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Abstract—We address the ensemble synthesis of distributed
control policies to allocate a team of homogenous robots to a
collection of spatially distributed tasks. We assume individual
robot controllers are derived via the sequential composition of in-
dividual task controllers and develop an appropriate macroscopic
description of the team dynamics. A feedback control strategy
is synthesized using the macroscopic model to enable the team
to maintain a desired distribution of robots across the various
tasks while minimizing the variance of the robot population
at each task. We present a distributed implementation of the
proposed ensemble feedback strategy that can be implemented
with minimal communication requirements. We establish stability
properties of our ensemble controller and verify the feasibility
of the distributed ensemble controller through high-fidelity sim-
ulations.

I. INTRODUCTION

We address the dynamic allocation of a team of robots to
a collection of spatially distributed tasks which is relevant for
large scale environmental monitoring, surveillance, and auto-
mated warehouse distribution systems. In these applications,
the team must have the ability to autonomously distribute
among the various locales/tasks and redistribute to ensure task
completion and/or coverage that may be affected by robot
failures or changes in the environment. This is similar to the
multi-task (MT), single-robots (SR), time-extended assignment
(TA) problem [5]. In the multi-robot domain, market-based
approaches [4, 3] have been successful and can be further im-
proved when learning is incorporated [2]. Nevertheless, these
methods often scale poorly in terms of team size and number
of tasks [3, 8]. Furthermore, in applications where inter-agent
wireless communication is limited, it is often difficult to
devise reliable strategies to ensure timely communication of
the various local costs and utilities required by these existing
allocation approaches.

Different from existing work, we employ a macroscopic
description of the ensemble dynamics to synthesize distributed
agent-level control policies to dynamically allocate the team
to the various tasks. In addition, our strategies will enable
the team to shape both the mean and variance of the robot
ensemble distribution. In recent years, macroscopic continuous
models have been employed to describe the team dynamics
of robotic self-assembly [11, 16] and robotic swarm systems
[15, 14, 12]. These continuous population models are usu-
ally obtained by representing the individual robot controllers
as probabilistic finite state machines and approximating the
dynamics of a collection of discrete Markov processes as a
continuous-time Markov process. The macroscopic models are
then used to analyze the effects of microscopic, or agent-level,

behaviors on ensemble/team performance.
In this work, we consider the multi-site allocation problem,

first presented in [9]. We assume a homogeneous ensemble of
robots such that the agent-level control policies are obtained
via the sequential composition of individual task controllers.
Similar to [12, 1], we consider the design of stochastic
transition rules to enable the team to autonomously achieve
a desired distribution across the various tasks. Different from
[12, 1], we synthesize agent-level control policies that can
affect both the mean and the variance of the distribution
across the various tasks. Our strategy is inspired by Klavins’s
work on controlling the population dynamics of genes where
a polynomial Stochastic Hybrid System (pSHS) is employed
to describe the ensemble dynamics of the underlying agent-
based system [13]. Here, we model the simultaneous execution
of spatially distributed tasks by an ensemble of robots as
a pSHS and employ moment closure techniques to model
the moment dynamics of ensemble distribution [10]. The
main contribution is a team-size invariant approach towards
the design of distributed agent-level control policies that can
affect both the mean and the variance of the robot ensemble
distribution. As such, the approach has the ability to respond to
robot failures in a natural way, ensuring graceful degradation.

The paper is structured as follows: We formulate our ap-
proach in Section II and describe the synthesis and analysis of
our ensemble feedback strategy in Section III. Section IV de-
scribes the distributed implementation of our macroscopically
derived feedback controller in the presence of full communi-
cation and when robots rely solely on local communication.
Section V presents our simulation results. We conclude with
a discussion of our results and directions for future work in
Sections VI and VII respectively.

II. PROBLEM FORMULATION

Consider the assignment of N robots to execute M tasks
each located at a different locale within the workspace. The
objective is to synthesize a decentralized control strategy that
will enable the team to autonomously distribute across the M
tasks and maintain the desired allocation at the various locales.
Different from [12, 1], our goal is to design distributed agent-
level control policies that can affect both the mean and the
variance of the desired ensemble distribution.

