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Abstract—The operational space formulation (Khatib, 1987),
applied to rigid-body manipulators, describes how to decouple
task-space and null-space dynamics, and write control equations
that correspond only to forces at the end-effector or, alternatively,
only to motion within the null-space. We would like to apply this
useful theory to modern humanoids and other legged systems,
for manipulation or similar tasks, however these systems present
additional challenges due to their underactuated floating bases
and contact states that can dynamically change. In recent work,
Sentis et al. derived controllers for such systems by implementing
a task Jacobian projected into a space consistent with the
supporting constraints and underactuation (the so called support
consistent reduced Jacobian). Here, we take a new approach to
derive operational space controllers for constrained underactu-
ated systems, by first considering the operational space dynamics
within projected inverse-dynamics (Aghili, 2005), and subsequently
resolving underactuation through the addition of dynamically
consistent control torques. Doing so results in a simplified control
solution compared with previous results, and importantly yields
several new insights into the underlying problem of operational
space control in constrained environments: 1) Underactuated
systems, such as humanoid robots, cannot in general completely
decouple task and null-space dynamics. However, 2) there may
exist an infinite number of control solutions to realize desired
task-space dynamics, and 3) these solutions involve the addition
of dynamically consistent null-space motion or constraint forces
(or combinations of both). In light of these findings, we present
several possible control solutions, with varying optimization
criteria, and highlight some of their practical consequences.

I. INTRODUCTION

Dynamics of a robot are important to consider for planning
and executing dexterous, fast, and compliant motions. More
specifically, the inertial and energy characteristics of the end-
effector, or operational degrees-of-freedom (DOFs), are most
relevant for understanding the performance and behavior of
tasks such as object manipulation. With this is mind, Khatib
[4] presented the operational space formulation, which de-
rives end-effector dynamics for rigid-body robot manipulators.
Additionally, the resulting control solutions are able to com-
pensate for (linearize) task dynamics and decouple them from
redundant null space dynamics, such that the torques in null
space are dynamically consistent with the task.

We would like to apply this powerful technique for analysis
and control of a wider range of robotic systems than classi-
cal manipulators. For example, modern humanoid robots are
generally complex, high DOF systems, where task dynamics

should be considered for manipulation, balance, locomotion
tasks, etc. Adding to their complexity, humanoid systems are
generally underactuated and constrained. Complete represen-
tation of the dynamics must consider the 6 DOF floating
base link connected passively to an inertial reference frame.
Contacts with the environment also input constraint forces,
and contact conditions may dynamically change, especially
during locomotion. We would like to fully understand how
underactuation and constraints interact with the dynamics of
the tasks we need to control.

Several contributions have addressed operational space con-
trol within constrained environments. Khatib [4] considered
constraints applied at the end-effector as an additional task
to be controlled, for example to realize a desired contact
force. Russakow et al. [9] examined systems with more
complex kinematic structures including internal closed kine-
matic chains. de Sapio and Khatib [2] took a more general
approach that included systems with holonomic constraints,
and applied it to the operational space control of a parallel
mechanism. Sentis et al. [10, 11, 12] developed operational
space controllers to specifically address the underactuation
and constrained dynamics of humanoid robots. Further works
by Park, Sentis, and Khatib [7, 13] additionally consider the
control of contact forces for humanoids.

A common theme among the above works is that the
controllers are designed to remain dynamically consistent with
the constraints (i.e. the controllers contribute no acceleration
at the constraint locations). However, because constraints, by
definition, are able to apply necessary forces to maintain their
consistency, controllers do not need to address the dynamic
consistency explicitly.1 As a consequence, many of the above
controllers can be significantly simplified, for example, by
using orthogonal projections in place of the oblique projections
containing the inertia matrix. For example, Aghili [1] was
able to formulate both the direct and inverse dynamics of
constrained systems using orthogonal projections derived from
only kinematic parameters, which in practice are generally
easier to model accurately than inertial parameters [6]. Mistry
et al. [5] was also able to apply orthogonal projections for
the inverse dynamics control of legged robots, without requir-

1Unless control of a constraint force is considered part of the task



ing measurement or estimation of contact forces, or oblique
projections involving inertia matrices.

