (which implies that we are in
a marking that satisfies ψ since it is in the DNF).

C. Deleting Dead Transitions

To take advantage of the distributed state representation of
PNs, we build the supervisor by analysing the PN structure
directly. Specifically, we analyse each transition of the PN
against all the transitions in the output of each analysed state
of the observer of the BA. This can cause the creation of
transitions in the PN realization of the supervisor that are
never active, i.e., dead transitions. In order to reduce the
size of the supervisors, we trim these transitions, by using
a known algebraic method [1]: If the following integer linear
program (ILP) has no solution, we are guaranteed that t is a
dead transition and we can delete it. We note that this method
is not complete, in the sense that there might be some dead
transitions that are not deleted by applying it.

find w
subject to M′0 +(W+′ −W−

′
)w≥ •t

w ∈ N|T |

Given the high complexity of ILPs and the need to solve one
for each transition in the supervisor, we relax the problem to
a linear program (LP), with real variables. For each transition
t, if the LP has no solution, then the ILP does not have one
either and we delete t. Using this relaxation, transitions for
which there is a solution for the LP but there is none for the
ILP are not deleted. In spite of that, in our experiences, several
instances of the ILP were not solved in a reasonable amount
of time, and the LP relaxation always gave the same results as
an ILP with a bound on runtime (where transitions for which
a solution is not found until the bound are not deleted).

D. Building an Admissible Supervisor

A key limitation of the use of PNs to realize supervisors
is related to the notion of supervisor admissibility. Namely,
they are not closed under the extraction of the supremal

4Each γ represents a different situation for which t can fire.

controllable sublanguage [5]. Intuitively, this means that if
our PN supervisor is not admissible, we do not have a way to
effectively restrict its behaviour so that it becomes admissible.

Given this fact, we will restrict the LTL formulas used to
specify behaviours such that the supervisor admissibility is
guaranteed by construction. Given a PN system model G, we
define the set litc of controllable state description literals as:

litc = {l ∈ lit(D) | for all t ∈ Tuc, if •t(µ(l)) = 1
then t•(µ(l)) = 1}

The set Tuc is simply the set of transitions with an uncon-
trollable event labels, i.e., Tuc = {t ∈ T | `(t) ∈ Euc}. The set
litc contains the literals associated to places for which the
firing of uncontrollable transitions keeps their marking intact
(note that this includes the places that are not in the preset of
any uncontrollable transition). This means that our supervisor
can always enforce that the truth value of elements l of litc
cannot be altered while being admissible. This is due to the
fact that for all l ∈ litc, all the transitions that have place µ(l)
in its preset (and not in its postset) correspond to controllable
events. The “admissible” LTL specifications ϕ must be of one
of the following types:

1) Gψ , where ψ is a propositional formula in the DNF
where only literals in litc, or literals ¬e with e ∈ Ec
can occur. These formulas specify propositional logic
relations between state descriptions and controllable
events that should always be satisfied in all runs of the
supervised PN. For example, we might want that two
given robots do not move at the same time or that a
certain controllable event never occurs;

2) G(γ⇒ Xψ), where γ is any propositional formula in the
DNF and ψ is a propositional formula in the DNF where
only literals in litc that also appear in γ , or literals ¬e
with e ∈ Ec can occur. These formulas specify that the
propositional logic formula ψ must be satisfied exactly
after condition γ is met. For example, we may specify
that if a robot is moving forward and there is no obstacle
in front of him, it should continue moving forward;

3) G(γ⇒ X(ψUγ ′)), where γ and γ ′ are any propositional
formulas in the DNF and ψ is a propositional formula
in the DNF where only literals in litc that also appear
in γ , or literals ¬e with e ∈ Ec can occur. These
formulas specify that after condition γ is satisfied, the
propositional formula ψ must keep being satisfied until
condition γ ′ is met. For example, if a robot is moving
forward and there is no obstacle in front of him, it
should continue moving forward until the goal region
is reached.

These rules state that we can write any literal in subformulas
representing conditions (subformulas in the left of an implies
or until connective) but, in all other subformulas, we can only
require that a given state description symbol maintains its
truth value (but cannot enforce the occurrence of an event that
changes it) or that a given controllable event cannot occur.

Hence, formulas of these types ensure admissibility of the
supervisor because we never enforce the following:
• A change in the marking of the system;
• Keeping a token in a place that is in the preset of an

uncontrollable transition, and not in its postset;
• The occurrence of an event or set of events (we only

enforce that a given subset of Ec cannot occur).
These 3 types of formulas allow us to specify a wide array

of behaviours for a system to fulfil. In fact, in our experience,
all the natural language specifications we defined for several
different examples can be written in this form.