A. Individual Robot Controller

Given a collection of {1, . . . ,M} tasks/sites, we use a
directed graph, G = (V ,E ), to model the pairwise precedence
constraints between the tasks. Each task is represented by a



vertex in V = {1, . . . ,M}. A directed edge exists between two
vertices (i, j) ∈ V ×V if task i must precede task j and we
denote this relation as i≺ j. Then, the set of edges, E , is given
by E = {∀(i, j) ∈ V ×V ∣i ≺ j}. We assume G is a strongly
connected graph, i.e., a directed path exists for any i, j ∈ V .

Given the M tasks, we denote the set of task controllers for
each task as {U1, . . . ,UM} and assume that the single robot
controller is obtained through the sequential composition of
{U1, . . . ,UM} such that the precedence constraints specified by
G are satisfied. We represent the robot controller as a finite
state automaton where each automaton state i is associated
with a task controller Ui. Fig. 1(a) shows an example robot
controller where the arrows denote state transitions that satisfy
the constraints specified in G .

In this work, we consider the surveillance of M sites where
the team must maintain some desired allocation of the robots
across the various locations. Robots are tasked to monitor each
site for a pre-specified amount of time, i.e., execute Ui. Once
the task is completed, robots must navigate to the next adjacent
site based on the constraints encoded in G . As such, we assume
each robot has complete knowledge of G , the ability to localize
within the workspace, and is capable of navigating from one
task/site to another while avoiding collisions with other robots
in the workspace.
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Fig. 1: (a) The robot controller. The robot changes controller
states based on the guard conditions. (b) Graphical representa-
tion of the equivalent chemical reaction network for the team
N robots distributed across the M tasks.

B. The Ensemble Model

For a team of N robots, each executing the same sequentially
composed controller, e.g., the one in Fig. 1(a), the ensemble
dynamics can be represented by an equivalent chemical reac-
tion network. This abstraction allows us to model the multi-
task/site allocation as a polynomial stochastic hybrid system
(pSHS) and to use moment closure techniques to model the
time evolution of the distribution of the team across the various
tasks/sites.

Let Xi(t) and X̄i denote the number of robots executing task
i or at site i and the desired number of robots for task i respec-
tively. The system state is given by X(t) = [X1(t), . . . ,XM(t)]T

with the desired distribution of the ensemble given by X̄ =
[X̄1, . . . , X̄M]

T . Since the tasks are spatially distributed and
robots must navigate from one site to another while avoiding
collisions with other robots, we model the variability in robot
arrival times at each task using transition rates. For every edge

ei j ∈ E , we assign constant ki j > 0 such that ki j defines the
transition probability per unit time for one agent from site i
to go to site j.

Given G and the set of ki j’s, we model the ensemble
dynamics as a set of chemical reactions of the form:

Xi
ki j−→ X j ∀ ei j ∈ E . (1)

The above reaction represents a stochastic transition rule with
ki j as the per unit reaction rate and Xi(t) and X j(t) as discrete
random variables. In the robotics setting, equation (1) implies
that robots at site i will transition to site j with a rate of ki jXi.
Further, we assume the ensemble dynamics is Markov which
will allow us to model the moment dynamics of the distribution
as a set of linear differential equations. It is important to note
that in general ki j ∕= k ji and ki j encodes the inverse of the
average time a robot spends at task/site i.

1) Moment Closure: Given the set of reactions in (1), the
moment equations for the discrete random variable Xi is given
by the extended generator of the system [10]. For a real-valued
function ψ(Xi), the extended generator is an expression for the
time derivative of the expected value of ψ , i.e., d

dt E[ψ(Xi)] =
E[Lψ(Xi)], and takes the form

Lψ(Xi) =

∑
j
[(ψ(Xi−1)−ψ(Xi))w ji +(ψ(Xi +1)−ψ(Xi))wi j] . (2)

The right hand side of (2) gives the continuous time derivatives
of the system for a discrete change in the state Xi. The
expression [ψ(Xi − 1)−ψ(Xi)] represents the change in ψ

given a unit change in the discrete variable Xi, while wi j
represents the frequency at which the change occurs. For the
system given by (1), wi j = ki jXi. To obtain the rate of the
change of the expected value of Xi, d

dt E[Xi], we let ψ(Xi) = Xi

in (2). Similarly, to obtain d
dt E[X2

i ], we let ψ(Xi) = X2
i .