One of the objectives of this paper is examine the role
of orthogonal projections on constrained operational space
dynamics. Working directly with the equations of projected
inverse-dynamics [1], we are able to formulate operational
space dynamics without consideration of constraint forces or
constraint dynamic consistency, leading to a much simplified
and manageable solution that retains a similar form to the orig-
inal unconstrained formulation. Additionally we examine the
consequences of passive DOFs and underactuation. Similarly
as Aghili [1] used additional constraint forces to influence
torque at passive joints, we use dynamically consistent null-
space forces to generate torque at passive joints without
affecting desired task dynamics. These null-space forces can
be used to either generate constraint forces or null-space
motion. We are also able to apply the same control solution to
unconstrained systems, using null space motion to compensate
for passive degrees of freedom. We attempt to formulate all
our results in a unified manner, keeping the structure consistent
regardless if the system is constrained or unconstrained, fully
actuated or underactuated. We also present examples using a
simple but insightful 3 DOF simulated arm.

II. OPERATIONAL SPACE DYNAMICS

We assume the robot with n degrees-of-freedom (DOFs) is
represented by the configuration vector q ∈ Rn. Additionally,
the robot may have k linearly independent constraints such that
locations in constraint undergo zero acceleration. We write
this condition as ẍC = JC q̈ + J̇C q̇ = 0, where JC is the
constraint Jacobian. Note that these constraints can either be
either holonomic or nonholonomic [8]. The robot may also
be underactuated, in which case we have p active joints and
l = n − p passive joints. We write the rigid-body inverse-
dynamics equation as:

M(q)q̈ + h(q, q̇) = Bτ + JT
C(q)λ (1)

where M(q) ∈ Rn×n is the inertia matrix, h(q, q̇) ∈ Rn is
the vector of centripetal, Coriolis, and gravity forces, τ ∈ Rn

is the vector of joint torques,

B =

[
Ip 0
0 0

]
(2)

is the projector into actuated joint space (Ip is the p dimen-
sional identity matrix), and λ ∈ Rk is the vector of k linearly
independent constraint forces

We also have an m DOF task, e.g. control of an end-
effector, represented by the operational space configuration
vector x ∈ Rm, and the task Jacobian J, defined by the
relation ẋ = J(q)q̇. To summarize the contributions of Khatib
[4] for unconstrained (k = 0) and fully actuated (l = 0)
systems (e.g. a traditional robot manipulator), the dynamics
in the operational space are derived as:

Λẍ + Λ
(
JM−1h− J̇q̇

)
= F, (3)

where Λ =
(
JM−1JT

)−1
and F is an external force applied

at the end-effector. Then Khatib formulated the operational
space control equation, for redundant manipulators (m < n),
as:

τ = JTF +
(
I− JTJT#

)
τ0 (4)

where F is defined by (3) using a desired task acceleration ẍdes

in place of ẍ, and JT#

is the following generalized inverse of
JT :

JT#

=
(
JM−1JT

)−1
JM−1 (5)

As discussed by Khatib, this generalized inverse is defined to
be dynamically consistent with the task: it is the only gener-
alized inverse that results in zero end-effector acceleration for
any τ0. This inverse also solves the equation ẋ = Jq̇ for the
joint velocities that minimize the instantaneous kinetic energy
of the system. By using (4) we are able to compensate for task
space dynamics, such that ẍ = ẍdes, while decoupling motion
generated by τ0 from affecting task-space dynamics.

A. Constraints

Now we extend the operational space formulation to con-
strained systems using orthogonal projections. Constraints are
defined as in (1), and can include systems with closed kine-
matic chains, such as parallel mechanisms or humanoid/legged
robots with two or more feet in contact. At first we address
fully actuated systems, and later extend to the underactuated
case. As outlined by Aghili [1], we can project (1) into
the null-space of the constraints, eliminating the constraint
forces from the dynamics equation, and write the equation
of projected inverse dynamics:

PMq̈ + Ph = Pτ (6)

where P is an orthogonal projection operator, such that
PJT

C = 0 and P = P2 = PT . Also, P is readily
computable from the constraint Jacobian: P = I − J+

CJC

(where + indicates the Moore-Penrose pseudoinverse). Note
that P depends only on kinematic parameters and unlike other
approaches that attempt to maintain dynamic consistency with
constraints, does not require the inertia matrix.