V. EXAMPLE

We present a direct adaptation of the FSA-based soccer
robot example presented in [11]. Consider a soccer team of n
robots. The goal is to reach a situation in which one of the
robots is close enough to the goal to shoot and score. When
a robot does not have the ball in its possession, it can move
to the ball until it is close enough to take its possession or
get ready to receive a pass from a teammate. When it has the
ball, it can shoot the ball, take the ball to the goal if there is
no opponent blocking its path or choose a teammate to pass
the ball and, when the teammate is ready to receive, pass it.
For simplicity, we assume that when a robot shoots the ball
the team loses its possession, and that the opponents are only
able to block paths. In Fig. 1, we present the PN Gi for robot
i. It is a direct translation to a PN of the FSA model in [11].

For each robot i, Di = {moving2getballi, has balli}. The
events close to balli, close to goali and blocked pathi are
caused by changes in the environment, hence are uncontrol-
lable. The remaining events are controllable and correspond
to the actions available to each robot. For each robot i, we
define the set E i

c as the set of controllable events that can be
issued by i, i.e., the set of controllable events of Gi. This set
is used to guarantee the supervisor admissibility: instead of
writing that a controllable event e ∈ E i

c must occur, we write
that all other controllable events in E i

c cannot occur until the
occurrence of e. We also add the facts that when a robot is
going to the ball it does not have it in its possession and when
a robot has the ball, it is not going towards it:

K = {(moving2getballi,¬has balli),
(has balli,¬moving2getballi) | i = 1, ...,n}

A PN model for the whole team is given by the parallel
composition of the PNs for each robot, where we synchro-
nize transitions with shared event labels and keep the state
description (thus obtaining a PN that models a run in parallel
of the individual PNs). The following specifications are used
to coordinate the team:
• For the whole team, if a robot is moving to the ball or

has the ball in its possession, then no other robot should
move to the ball:

ϕ = G((
n∨

i=1

(moving2getballi∨has balli))⇒

(X(
n∧

i=1

¬move to balli)))

Figure 1. PN model for robot i. Places with the same color represent
the same place, we separated them to improve readability. Transition labels
and propositional descriptions are depicted as 〈.〉, e.g., µ(¬has balli) = p3

i
and `(t1

i) = move to balli. The names of places that do not correspond
to state description symbols are merely used to help the understanding
of their meaning and are not used in the method. The transition names
are superscripted with an identification number and subscripted with the
robot number. Transitions labelled with events start passingi j , passi j and
pass ji, i 6= j are representing n− 1 transitions, one for each teammate.
Furthermore, events passi j, pass ji, i 6= j are shared by robots i and j.

Figure 2. The BA for formula ϕ

• For each robot i, it will not get ready to receive a pass if
none of its teammates wants to pass it the ball:

ψi = G((
n∧

j=1
j 6=i

¬start passing j,i)⇒ (X¬start receivingi))

• For each robot i, when one of the teammates decides to
pass it the ball, it will be ready to receive the pass as
soon as possible:

γi = G((
n∨

j=1
j 6=i

start passing j,i)⇒

(X((
∧

e′∈E i
c\{start receivingi}

¬e′)Ustart receivingi)))

In Fig. 2, we show the BA Bϕ corresponding to formula ϕ ,
with n = 2. To illustrate the composition algorithm, we will

analyse in which conditions can transition t2
1 fire when the BA

is on state x. The valuation generated by the firing of t2
1 is:

vt2
1
(π) =

 1 if π = close to ball1
0 if π ∈ E \{close to ball1}
↓ if π ∈ D

Note that vt2
1

is undefined for all d ∈ D because there is no
place in PD in the postset of t2

1 . Also, in this case, K does not
augment the information given by the valuation. For the BA
transition labels from x, we have that:

Jχ1KK
vt21

= χ1 JtrueKK
vt21

= true

Thus, we add x to the set next possible states and y to the set
next guaranteed states. From this evaluation, we conclude
that whenever t2

1 fires and the observer is in state {x}, it will
evolve to a state that contains {y}. Now, we need to check, for
all combinations of subsets of the set next possible states, in
which conditions does the firing of t2

1 drive us to that subset.
Since next possible states is a singleton, we only have 2
cases:
• t2

1 fires and we are guaranteed to go to state {y}. To
guarantee that we are in this case, we find in which
conditions can t2

1 fire while not satisfying Jχ1KK
vt21

, i.e.,

satisfying:

¬χ1 = moving2getball1∨moving2getball2∨
has ball1∨has ball2

Hence, this case yields the construction of four transitions
(one for each conjunctive clause). Transition t2′

1 in Fig. 3
is the transition obtained for has ball1. Note that t2′

1 has
arcs equal to t2

1 , plus arcs representing the evolution of
the observer from {x} to {y}, plus a reflexive-arc to the
place representing that has ball1 is true;

• t2
1 fires and we are guaranteed to go to state {x,y}. To

guarantee that we are in this case, we find in which con-
ditions can t2

1 fire while satisfying Jχ1KK
vt21

, i.e., satisfying:

¬moving2getball1∧¬moving2getball2∧
¬has ball1∧¬has ball2

Hence, this case yields the construction of one transition,
because we only obtained one conjunctive clause. This
transition is depicted in Fig. 3 as t2′′