Example 1: Consider the case when M = 2, i.e.,

X1
k12−−⇀↽−−
k21

X2

where robots executing task 1, X1, transition to task 2, X2, and
vice versa with rates k12X1 and k21X2 respectively. The first
and second moment dynamics for X1 are given by

d
dt E[X1] = E

[
((X1 +1)−X1)k21X2 +((X1−1)−X1)k12X1

]
= k21E[X2]− k12E[X1] and

d
dt E[X2

1 ] = E
[
((X1 +1)2−X2

1 )k21X2 +((X1−1)2−X2
1 )k12X1

]
=−2k12E[X2

1 ]+2k21E[X1X2]+ k21E[X2]+ k12E[X1].

When the wi j’s are linear with respect to the system state
X, the moment equations are closed. This means that the
time derivative for the first moment of Xi, d

dt E[Xi], is only
dependent on the first moments of Xi for i = 1, . . . ,M, i.e.,
E[X1], . . . ,E[XM], the second moments are dependent on the
first and second moments, and so on and so forth. This is
important because when the moment equations are closed, the



moment dynamics can be expressed as a linear matrix equation
as follows:

d
dt

[
E[X1 ]
E[X2 ]

E[X1X1 ]
E[X2X2 ]
E[X1X2 ]

]
=

[
−k12 k21 0 0 0
k12 −k21 0 0 0
k12 k21 −2k12 0 2k21
k12 k21 0 −2k21 2k12
−k12 −k21 k12 k21 −k21 − k12

][
E[X1 ]
E[X2 ]

E[X1X1 ]
E[X2X2 ]
E[X1X2 ]

]
. (3)

The steady state solution to the above equation lies in the
nullspace of the coefficient matrix. The solution is unique
if we consider the conservation constraint X1 +X2 = N, i.e.,
the number of robots within the system is constant. For this
example, the steady state solution is a binomial distribution
with the probability for robots to be at site 1 (or executing task
1) given by p1 = k21(k12 +k21)

−1, and the mean and variance
given by, E[X ] = N p1 and E[(X − E[X ])2] = N p1(1− p1)
respectively.

In general, the ensemble moment dynamics for the system
with M tasks/sites is given

d
dt E[X ] = KE[X ]

d
dt E[XXT ] = KE[XXT ]+E[XXT ]KT +Γ(α,E[X ])

(4)

where [K]i j = k ji and [K]ii = −∑(i, j)∈E ki j. It is important to
note that K is a Markov process matrix and thus is negative
semidefinite. This coupled with the conservation constraint
∑i Xi = N leads to exponentially stability of the system given
by (4) [9, 13]. Each entry in the matrix of second moments
is determined from the moment closure methods shown above
where the entries of Γ(α,E[X ]) are all linear with respect to
the ki j’s and the means E[X ]. For the two state example given
by equation (3), Γ(α,E[X ]) is defined as

Γ(α,E[X ]) =
[

k12E[X1]+k21E[X2] −k12E[X1]−k21E[X2]
−k12E[X1]−k21E[X2] k12E[X1]+k21E[X2]

]
.

Furthermore, the ki j’s can be chosen to enable a team of
robots to autonomously maintain some desired mean steady-
state distribution of the team across the various tasks/sites [9,
12, 1]. In essence, the ki j’s translate into a set of stochastic
guard conditions for the single robot controllers. The result is
a set of decentralized agent-level control policies that allow
the team to maintain the steady-state mean of the ensemble
distribution. Different from previous work, the focus of this
paper is to use the ensemble moment dynamics to synthesize
distributed control strategies to enable the team to maintain
both the mean and the variance of the robot team distribution
across the various tasks/sites. We describe the approach in the
following sections.

III. ENSEMBLE CONTROLLER DESIGN

As shown with equation (1), the rate in which agents in state
Xi transition to X j depends on the population in state Xi. As
such, the more agents in state Xi, the faster they transition to
X j. However, Klavins recently showed that if we allow for both
positive and negative transition rates, it is possible to shape
both the mean and the variance of the ensemble distribution
[13]. In other words, by introducing a negative feedback rate,
it is possible to slow the population growth at a given state
and thus affect the population variance in that state.