Next, we wish to invert PM to solve for q̈, however because
P is generally rank deficient, this term will not be invertible.
However, because our system is constrained, we have the
following additional equations:

(I−P) q̇ = 0 (7)
(I−P) q̈ = Cq̇ (8)

where C is (d/(dt))P, e.g. C = −J+
C J̇C . Employing a trick

used by Aghili, because (8) is orthogonal to (6), we can add
these equations:

Mcq̈ + Ph−Cq̇ = Pτ (9)

defining Mc = PM + I − P. Note, as discussed by Aghili,
the choice of Mc for a given q is not unique, but is always



invertible (provided M is invertible).2 Next, we multiply (9)
by JM−1

c , and replace Jq̈ with ẍ− J̇q̇:

ẍ− J̇q̇ + JM−1
c (Ph−Cq̇) = JM−1

c Pτ (10)

A force at the end-effector F, is mapped into joint torques
via: τ = JTF, and therefore we derive the operational space
dynamics as:

Λcẍ + Λc

(
JM−1

c Ph−
(
J̇ + JM−1

c C
)

q̇
)
= F (11)

where Λc =
(
JM−1

c PJT
)−1

. Although Mc is not unique,
M−1

c P will be unique (for a given q) (see Appendix A), and
therefore (11) is also unique.

B. Operational space control with constraints
The operational space control equation for constrained

(fully-actuated) systems also takes the form of (4). However,
we use F defined by (11) (again replacing ẍ with our desired
task acceleration ẍdes), and using the following generalized
inverse of JT :

JT#

=
(
JM−1

c PJT
)−1

JM−1
c P. (12)

It is straightforward to verify that this generalized inverse
is dynamically consistent: by applying (12) to (4), and then
subsequently to (11), we see that ẍ = 0 for any τ0. Also
because M−1

c P is unique, the dynamically consistent inverse
is also unique. Additionally, this generalized inverse min-
imizes the instantaneous kinetic energy in the constrained
space (see Appendix B). For notational simplicity, we define
N = I− JTJT#

and write the control equation as:

τ = JTF + Nτ0 (13)

C. Reducing control torques
Equation (13) is a joint space controller that emulates a

force F, as if it were externally applied to the end-effector.
This controller replicates both the joint motion and constraint
forces that would result from the external force. However,
constraint forces generate no robot motion, and ultimately no
acceleration of the end-effector. Thus we can also consider a
control equation that produces the joint acceleration we desire
without adding extraneous constraint force. We rewrite the
control equation as a sum of three components:

τ = PJTF + PNτ0 + (I−P) τC (14)

where PJTF generates end-effector acceleration, PNτ0 gen-
erates acceleration only in the null-space (with zero end-
effector acceleration), and (I−P) τC produces only constraint
forces and no joint space motion. If we are not concerned
about the constraint forces we generate, we can reduce the
norm of our torque vector by setting τC = 0. This controller
will produce motion identical to (13), but with different
constraint forces and a smaller total control input (since P
is an orthogonal projection, we can verify that ‖Pτ‖ ≤ ‖τ‖,
∀τ ).

2Other choices of Mc include (M+PM−MP),
(PMP+ (I−P)M (I−P)), and (PM+ α (I−P)) for arbitrary
scalar α. The definition of C will change with choice of Mc

III. UNDERACTUATION

When the system contains passive degrees of freedom (l >
0), we may no longer be able to generate desired end-effector
forces using the direct mapping to joint torques via a Jacobian
transpose. The torques we can generate are limited by the
following constraint which must always be satisfied:

τ = Bτ. (15)

Unless JTF = BJTF, we will have to add a null-space
component to satisfy (15). However we are still guaranteed that
this additional torque will not affect the task-space dynamics.
Note, because we cannot compensate for task-space dynamics
without the addition of null-space torques in general, we are
no longer able to decouple task and null space dynamics.
Applying (13) to (15) results in

JTF + Nτ0 = BJTF + BNτ0, (16)

and we can solve for τ0:

(I−B)JTF = − (I−B)Nτ0 (17)

τ0 = − [(I−B)N]
+
(I−B)JTF, (18)

again using the Moore-Penrose pseudoinverse. Provided (17)
has at least one valid solution for τ0, we can use (18) in (13)
and write the control equation as:

τ =
(
I−N [(I−B)N]

+
(I−B)

)
JTF. (19)

Also, because (I−B) is an orthogonal projection, the equa-
tion simplifies to (see Appendix C):

τ =
(
I−N [(I−B)N]

+
)

JTF. (20)

If the system has sufficient redundancy, there may be an
infinite number of solutions for (17). However, by using the
Moore-Penrose pseudoinverse, we are computing the mini-
mum possible ‖τ0‖, and (20) represents the operational space
control solution with the minimum possible null space affect.