1 .
We will build 2n+1 supervisors, one for formula ϕ , which

deals with the team as a whole, one for each formula ψi and
one for each formula γi. Fig. 4 shows the sum of the sizes
(defined as the sum of the number of places and transitions)
of the 2n + 1 supervisors, before and after deleting the dead
transitions and ranging from a team of 2 to a team of 10 robots.
It also shows the size (defined as the number of states) of the
modular FSA supervisors obtained using [11]. It is clear that
building PN supervisors is a better approach than building FSA
supervisors, which scale much more poorly. In fact, we were
only able to obtain results for 5 or less robots. Also, we can
see that in spite of not using a complete method to delete dead

Figure 3. A fragment of the obtained supervisor

Figure 4. Size of the supervisors – FSA and PN

transitions, we are able to reduce the size of the supervisors.
Even though the supervisors are large, we were able to build
them in a decent amount of time and for an already large
number of robots5. We argue that without a formal method
that automatically guarantees that the specifications are met,
the construction of supervisors for this number of robots would
be much more error-prone.

VI. CONCLUSION AND FURTHER WORK

This work presents a method to build PN supervisors
that are guaranteed to fulfil LTL specifications, presenting
the designer with a framework where both the system and
the specifications for it to fulfil are represented in suitable
formalisms which allow for the implementation of complex
tasks. As illustrated in an application example, the method
is especially well suited for multi-robot tasks, where the
individual behaviours for each robot are modelled as a PNs
and the coordination rules between them are specified in LTL.

In the future, we intend to define a decentralized version of
the method where we only add to the model of each robot the
places and transitions of other robots that are related to the

5For 10 robots, the supervisors were built in around 2h30m, using an
Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz processor and 4GB of RAM.

specifications, thus reducing the size of the supervisors. We
also plan to address failures in actions and sensor readings, by
adding uncertainty to the state description. Furthermore, we
plan to formally verify liveness properties of our supervisors,
which cannot be implemented using this methodology.

REFERENCES

[1] C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[2] H. Costelha and P. Lima. Modeling, analysis and execu-
tion of robotic tasks using Petri nets. In Proc. of IROS ’07
– IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 1449–1454, San Diego, CA, USA, 2007.

[3] E. A. Emerson. Temporal and modal logic. In Handbook
of theoretical computer science (vol. B), pages 995–1072.
MIT Press, Cambridge, MA, USA, 1990.

[4] P. Gastin and D. Oddoux. Fast LTL to Büchi automata
translation. In Proc. of CAV ’01: 13th Int. Conf. on Comp.
Aided Verification, pages 53–65, London, UK, 2001.

[5] A. Giua and F. DiCesare. Blocking and controllability
of Petri nets in supervisory control. IEEE Transactions
on Automatic Control, 39(4):818–823, 1994.

[6] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of
Petri net methods for controlled discrete event systems.
Discrete Event Dynamic Systems, 7(2):151–190, 1997.

[7] M. V. Iordache and P. J. Antsaklis. Supervision based
on place invariants: A survey. Discrete Event Dynamic
Systems, 16(4):451–492, 2006.

[8] S. Jiang and R. Kumar. Supervisory control of discrete
event systems with CTL* temporal logic specifications.
SIAM Journal on Control and Optimization, 44(6):2079–
2103, 2006.

[9] M. Kloetzer and C. Belta. A fully automated frame-
work for control of linear systems from temporal logic
specifications. IEEE Transactions on Automatic Control,
53(1):287–297, 2008.

[10] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Tem-
poral logic-based reactive mission and motion planning.
IEEE Transactions on Robotics, 25(6):1370–1381, 2009.

[11] B. Lacerda and P. Lima. LTL plan specification for
robotic tasks modelled as finite state automata. In Proc.
of Workshop ADAPT – Agent Design: Advancing from
Practice to Theory, Workshop at AAMAS ’09, Budapest,
Hungary, 2009.

[12] T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541–580, 1989.

[13] M. Pistore and P. Traverso. Planning as model checking
extended goals in non-deterministic domains. In Pro-
ceedings of IJCAI ’01: 17th Int. Joint Conf. On Artificial
Intelligence, pages 479–484, Seattle, WA, USA, 2001.

[14] W. Sheng and Q. Yang. Peer-to-peer multi-robot coordi-
nation algorithms: Petri net based analysis and design.
In Proc. of IEEE/ASME ’05: The 2005 Int. Conf. on
Advanced Intelligent Mechatronics, pages 1407–1412,
Monterey, CA, USA, 2005.

	Introduction
	Fundamental Logic Concepts
	Propositional Logic
	Linear Temporal Logic

	Petri Nets
	General Definitions
	Petri Net Model of a Robotic Task

	Supervisor Synthesis
	Supervisory Control concepts
	Constructing the LTL-based PN supervisor
	Deleting Dead Transitions
	Building an Admissible Supervisor

	Example
	Conclusion and Further Work