A. Controller Synthesis

Consider the following single reaction X1
α12−−→ X2 with the

corresponding moment equation for X1 given by d
dt E[X1] =

−α12E[X1]. If we add a negative feedback of the form
u = −βX2 such that the “closed-loop” reaction becomes

X1
α12−βX2−−−−−→X2, then the moment dynamics with state feedback

is given by E[X1] =−α12E[X1]+βE[X1X2] will depend on the
covariant moment E[X1X2]. Such a feedback control law breaks
the linearity of the moment equations because the moment
dynamics are not closed.

To ensure that the moment dynamics with state feedback
remain closed, consider the following feedback controller

u = β
X2
X1
. (5)

The reaction with state feedback becomes X1

α12−β
X2
X1−−−−−−→ X2

where (5) can be seen as a form of linearizing feedback control
that inhibits transitions from X1 to X2 as X2 becomes larger
than X1. For the two state system described in Example 1, the
closed-loop reactions become

X1

α12−β12
X2
X1−−−−−−−⇀↽−−−−−−−

α21−β21
X1
X2

X2 (6)

and the corresponding closed-loop first and second moment
dynamics for X1 become

d
dt E[X1] =(α21 +β12)E[X2]− (α12 +β21)E[X1],
d
dt E[X2

1 ] =(α21−β12)E[X2]+ (α12−β21)E[X1]

+2(α21 +β21)E[X1X2]−2(α12 +β12)E[X2
1 ].

(7)

where the steady-state values of E[X1] and E[X2
1 ] can be

independently set by adjusting parameters α and β .
In general, for the M state system described by (4), we

propose the following ensemble feedback controller

u =−Kβ E[X ] Ki j
β
=

⎧⎨⎩
β ji ∀(i, j) ∈ E

−∑ (i, j)∈E β ji ∀i = j

0 otherwise

, (8)

resulting with the following closed-loop moment dynamics

d
dt E[X ] =(Kα +Kβ )E[X ]

d
dt E[XXT ] =(Kα +Kβ )E[XXT ]+E[XXT ](Kα +Kβ )

T (9)

+Γ(α,β ,E[X ]).

The above equations are obtained by simply substituting
ki j = αi j − βi j

X j
Xi

in the reactions given by (1) and applying
the extended generator to ψ(Xi) = Xi.

B. Analysis

In this section, we show the stability of the ensemble
feedback controller.

Theorem 1: The first moment dynamics of the system with
ensemble feedback strategy given by (9) is stable.



Proof: The first moment dynamics for the system with
ensemble feedback is given by (9)

d
dt E[X ] = Kα E[X ]+Kβ E[X ]

.
Since both Kα and Kβ are Markov process matrices, they

are negative semidefinite, each with a zero eigenvalue of
multiplicity one. Furthermore, the eigenvector associated with
the zero eigenvalue is the vector 1 such that 1T K(⋅) = 0. The
sum of two negative semidefinite matrices is still negative
semidefinite and thus the first moment dynamics of the closed-
loop system given by (9) is stable.

It is important to note that the rate of population exchange
in the model allows for backwards flow when βi jX j > αi jXi.
In the systems that we are considering, we restrict this rate to
be greater than or equal to zero. A rate of zero implies that
no robots are executing that transition. This case requires a bit
more work to show stability of the ensemble feedback strategy
if only due to the saturation of the control inputs required to
ensure βi jX j ≤ αi jXi.

IV. DISTRIBUTED IMPLEMENTATION

In this section we present the distributed implementation of
the proposed ensemble feedback strategy given by equation
(8) in the cases when robots have 1) full and infinite range
communication and 2) local and finite range communication.

A. Full Communication

The feedback strategy (8) gives robots in state Xi the ability
to set their own state transition rates to be independent from
the number of robots in Xi. This, however, requires robots
in Xi to know how many robots are at adjacent sites, i.e.,
robots in X j where ei j ∈ E . We begin with the assumption that
individual robots have full knowledge of the ensemble states
X(t) = [X1(t), . . . ,XM(t)]. In practice, this can be achieved by
endowing each task site the ability to track the number of
robots at the site and the ability to communicate with adjacent
task sites. To obtain timely estimates of the ensemble states,
robots would only need to communicate with its current task
site.