Note that (20) can work for both unconstrained and con-
strained systems (using either (3),(5) or (11),(12), respec-
tively), again provided a solution to (17) exists. In the case
of unconstrained systems, the controller will generates dy-
namically consistent null-space motion to compensate for lost
torque at the passive joints. However, in the constrained case,
the controller uses a combination of both motion and constraint
forces to generate torque at the passive joints.

A. Multiple tasks

If we have more than one task, we can address under-
actuation using dynamically consistent torque as above, but
the torque must be dynamically consistent with all tasks. As
an example, consider two tasks with task 1 having a higher
priority than task 2. We define the augmented Jacobian of all
tasks as JT

a =
[

JT
1 JT

2

]
, and the null space projector that



is dynamically consistent with all tasks as: Na = I−JT
a JT#

a .
Then we write the operational space control equation as:

τ = JT
1 F1 + N1J

T
2 F2 + Naτ0. (21)

Solving for τ0 as done previously, we can write the control
solution as:

τ =
(
I−Na [(I−B)Na]

+
) (

JT
1 F1 + N1J

T
2 F2

)
(22)

B. Joint acceleration consistant controller

The multi-task solution above assumes we have sufficient
redundancy remaining after the assignment of all tasks. If all
DOFs of the robot are accounted for in Ja (e.g. Rank(Ja) = n),
then it is impossible to add any motion that will not conflict
with at least one task. However, if the robot has constraints,
we may still be able to add constraint forces to resolve
underactuation, without inducing any additional joint space
motion at all. We use the equation:

τ = JTF + (I−P) τC , (23)

where (I−P) τC are torques that induce zero joint accel-
eration on there robot, and only affect the constraint forces.
Because there is no acceleration, (I−P) is dynamically
consistent with the task. Additionally we can verify that it
projects into a subspace of N, i.e. (I−P) = N (I−P). Then
we can satisfy (15) with the control equation:

τ =
(
I− (I−P) [(I−B) (I−P)]

+
(I−B)

)
JTF. (24)

Because both (I−P) and (I−B) are orthogonal projections,
the equation simplifies to (see Appendix C):

τ =
(
I− [(I−B) (I−P)]

+
)

JTF, (25)

and even further reduces to:

τ = [PB]
+

JTF. (26)

This solution is significant for a number of reasons. First,
it produces identical joint accelerations as the operational
space controller of a fully actuated (but constrained) system.
Therefore the null space component, required to resolve under-
actuation, adds no additional kinetic energy into the system.
Secondly, the projector [PB]

+ is identical to the projector of
constrained underactuated inverse dynamics controllers. For
example, to achieve a desired joint space acceleration q̈des,
provided q̈des is constraint consistent, we can use the following
controller independent of constraint forces [5]:

τ = [PB]
+
(Mq̈des + h) . (27)

Finally, (26) is identical to the operational space controller
derived by Sentis et al. for humanoid and legged robots, but
in a much reduced form. For example, the inertia matrix is only
used in F and does not appear in the projector or Jacobian as
in [12]. Note that this point is more throughly developed in
[3], and here we additionally verify it empirically.
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Fig. 2. Task performance of a regulation task to the dashed line target.
FA is the fully actuated controller. Note that controllers FAr and UACF have
identical joint motion as FA, and therefore identical task performance. UAN
has similar performance to FA, however UAPN has increased oscillation,
likely a consequence of not using constraint forces.
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Fig. 3. Instantaneous kinetic energy of the system (39). FA is the fully
actuated controller, and FAr and UACF have identical kinetic energy profiles.
Since UAN adds additional null space motion to resolve underactuation, it
has a slightly different energy profile. UAPN does not use constraint forces,
and therefore requires significantly larger energy to resolve underactuation.

C. Motion only controller

Since the previous controller (26) only uses constraint forces
to resolve underactuation, for comparison, we can consider a
controller that only uses null space motion. The controller is
written as:

τ =
(
I−PN [(I−B)PN]

+
)

JTF, (28)

and attempts not to change the constraint forces generated task
dynamics.

IV. EXAMPLES

In order to test the validity of our controllers, as well our
understanding of constrained operational space dynamics, we
aim to use the simplest possible system that still makes sense



50 N

Joint 1 

N

Joint 2
Joint 3 

(Passive)

Target

end-effector

Fig. 1. Comparison of 5 different controllers for the constrained 3 DOF robot. Top left figure shows the initial condition and the target 1.0 meters lower.
Simulation is run for 2 seconds in each case. Red lines indicate contact forces on the constraint line. Top two simulations use the fully actuated (FA) and
fully actuated with reduced torque (FAr) controllers. Although the motion is identical, force profiles are significantly different. Bottom three simulations are
underactuated with a passive joint 3 (green circle). UAPN only uses motion to resolve underactuation, and therefore has a force profile closest to FA. UACF
uses only constraint forces to resolve underactuation, and therefore has identical motion to FA, but with significantly larger constraint forces. The UAN
controller, which minimizes the null-space torque contribution, strikes a balance between UACF and UAPN.

to add constraints and/or underactuation. We use a simulated
3 DOF planar arm with rotary joints. Each link of the robot
simulator has the same length and the same inertial parameters.
We assume zero gravity and include a small amount of viscous
friction at the joints. The system also has a 1 DOF constraint:
the x position of the end-effector, and a 1 DOF task: the y
position of the end-effector. Fig. 1 (upper left box) describes
the setup and initial condition. To consider underactuation, we
may turn off the actuator at joint 3 (green circle in Fig. 1).
The task is to regulate to a new end-effector position xtarget,
and we set our desired task acceleration as:

ẍdes = KP (xtarget − x)−KDẋ (29)

We test the 5 constrained operational space controllers
labeled as follows.

FA : The fully actuated operational space controller of
(13), with τ0 = 0

FAr : The fully actuated controller with reduced torque
(14), with τ0 = 0, τC = 0

UAN : The underactuated controller that minimizes the
null space contribution (20)

UACF : The underactuated controller that uses only con-
straint forces (and therefore minimizes instantaneous
kinetic energy) (26)

UAPN : The underactuated controller that uses only null
space motion. (28)

We use the same control parameters (gains) for each case.
Fig. 1 shows the resulting motion and constraint forces after

simulating for 2 seconds. Fig. 2 also shows the task regula-
tion performance. As expected, the fully actuated controllers
FA and FAr have identical joint motion, but very different
constraint forces. We computed the sum of the norm torque
over 2 seconds and found that indeed, FAr reduced the sum of
the norm torque by 30.0%. As a consequence, contact forces
are increased. In the underactuated case, all three controllers
achieved that task in spite of a passive joint. UACF produced
identical motion to the fully actuated controllers, however
had a noticeable increase in constraint force profile. UAPN,
which uses purely null space motion to resolve underactuation,
significantly increases the kinetic energy of the system (Fig. 3),
however, it maintains the most similar constraint force profile
to FA of the three underactuated controllers. By minimizing
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Fig. 5. Primary task performance of the unconstrained system. The
underactuated robot is in blue.

null space impact, UAN seems to reach a compromise between
the two: a slight increase in kinetic energy in trade for a
relatively lower contact force profile.

A nice property of some of the equations we derived, is that
they retain the same form whether the system is constrained
or unconstrained. Thus we may be able to use them to control
operational space dynamics for systems with passive joints and
no constraint forces. To test, we remove the constraint from
the 3 DOF arm, and add a secondary task to control end-
effector position in the x direction. Then, we validate with
two controllers:

FAuc : A fully actuated, multi-task controller using (21)
with τ = 0

UANuc: An underactuated multi-task controller using (22).
Joint 3 is still considered as the passive joint.

The resulting simulation is shown in Fig. 4 (the underacted
robot is on the right), with primary and secondary task perfor-
mance shown in Figs. 5 and 6. We also plot the instantaneous
kinetic energy (Fig. 7) which confirms that the underactuated
robot will use more energy by generating null space motion
to compensate for torque at the passive joints. Note that
this controller is similar to partial feedback linearization
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Fig. 6. Secondary task performance of the unconstrained system. Note the
secondary task does not interfere with the primary task (and thus may take
longer to develop). The underactuated robot is in blue.
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Fig. 7. Instantaneous kinetic energy of the unconstrained experiment. Not
surprisingly, the underactuated robot requires more motion to compensate for
the passive joints.

[14], however rather than linearizing the dynamics of active
or passive joints, we are linearizing the operational space
dynamics.