Algorithm 1 describes the implementation of the individual
robot controller shown in Fig. 1(a) where U (0,1) denotes
a continuous uniform distribution between 0 and 1. The
algorithm consists of two parts: Lines 1:14 – where the robot
executes task i and determines the time it stays with task i,
Ti, from the set of ki j’s; and Lines 16:19 – where the robot
determines the next task to execute after completing task i.
Lines 16:19 in Algorithm 1 is necessary for the general case
when task i can be followed by multiple tasks. To determine
Ti, robots first calculate the sum of all the exit rates, ∑∀i ki j,
from i (Line 3). This total rate represents the rate a single
robot leaves task i for j and is used to calculate the time a
robot spends executing task i, i.e., Ti. If a new robot arrives at
task/site i or an existing one leaves, the robot recalculates Ti.
The feedback controller given by equation (8) is implemented
by assigning ki j = αi j−β i j X j

Xi
in Line 3 for all i, j pairs and

Xi,X j is obtained through local communication between the
robot and site i.

We note that from the ensemble view, the parallel execution
of Algorithm 1 by the team of N robots is akin to the
parallel distribution of N stochastic simulation algorithms first
proposed by Gillespie in [6]. Since the times a robot spends
at a task/site are all exponentially distributed and memoryless,
the process of gaining and losing robots at the site is a birth-
death process which allows for the constant resetting of Ti.

Algorithm 1 Robot Controller w/ Full Communication

1: initialize robotState =Ui
2: initialize all αi js and βi js
3: kΣi = ∑∀(i, j)∈E ki j

4: Ti = ∑∀{i, j}∈E
1

kΣi
ln 1

U (0,1)
5: repeat
6: execute Ui
7: if a new robot arrives at site i then
8: Xi = Xi +1
9: goto 1

10: end if
11: if a robot leaves site i then
12: Xi = Xi−1
13: goto 1
14: end if
15: until t ≤ Ti
16:
17: j = sample[ ki1

∑∀(i, j)∈E ki j
, ⋅ ⋅ ⋅ , ki j

∑∀(i, j)∈E ki j
, ⋅ ⋅ ⋅ ]

18: robotState =U j
19: X j = X j +1
20: goto 1

Example 2: Consider the example when M = 3. The equiv-
alent chemical reaction network representation of the ensemble
model is shown in Fig. 2 and the closed-loop first and second
moment dynamics are given by equation (10). The values
for the αi j’s and βi j’s were chosen to achieve the desired
population distribution mean of E[X ] = [10,15,5] and variance
of Var[X ] = [4,4,2] at each site. These values are shown in
Table I. By adjusting the ratios of the αi j’s and βi j’s, we were
able to maintain the same mean behavior while reducing the
on-site population variance and simultaneously speeding up
the closed-loop system’s convergence rate. Fig. 3 shows the
distribution of the ensemble at each of the three sites with and
without the ensemble feedback strategy given by equation (8).

B. Local Communication

In practice, not only is it unreasonable to assume full and
perfect communication among the robots, it is often unreason-
able to assume full and perfect communication between sites.
This is especially true when sites are distributed across vast
geographic regions or in situations where long-range commu-
nication is difficult/impossible, e.g., underground/underwater
environments. In this section, we present a decentralized
implementation of the proposed ensemble feedback control
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α13 −β13X3X−1
1 α32 −β32X2X−1

3

α12 −β12X2X−1
1

Fig. 2: A chemical reaction network representation of an
example 3-site surveillance problem where Xi denotes the
number of robots at site i executing surveillance task Ui.

Rates α12 α13 α21 α32 β12 β21 β13 β21

w/o (8) 1.66 1.97 2.41 3.94 0 0 0 0
w/ (8) 2.93 2.52 2.82 6.98 0.85 1.01 0.60 1.01

TABLE I: Values of αi j’s and βi j’s for the system given by
equation (10) with and without the ensemble feedback strategy
given by equation (8). These values were chosen such that
E[X ] = [10,15,5] and Var[X ] = [4,4,2] with the ensemble
feedback strategy.

strategy given by equation (8) that relies solely on local inter-
robot communication. We assume robots have finite commu-
nication ranges and can only communicate with other robots
that are co-located at the same site and/or within each other’s
communication range. As robots move from one site to another
and exchange information with other robots they encounter,
each robot can construct their own estimates of the population
levels at the various sites.

To more faithfully represent the underlying agent-based
system, we expand the ensemble model to take into account
the navigation controller executed by individual robots as they
move from one task/site to another. Given the set of M tasks
and task controllers {U1, . . . ,UM}, let Ui j denote the navigation
controller executed by a robot to travel from site i to j.
Let λi j denote the mean per robot arrival rates at site j for
robots traveling from sites i. In other words, 1/λi j denote the
expected travel time between sites i and j whose variability
can be affected by the number of robots “on the road”. Let
Yi j(t) denote the number of robots traveling between sites i
and j. Similar to the Xi(t) variables which denote the number
of robots at site i, Yi j(t) are discrete random variables. The

(a)

(b)

Fig. 3: Results of the system in Figure 2. These plots compare
the behavior of the steady state distributions and the conver-
gence rate of the system with and without ensemble feedback.
Each left side plot shows the start up behavior from an initial
condition of X = [0,0,30]. The solid lines denote the numerical
solutions of the first moment dynamics and the data points are
10 representative stochastic simulation runs. The right side
plots are the steady state distributions represented as normal
distributions. Note how the system with ensemble feedback
has faster convergence and small variance on its populations.

single robot controller and corresponding ensemble model is
shown in Fig. 4(a).

Applying (2) with ψ(Xi) = Xi, we obtain the following first
moment dynamics

d
dt E[Xi] = ∑

∀ j→i
λ jiE[Yji]− ∑

∀i→ j
ki jE[Xi],

d
dt E[Yi j] = ki jE[Xi]−λi jE[Yi j]

(11)

for all i, j = 1, . . . ,M. Due to space considerations, we omit
the equations for the second moment dynamics. Similar to
previous examples, we employ the feedback control strategy
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Fig. 4: (a) Robot controller for the 3-site surveillance problem
with navigation. Ui denotes task controllers at site i and Ui j
denotes navigation controllers between sites i and j. (b) The
corresponding ensemble model.

Fig. 5: A still of the 15 robot USAR simulation. While
executing the survey task, the robots would circle the sites.

given by (8). The moment dynamics with state feedback can
be obtained by substituting ki j =αi j−βi jX jX−1

i into the above
equations.

To achieve online estimation of the on-site robot population
as well as the robot population at neighboring sites by the
individual robots, robots exchange information with other
robots that are co-located at the same site. Robots arriving
from site i from task j delivers an estimate of X j which
we denote as ˆX j∣i and refer to it as the estimated value of
X j at task i. Since the proposed ensemble feedback strategy
relies on information of robot populations at adjacent sites,
the decentralized implementation requires two way reactions
between sites to achieve variance control.

Algorithm 2 presents the decentralized single robot con-
troller with ensemble feedback. We note that Line 9 denotes
the exchange of information between robots arriving at site
i from j with robots located at i and Line 20 denotes the
information that a robot leaving site i will carry to robots
located at site j. We present our simulation results in the
following section.

Algorithm 2 Robot Controller w/ Local Communication

1: initialize robotState =Ui
2: initialize all αi j’s and βi j’s
3: kΣi = ∑∀(i, j)∈E ki j(αi j,βi j)

4: Ti = ∑∀{i, j}∈E
1

kΣi
ln 1

U (0,1)
5: repeat
6: execute Ui
7: if a new robot arrives at site i then
8: Xi = Xi +1
9: X̂ j∣i = X̂ j

10: goto 1
11: end if
12: if a robot leaves site i then
13: Xi = Xi−1
14: goto 1
15: end if
16: until t ≤ Ti
17:
18: j = sample[ ki1

∑∀(i, j)∈E ki j
, ⋅ ⋅ ⋅ , ki j

∑∀(i, j)∈E ki j
, ⋅ ⋅ ⋅ ]

19: robotState =Ui j
20: X̂i = Xi−1
21: goto 1

V. RESULTS

To verify the validity of our robot controllers presented in
Algorithms 1 and 2, we employed a multi-level simulation
strategy. At the top level are the macro-continuous simulations
where the linear moment closure equations are numerically
solved. At the intermediate level are the macro-discrete sim-
ulations which are conducted using the Stochastic Simulation
Algorithm (SSA) which is mathematically equivalent to an
agent-based simulation [7]. At the lowest level are the micro-
discrete simulations which are agent-based simulations using
a team of mSRV-1 robots in USARSim [17]. A frame from
one of our micro-discrete simulations is shown in Fig. 5.