V. CONCLUSION

In summary, we have presented a new manner for consider-
ing operational space control of constrained and underactuated
systems. First, for constrained systems, we are able to take
advantage of orthogonal projections, which significantly sim-
plifies the formulation and derives operational space dynamics
without a need to explicitly consider constraint forces or
constraint consistency. Next we are able to address the control
of underactuated systems, but now have a better comprehen-
sion of the underlying solution: additional null space forces
are required to compensate for passive DOFs. Thus, as a
consequence, we can no longer decouple task and null space
dynamics. However, if our system has sufficient redundancy,
we have some choice of how to approach the problem: we can
use constraint forces, which do not add more kinetic energy
into the system, or we can add movement within the null
space, which may create more desirable constraint forces. Thus
there exists a trade-off between motion and constraint forces
that can potentially be exploited. For example, there may be
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Fig. 8. Singular configuration of the UACF controller. Constraint forces are
directly aligned with the passive joint (joint 3) and contribute no torque to it

configurations where one solution is singular, but another is
not. Fig. 8 shows such a configuration of the 3 DOF arm
where (26) fails: the constraint force is directly aligned with
the passive joint and therefore cannot contribute torque to it.
However, this configuration presents no problems for the other
controllers that contribute torque by moving. Finally, in this
work we have addressed the optimality of some of the derived
controllers (for example, (20) minimizes the instantaneous null
space contribution). However, dynamic optimization tools may
be required to optimize over complete trajectories, for example
to plan the avoidance of singularities.

APPENDIX

A. Proof of M−1
c P = (PMP)

+

We write Mc in a form that is both symmetric and positive
definite [1]: 3

Mc = PMP + (I−P)M (I−P) , (30)

and take the singular value decomposition (SVD) of Mc =
UΣUT . Because PMP and (I−P)M (I−P) are both
symmetric and mutually orthogonal, we can separate the
singular values as:

Mc =
[

U1 U2

] [ Σ1 0
0 Σ2

] [
U1 U2

]T
(31)

= U1Σ1U
T
1 + U2Σ2U

T
2 (32)

with PMP = U1Σ1U
T
1 and (I−P)M (I−P) =

U2Σ2U
T
2 . Similarly for the inverse:

M−1
c = UΣ−1UT (33)

=
[

U1 U2

] [ Σ−1
1 0
0 Σ−1

2

] [
U1 U2

]T
(34)

= U1Σ
−1
1 UT

1 + U2Σ
−1
2 UT

2 (35)

with (PMP)
+

= U1Σ
−1
1 UT

1 and ((I−P)M (I−P))
+

=
U2Σ

−1
2 UT

2 .

3Using this form of Mc in equations from previous sections requires setting
C = − (I− 2P)MJ+

C J̇C

Thus we can write:

M−1
c = (PMP)

+
+ ((I−P)M (I−P))

+ (36)

Finally, because P spans the null-space of (I−P)M (I−P),
and likewise the null-space of ((I−P)M (I−P))

+, we can
write:

M−1
c P = (PMP)

+ (37)

We can repeat a similar procedure for the other choices of Mc,
showing that (37) always holds. Thus, (37) is independent of
choice of Mc and is unique.

B. Minimization of Kinetic Energy

We prove that the following inverse kinematics solution:

q̇ = J#ẋ = M−1
c PJT

(
JM−1

c PJT
)−1

ẋ (38)

computes joint velocities that minimize the instantaneous
kinetic energy of constrained motion:

Tc =
1

2
q̇TPMPq̇, (39)

Using the result (37) and same SVD from Appendix A:

q̇ = M−1
c PJT

(
JM−1

c PJT
)−1

ẋ (40)

= U1Σ
−1/2
1 Σ

−1/2
1 UT

1 JT
(
JU1Σ

−1/2
1 Σ

−1/2
1 UT

1 JT
)−1

ẋ

(41)

= U1Σ
−1/2
1

(
JU1Σ

−1/2
1

)+

ẋ (42)

and rearranging,

Σ
1/2
1 UT

1 q̇ =
(
JU1Σ

−1/2
1

)+

ẋ (43)

we see the RHS minimizes the quantity:

q̇TU1Σ
1/2
1 Σ

1/2
1 UT

1 q̇ = q̇TU1Σ1U
T
1 q̇ = q̇TPMPq̇ (44)

and therefore minimizes (39).

C. Simplifications using orthogonal projections

We call R (A) the range of the matrix A. From the SVD
of A = UΣVT , and its pseudoinverse A+ = VΣ+UT , we
know that R (A) = R

(
A+T

)
and R (A+) = R

(
AT

)
.

Take two projection operators X and Y and the expres-
sion: X [YX]

+
Y. Because R

(
[YX]

+
)

= R
(
XTYT

)
=

R
(
XT

)
, if X = XT we can reduce our expression to

[YX]
+

Y. By a similar argument, if Y = YT we can reduce
it to X [YX]

+. If both X and Y are symmetric (orthogonal),
then X [YX]

+
Y = [YX]

+.
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