Simulations at all three levels were run for an ensemble
of 15 robots for the three site example shown in Fig. 4.
The macro-discrete simulations were ran for approximately
30,000 transitions to ensure the system has reached steady-
state for the following three scenarios: (a) the system with no
ensemble feedback, and robots executing (b) Algorithm 1 and
(c) Algorithm 2. The macro-continuous and macro-discrete
results are shown in Fig. 6(a)-6(c). The macro-continuous
results are represented as normal distributions and shown by
the dotted lines in the figures. The values for αi j’s and βi j’s
in the ensemble feedback strategy are shown in Table III and
chosen such that E[̂̄Xi] = 4 for each site while minimizing
Var[X̂i]. The values for the expected travel times are shown
in Table II. The same parameters were employed for the
micro-discrete simulations for the same three scenarios: (d) the
system with no ensemble feedback, and robots executing (e)
Algorithm 1 and (f) Algorithm 2. The results are shown in Fig.
6(d)-6(f). Each micro-discrete distribution is constructed from
5 separate steady-state simulations each with 2,000 transitions.



TABLE II: Expected travel times, λ
−1
i j , between tasks.

Intersite Paths λ
−1
12 λ

−1
13 λ

−1
21 λ

−1
23 λ

−1
31 λ

−1
32

E[Ti j] (sec) 14.0 18.0 14.0 18.0 18.0 18.0

The first and second moments of our simulation results are
shown in Table III for each scenario.

VI. DISCUSSION

The results shown in Fig. 6 demonstrate the ability of our
ensemble feedback strategy to simultaneously affect the mean
and the variance of the on-site robot populations. More inter-
estingly, our fully decentralized implementation where robots
rely solely on at-site communication to estimate the various
population variables achieves similar performance predicted
by the ensemble model (see Fig. 6(c) and 6(f)).

However, we note that in our example, the mean transition
rates were much slower than the travel transitions between
sites, αi jE[Xi]−βi jE[X j]< λi jYi j. This led to a system where
the effects due to the travel delays were overshadowed by
the delays introduced by robots spending time at a site. For
systems with larger travel times and lower site transition rates,
the ensemble may encounter some instability due to poor
estimation of the site populations. To alleviate these effects,
we could provide the robots the ability to estimate both X j
and Yi j. This is not entirely unreasonable since estimation of
Yi j could be achieved as robots encounter other robots as they
travel between sites.

While there is some disagreement between the population
means and variances predicted by the linear ensemble model
and the actual robot simulations, we believe that the main
source of the model error is due to the minimum transition rate
of the single reactions. Each reaction expression has a rate of
zero when either the number of robots at the associated site is
zero, or the difference αi jE[Xi]−βi jE[X j]< 0. Since all of the
rates are one-way, they only govern robots leaving a site and
thus the transition rate will go to zero if αi jE[Xi]−βi jE[X j]<
0. The linear approximation does not take into account this
saturation effect.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a method for synthesizing dis-
tributed ensemble feedback control strategies through the de-
velopment and analysis of an appropriate macroscopic descrip-
tion of the ensemble dynamics. Moment closure techniques
where used to derive the ensemble dynamics and through this
analysis a linearizing ensemble feedback strategy was obtain.
We presented a distributed implementation of the proposed
ensemble feedback strategy which can be implemented on
robots with limited communication range. The resultant agent-
level control policies enabled the team to affect both the mean
and the variance of the ensemble population across the various
spatially distributed tasks.

There are many directions for future work. From our prelim-
inary results, we believe it is possible to select the appropriate
feedback gains to not only affect the mean and the variance

of the on-site populations, but also to improve the systems
overall convergence rate. We would like to investigate different
optimization strategies to achieve this in an automated fashion.
Furthermore, as mentioned in the discussion, the relationship
between the length of the travel times and time required for
individual robots to achieve a stable estimate of the various
population variable are interrelated. We are interested in study-
ing the sensitivity of these ensemble feedback strategies in
situations where the travel times may be large. Finally, we
would like to determine the appropriate bounds on system
and controller parameters to ensure stability of our distributed
ensemble feedback control policies.
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